Given that exp(2x) is a solution, we assume another solution of the form
y(x) = v(x) exp(2x) = v exp(2x)
with derivatives
y' = v' exp(2x) + 2v exp(2x)
y'' = v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)
Substitute these into the equation:
(2x + 5) (v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)) - 4 (x + 3) (v' exp(2x) + 2v exp(2x)) + 4v exp(2x) = 0
Each term contains a factor of exp(2x) that can be divided out:
(2x + 5) (v'' + 4v' + 4v) - 4 (x + 3) (v' + 2v) + 4v = 0
Expanding and simplifying eliminates the v term:
(2x + 5) v'' + (4x + 8) v' = 0
Substitute w(x) = v'(x) to reduce the order of the equation, and you're left with a linear ODE:
(2x + 5) w' + (4x + 8) w = 0
w' + (4x + 8)/(2x + 5) w = 0
I'll use the integrating factor method. The IF is
µ(x) = exp( ∫ (4x + 8)/(2x + 5) dx ) = exp(2x - log|2x + 5|) = exp(2x)/(2x + 5)
Multiply through the ODE in w by µ :
µw' + µ (4x + 8)/(2x + 5) w = 0
The left side is the derivative of a product:
[µw]' = 0
Integrate both sides:
∫ [µw]' dx = ∫ 0 dx
µw = C
Replace w with v', then integrate to solve for v :
exp(2x)/(2x + 5) v' = C
v' = C (2x + 5) exp(-2x)
∫ v' dx = ∫ C (2x + 5) exp(-2x) dx
v = C₁ (x + 3) exp(-2x) + C₂
Replace v with y exp(-2x) and solve for y :
y exp(-2x) = C₁ (x + 3) exp(-2x) + C₂
y = C₁ (x + 3) + C₂ exp(2x)
It follows that the second fundamental solution is y = x + 3. (The exp(2x) here is already accounted for as the first solution.)
g A two-factor study with 3 levels of factor A and 3 levels of factor B uses a separate sample of 10 participants in each treatment condition. How many participants are needed for the entire study
Answer:
the total number of participants required is 90
Step-by-step explanation:
Given the data in the question;
Factor A has three levels
Factor B has three levels
sample size n; ten participants
we have two Way ANOVA involving Factor A and Factor B.
Now,
{ Total # Participants Required } = { #Levels factor A } × { #Levels factor B } × { Sample size of each level }
we substitute
{ Total # Participants Required } = 3 × 3 × 10
{ Total # Participants Required } = 9 × 10
{ Total # Participants Required } = 90
Therefore, the total number of participants required is 90
xp-q+1×xq-r+1×xr-p+1
Answer:
Look into the picture
Step-by-step explanation:
Let me know if there's something wrong to my answer
Symposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use ???? = 0.01.
Complete Question
ymposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use = 0.01.
a. What is the value of the sample test statistic? (Round your answer to two decimal places.)
b. Find the P-value of the test statistic. (Round your answer to four decimal places.)
Answer:
a) [tex]Z=2.45[/tex]
b) [tex]P Value=0.0073[/tex]
Step-by-step explanation:
From the question we are told that:
Probability of Wishart and Leach [tex]P=21.4=>0.214[/tex]
Population Size [tex]N=498[/tex]
Sample size [tex]n=12[/tex]
Therefore
[tex]P'=\frac{129}{498}[/tex]
[tex]P'=0.2590[/tex]
Generally the Null and Alternative Hypothesis is mathematically given by
[tex]H_0:P=0.214[/tex]
[tex]H_a:=P>0.214[/tex]
Test Statistics
[tex]Z=\frac{P'-P}{\sqrt{\frac{P(1-P)}{n}}}[/tex]
[tex]Z=\frac{0.2590-0.214}{\sqrt{\frac{0.214(1-0.214)}{498}}}[/tex]
[tex]Z=2.45[/tex]
Therefore P Value is given as
[tex]P Value =P(Z\geq 2.45)[/tex]
[tex]P Value =1-P(Z\leq 2.45)[/tex]
[tex]P Value =1-0.99268525[/tex]
[tex]P Value=0.0073[/tex]
Choose the system of inequalities that best matches the graph below.
