Answer:
E°(Ag⁺/Fe°) = 0.836 volt
Explanation:
3Ag⁺ + 3e⁻ => Ag°; E° = +0.800 volt
Fe° => Fe⁺³ + 3e⁻ ; E° = -0.036 volt
_________________________________
Fe°(s) + 3Ag⁺(aq) => Fe⁺³(aq) + 3Ag°(s) ...
E°(Ag⁺/Fe°) = E°(Ag⁺) - E°(Fe°) = 0.800v - ( -0.036v) = 0.836 volt
Element X has two naturally occurring isotopes, 35X and 36X . 35X has a percent natural abundance of 30%, while 36X has a percent natural abundance of 70%. What is the average atomic mass of element X
Answer:
= 35.7 amu
Explanation:
Isotopic fractional Wt Avg mass
mass (amu) abundance (= % / 100) = Isotopic mass X (= % / 100)
X-35 35 0.30 10.5 amu
X-36 36 0.70 25.2 amu
__________________________________________________________
Average Atomic Mass of Element X = ∑ Wt. Avg. Masses = 35.7 amu
Which elements are main-group elements?
1. Te
2. K
3. V
4. Re
5. Ag
Answer:
Te
K
Explanation:
Main group elements are elements designated and located on the s-block and p-block on the periodic table. The core group or prominent elements are the elements that make up those groups. These groupings comprise the most naturally rich and abundant elements. The main group elements are those whose characteristics are more predicted as a function of their periodic table location. From the given options, only Te and K are elements of the main-group.
An aqueous solution contains 0.29 M of benzoic acid (HA) and 0.16 M of sodium benzoate (A-). If the pH of this solution was measured to be 4.63, calculate the pKa of benzoic acid g
Answer:
pKa = 4.89.
Explanation:
We can solve this problem by using the Henderson-Hasselbach equation, which states:
pH = pKa + log [tex]\frac{[A^-]}{[HA]}[/tex]
In this case [A⁻] is the concentration of sodium benzoate and [HA] is the concentration of benzoic acid.
We input the given data:
4.63 = pKa + log [tex]\frac{0.16}{0.29}[/tex]
And solve for pKa:
pKa = 4.89
Increasing the thermal energy of a solution means you are __ it and increasing the __energy.
Answer:
heating, thermal
Explanation:
the more molecules present, the greater amount from any given source increases the temperature as well as the thermal energy.
What is the formula of the compound Pentasilicon trioxide ?
Answer: the molecular formula of trioxide is ClOClO3 or Cl2O4
hope its helps you.
keep smiling be happy stay safe
What would you expect to observe when Br2 reacts with 2-butyne?
Answer:
I expect to observe a change in colour from reddish brown to a colourless solution
Explanation:
Bromine (Br2) attacks the electron rich carbon-carbon triple bond in but-2-yne, an alkyne to form an initial product 2, 3 dibromobut-2-ene; which reacts with excess bromine to form a final product 2,2,3,3 -tetrabromobutane.
The reaction occurs in two steps. On approaching but-2-yne, bromine molecule becomes polarised forming an induced dipole containing a bromonium ion.
Br - Br → Br+ - Br-
The bromonium ion (Br+) formed then attacks the carbon - carbon triple bond to form the initial product
2,3- dibromobut-2-ene
CH2-C≡C-CH2 + Br+ →
CH2 - CBr =CBr-CH2
(2,3- dibromobut-2-ene)
Which in the presence of excess bromine gives the final product
2,2,3,3 - tetrabromobutane.
CH2 - CBr =CBr-CH2 + Br2 →
CH3 -CBr2-CBr2 - CH3
2,2,3,3 - tetrabromobutane.
A visible change in colour from the reddish-brown colour of Bromine to a colourless solution is observed during the reaction.
What happens when Sulphur dioxide (so2) gas is passed through an acidified solution of hydrogen . sulfide (H₂S) gas :
Answer:
When SO
2
is passed through an acidified solution of H
2
S, sulphur is precipitated out according to the reaction.
2H
2
S+SO
2
→2H
2
O+3S
Indicate type of chemical reactions for 2Mgl2+MN(SO3)2=2MgSO3+Mnl4
Answer:
double decomposition reaction
Write the balanced reaction for the methanol cannon demo that includes their Lewis structures . The reaction is the combustion of methanol (CH3OH). Include the states (s, l, g) in your balanced equation as well.