Answer:
"D" is the correct answer
Step-by-step explanation:
what is the measure of angle X in degrees
Answer:
If you are working with equilateral triangles, divide 180 by three to find the value of X. All of the angles of an equilateral triangle are equal. Solve for X in interesting lines by finding the value of one adjacent angle and subtracting it from 180 degrees.
Step-by-step explanation:
I NEED HELP ILL MARK!!!
Answer:
c) tan
Step-by-step explanation:
For the 63-deg angle, YZ is the opposite leg. The unknown side, AY, is the adjacent leg. The trigonometric ratio that relates the opposite and adjacent legs is the tangent.
Answer: c) tan
38. The ______ is also not convenient to use because the process of working for it produces large numbers due to squaring. 39. The ______ is the most reliable measure of variability. 40. The lesser the variability, the ______ is the mean.
Answer:
This Question Is From The Novel Of The Fantastic Mr.Fox
Q. Boggis , Bunce and Bean are Offering a reward for Mr.Fox , They are tired of Losing Chickens Geese and Cider , Create a Description And Drawing of Mr.Fox to allow him to be captured , use the word bank....
________________________________
Swift | Slay | Ginger | Rough | Fast
Thief. | Clever | Fur | Tail | Wife | Night
Cunning | Bushy | wiry | bush | Den | trick
________________________________
Write the range of the function using interval notation.
Answer:
[-3, -1]
Step-by-step explanation:
The minimum y value is -3.
The maximum y value is -1.
-3 and -1 are included, so we use square brackets.
Answer: [-3, -1]
From a set of 5 nickels, 10 dimes and 15 quarters, six coins are removed at random without replacement.
a. Find the probability of not removing 6 quarters.
b. Find the probability of removing exactly 2 nickels, 2 dimes and 2 quarters.
Answer:
(a) 1 - (15 C 6) / (30 C 6)
(b) (5 C 2) x (10 C 2) x (15 C 2) / (30 C 2)
Step-by-step explanation:
Number of nickels = 5
Number of dimes = 10
Number of quarters = 15
(a) The probability of getting 6 quarters
= (15 C 6) / (30 C 6)
So, the probability of not getting 6 quarters = 1 - (15 C 6) / (30 C 6)
(b) Probability of getting 2 nickels , 2 dimes and 2 quarters
= (5 C 2) x (10 C 2) x (15 C 2) / (30 C 2)
What is the perimeter of parallelogram WXYZ? StartRoot 5 EndRoot + StartRoot 17 EndRoot units 2 StartRoot 5 EndRoot + 2 StartRoot 17 EndRoot units 16 units 22 units
Answer:
b
Step-by-step explanation:
im doing it on edge right now
Suppose y varies inversely with X, and y = 36 when x = 1/12. What inverse variation equation relates x and y?
NO LINKS OR ANSWERING YOU DON'T KNOW!!!
a. y= 3x
b. y= 3/x
c. x/3
d. y= x
Answer:
B
Step-by-step explanation:
We are given that y varies inversely with x. Recall that inverse variation has the form:
[tex]\displaystyle y=\frac{k}{x}[/tex]
Where k is the constant of variation.
We are given that y = 36 when x = 1/12. Thus:
[tex]\displaystyle (36)=\frac{k}{\left({}^{1}\!/\!{}_{12}\right)}[/tex]
Solve for k. Multiply both sides by 1/12:
[tex]\displaystyle k=\frac{1}{12}(36)=3[/tex]
Hence, our equation is:
[tex]\displaystyle y=\frac{3}{x}[/tex]
Our answer is B.