Answer:
The reaction is the combustion of methanol (CH3OH).
Write the balanced chemical equation.
Draw Lewis structures for each structure.
Explanation:
The balanced chemical equation for the combustion of methane is shown below:
[tex]2CH_3OH(g)+3O_2(g)->2CO_2(g)+ 4 H_2O(g)[/tex]
Lewis structures of the given molecules are shown below:
Liquid A is poured into Liquid B and a single, clear layer results. More Liquid A is added and two distinct layers form. The solution is now_____and there is a_____equilibria occurring.
Answer:
Explanation:
Liquid A is poured into Liquid B and a single, clear layer results. More Liquid A is added and two distinct layers form. The solution is now unsaturated and there is a static equilibria occurring
Consider reaction AgCIO3(aq)+Mgl2(aq)
Answer:
the product is Mg(Clo3)2 + AgI
Many home barbeques are fueled with propane gas (C3H8)(C3H8). Part A What mass of carbon dioxide is produced upon the complete combustion of 27.9 LL of propane (the approximate contents of one 5-gallon tank)
Answer:
41264 g of CO₂
Explanation:
Combustion reaction is:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
1 mol of propane react to 5 moles of oxygen in order to proudce 3 moles of carbon dioxide and 4 moles of water.
In a combustion reaction, our reactant reacts to oxygen and the products are always CO₂ and water.
We have the volume of propane but we need moles of it, so we need to apply density.
Density = mass / volume so mass = density . volume.
Density of propane is: 493 g/L
Mass of propane is 493 g/L . 27.9L = 13754.7 g
We convert mass to moles: 13754.7 g . 1 mol/ 44g = 312.6 moles
According to reaction, 1 mol of propane can produce 3 moles of CO₂
Our 312.6 moles will produce 312.6 . 3 = 937.8 moles
We convert moles to mass: 937.8 mol . 44 g/mol = 41264 g
refer to pic plssss
Answer:
fgufyifyifyiyduhyufyiddjyfjyf86yif
Which procedure could a student use to examine an intensive property of a rectangular block of wood
Find the mass.
Record the length. Measure the volume. Determine the density.
Answer:
density
Explanation:
The procedure that the student could use to examine an intensive property of a rectangular block of wood is to determine its density. Density is intensive because it is the ration between the mass and the volume.
Answer: find the mass option A
Explanation:
A chemist makes of nickel(II) chloride working solution by adding distilled water to of a stock solution of nickel(II) chloride in water.Calculate the concentration of the chemist's working solution. Round your answer to significant digits.
Answer:
0.0900 mol/L
Explanation:
A chemist makes 330. mL of nickel(II) chloride working solution by adding distilled water to 220. mL of a 0.135 mol/L stock solution of nickel(II) chloride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits.
Step 1: Given data
Initial concentration (C₁): 0.135 mol/LInitial volume (V₁): 220. mLFinal concentration (C₂): ?Final volume (V₂): 330. mLStep 2: Calculate the concentration of the final solution
We prepare a dilute solution from a concentrated one. We can calculate the concentration of the working solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 0.135 mol/L × 220. mL/330. mL = 0.0900 mol/L
Predict the products from reaction of 2-hexyne with the following reagents: (a) 2 equiv Br2 (b) 1 equiv HBr (c) Excess HBr (d) Li in NH3 (e) H2O, H2SO4, HgSO4
Answer:
See explanation and image attached
Explanation:
The reactions of the alkynes involved are shown in the image attached to this answer.
First of all, the reaction of two equivalents of bromine with the alkyne converts it to a saturated compound as shown. One equivalent of HBr converts the alkyne to alkene while excess HBr completely reduces the compound to a saturated compound.
Li/NH3 reduces the alkyne to an alkeneby anti addition to the triple bond.
Reaction of the alkyne with H2O, H2SO4, HgSO4 converts it to an aldehyde as shown.
What is the amount of solute required if the solution is 50 ml and the solvent is 35 ml. Solve and explain
I don’t know what to do
Answer:
15 mL of the solute
Explanation:
From the question given above, the following data were obtained:
Solution = 50 mL
Solvent = 35 mL
Solute =?
Solution is simply defined as:
Solution = solute + solvent
With the above formula, we can easily obtain the solute in the solution as follow:
Solution = 50 mL
Solvent = 35 mL
Solute =?
Solution = solute + solvent.
50 = solute + 35
Collect like terms
50 – 35 = solute
15 = solute
Solute = 15 mL
Therefore, 15 mL of the solute is required.
liquid junction potential arise due to?
Answer:
liquid junction potentials
when a cell contains a boundary between two electrolytic solutions of different composition or concentration, a liquid junction potential is developed due to the "diffusion of the various components at characteristic rates in the boundary zone."
#carryonlearning
give one important characteristic of the particles of matter very sort answer give
Answer:
The important characteristics of the particles of matter are – They are very, very small. They have spaces between them. They are constantly moving.
Answer:
They are very very small
Many chemistry problems result in equations of the form
1.77 X100.298-z)
When this equation is solved, the two values of the unknown are ________ and ________
Answer:
When this equation is solved, the two values of the unknown are 0.0643 and -0.082
Explanation:
Given
[tex]1.77 * 10^{-2} = \frac{x^2}{0.298 - x}[/tex] --- the actual equation
Required
The values of x
We have:
[tex]1.77 * 10^{-2} = \frac{x^2}{0.298 - x}[/tex]
Cross Multiply
[tex]1.77 * 10^{-2} * (0.298 - x)= x^2[/tex]
Multiply both sides by 100
[tex]1.77 * (0.298 - x)= 100x^2[/tex]
Open bracket
[tex]0.52746 - 1.77x= 100x^2[/tex]
Rewrite as:
[tex]100x^2 + 1.77x - 0.52746 =0[/tex]
Using quadratic formula:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where:
[tex]a = 100; b = 1.77; c = -0.52746[/tex]
So, we have:
[tex]x = \frac{-1.77 \± \sqrt{1.77^2 - 4*100*- 0.52746 }}{2*100}[/tex]
[tex]x = \frac{-1.77 \± \sqrt{214.1169}}{2*100}[/tex]
[tex]x = \frac{-1.77 \± 14.63}{200}[/tex]
Split
[tex]x = \frac{-1.77 + 14.63}{200}\ or\ x = \frac{-1.77 - 14.63}{200}[/tex]
[tex]x = \frac{12.86}{200}\ or\ x = \frac{-16.40}{200}[/tex]
[tex]x = 0.0643\ or\ x = -0.082[/tex]
What volume in mL of 0.300 M NaF would be required to make a 0.0450 M solution of NaF when diluted to 250.0 mL with water?
Answer: A volume of 37.5 mL of 0.300 M NaF would be required to make a 0.0450 M solution of NaF when diluted to 250.0 mL with water.
Explanation:
Given: [tex]M_{1}[/tex] = 0.300 M, [tex]V_{1}[/tex] = ?
[tex]M_{2}[/tex] = 0.0450 M, [tex]V_{1}[/tex] = 250.0 mL
Formula used is as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}[/tex]
Substitute the values into above formula as follows.
[tex]M_{1}V_{1} = M_{2}V_{2} \\0.300 M \times V_{1} = 0.0450 M \times 250.0 mL\\V_{1} = 37.5 mL[/tex]
Thus, we can conclude that a volume of 37.5 mL of 0.300 M NaF would be required to make a 0.0450 M solution of NaF when diluted to 250.0 mL with water.
How many moles of
H
C
l
are in
44.1
mL
of a
1.26
M
H
C
l
solution?
Answer: There are 0.0556 moles present in 44.1 mL of a 1.26 M HCl solution.
Explanation:
Given: Volume = 44.1 mL (1 mL = 0.001 L) = 0.0441 L
Molarity = 1.26 M
Molarity is the number of moles of a substance present in liter of a solution.
Therefore, moles of HCl are calculated as follows.
[tex]Moles = \frac{moles}{Volume (in L)}\\1.26 M = \frac{moles}{0.0441 L}\\moles = 0.0556 mol[/tex]
Thus, we can conclude that there are 0.0556 moles present in 44.1 mL of a 1.26 M HCl solution.
what is the qualitative analysis of (nh4) 2co3 using NaOH, HCL, BaCL2, and AgNO3
Answer:
qualatatiev is fs-hj_jakakak
What is the molecular formula of the structure below?
Picture is attached pls help I’ll mark as brainliest for the right answer
Answer:
C₆H₆
Explanation:
Each border of the figure represents 1 atom of carbon. We have 6 borders = 6 atoms of carbon.
Each atom of carbon form 4 bonds. All the carbons are doing a double bond and a single bond with other carbons. That means are bonded 3 times. The other bond (That is not represented in the figure. See the image) comes from hydrogens. As we have 6 carbons that are bonded each 1 with one hydrogen. There are six hydrogens and the molecular formula is:
C₆H₆This structure is: Benzene
What is determined by calculating the slope of the position versus time graph distance
Answer:
Determining the Slope on a p-t Graph. It was learned earlier in Lesson 3 that the slope of the line on a position versus time graph is equal to the velocity of the object. ... If the object has a velocity of 0 m/s, then the slope of the line will be 0 m/s. The slope of the line on a position versus time graph tells it all.
Explanation:
#carryonlearning
Each of the following sets of quantum numbers is supposed to specify an orbital. Choose the one set of quantum numbers that does NOT contain an error.
a. n = 4, l = 3, ml =-4
b. n = 2, l = 2, ml =0
c. n = 3, l = 2, ml =-2
d. n = 2, l = 2, ml =+1
Answer:
n = 3, l = 2, ml =-2
Explanation:
Quantum numbers are a set of values which can be used to describe the energy and position of an electron in space.
There are four sets of quantum numbers;
1) principal quantum number
2) orbital quantum number
3) spin quantum number
4) magnetic quantum number.
The values of orbital quantum number include; -l to +l;
The set of quantum numbers without error is ; n = 3, l = 2, ml =-2
Suppose you are using distillation to separate cyclohexane and toluene. The boiling point of cyclohexane is ______ oC and the boiling point of toluene is ______ oC. Therefore, the liquid collected first should be ______
Please put an answer in each box.
Answer: The boiling point of cyclohexane is 81oC and the boiling point of toluene is 111oC. Therefore the liquid collected first should be
CYCLOHEXANE
Explanation:
In chemistry, there are various separation techniques that can be used to separate the components of a mixture and even isolate each of these components. A typical example of such separation techniques is DISTILLATION. This is a method of separation that makes use of different boiling points of liquids in a mixture. A mixture of any number of liquids could be separated as long as they boil at different temperatures. Example include:
--> mixture of cyclohexane (boiling point is 81°C) and toluene (boiling point is 111°C)
--> mixture of alcohol (boiling point is 78°C) and water (boiling point 100°C).
The process involves heating the mixture of liquids until the more volatile liquid ( that is the one with the lower boiling point) changes to vapour. The vapour is cooled by passing it through a condenser and collected in a liquid form known as distillate.
Therefore in the mixture of cyclohexane and toluene, the liquid collected FIRST should be CYCLOHEXANE.
A. Consider the following neutral electron configurations in which n has a constant value. Which configuration would belong to the element with the most negative electron affinity, Eea?
1. 2s2
2. 2s2 2p2
3. 2s2 2p5
4. 2s2 2p6
B. Arrange the following elements from greatest to least tendency to accept an electron.
Rank from greatest to least tendency to accept an electron. To rank items as equivalent, overlap them.
1. Sr
2. Sn
3. Rb
4. Te
5. I
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
How many moles are contained in .984 molecules F2?
Answer:
1.6 x 10⁻²⁴ moles
Explanation:
We have 0.984 molecules of F₂. We know that 1 mol is equal to 6.022 x 10²³ molecules. Thus, we have a conversion factor: 1 mol/6.022 x 10²³ molecules
So, we multiply the molecules of F₂ by the conversion factor to calculate the moles:
0.984 molecules x 1 mol/6.022 x 10²³ molecules = 1.6 x 10⁻²⁴ moles
How do forces between particles in gases compare to forces in the other states of matter?
The forces in gases are weaker than forces in solids and liquids.
Because they have more kinetic energy that overcomes the force of attraction.