2. Commission: A car saleswoman earns a
commission of 7% on each car she sells. How
much did she earn on the sale of a car for
$12,500?
Answer:
Step-by-step explanation:
commission = 0.7% of $12,500
= 0.007×$12,500
= $87.5
tr(n)*2 I NEE HELP ASAP
Answer:
2TRN
Let me know if this is wrong!
233115555532224444432
Yalll ya gurl is struggling I need help SOS
Answer:
22 mi
Step-by-step explanation:
From the question given above, the distance from E to F is 6 in.
Thus, we can obtain the distance from E to F (i.e mi) by using the scale provided in the question. This is illustrated below:
3 in = 11 mi
Therefore,
6 in = 6 in × 11 mi / 3 in
6 in = 22 mi
Therefore, the distance from E to F is 22 mi
How to find the surface area of a cuboid
Answer:
To find the surface area of a cuboid we can also label the length, width and the height of the prism and use the formula SA=2LW+2LH+2HW to find the area of a cuboid
Answer:
202 cm²
Step-by-step explanation:
The opposite faces of a cuboid are congruent , then
SA = top/bottom + front/ back + sides , that is
SA = 2(9 × 4) + 2(9 × 5) + 2(4 × 5)
= 2(36) + 2(45) + 2(20)
= 72 + 90 + 40
= 202 cm²
What is the average rate of increase in enrollment
per
decade between 1950 and 2000?
Given:
The graph that represents the enrollment for college R between 1950 and 2000.
To find:
The average rate of increase in enrollment per decade between 1950 and 2000?
Solution:
The average rate of change of function f(x) over the interval [a,b] is:
[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]
So, the average rate of increase in enrollment per year between 1950 and 2000 is:
[tex]m=\dfrac{f(2000)-f(1950)}{2000-1950}[/tex]
[tex]m=\dfrac{7-4}{50}[/tex]
[tex]m=\dfrac{3}{50}[/tex]
[tex]m=0.06[/tex]
It is given average rate of increase in enrollment per year between 1950 and 2000 is 0.06.
We need to find the average rate of increase in enrollment per decade between 1950 and 2000, So, multiply the average rate of increase in enrollment per year by 10.
[tex]0.06\times 10=0.6[/tex]
Therefore, the average rate of increase in enrollment per decade between 1950 and 2000 is 0.6.
Find the measure of ∠C in the image below. 60+55+m∠C=180
Answer:
angle C= 65 degree
Step-by-step explanation:
60+55+x= 180
115+x= 180
x= 180-115
x= 65
angle C= 65 degree
Please mark me as brainliest.
What is the product of
(5^-4)(5^-3)
Answer:
option one is the correct answer
Answer:
1/625
Step-by-step explanation:
)
Gos
1. Select all the relations that represent a
function.
(3,2), (2,1), (3,9) (4,7)
(1,7), (2,2), (3,5) (4,8)
(2,6), (6,5), (3,2) (5,3)
(4,3), (3,3), (2,3) (1,3)
(2,2), (2,5), (2,1) (2,3)
Answer:
(1,7), (2,2), (3,5) (4,8)
(2,6), (6,5), (3,2) (5,3)
(4,3), (3,3), (2,3) (1,3)
Step-by-step explanation:
those represent functions b/c the domain of the relation is not written twice
Hope that'll help!
If the rectangle were translated three units down, then reflected across the y-axis, what would be the coordinates of point D ?
Answer
all y values change sign that is reflection over x axis SKETCH IT !!!!
More
I will mark you brainliest if you provide evidence you know what your doing
Work out the problem and make the answer clear
Option C
SOLUTION:
We need to find the value of B - CF
First find the value CF:
[tex]CF=\left[\begin{array}{ccc}12&0&1.5\\1&-6&7\\\end{array}\right] \left[\begin{array}{ccc}-2&0\\0&8\\2&1\end{array}\right][/tex]
[tex]CF=\left[\begin{array}{ccc}12(-2)+0 *0+1.5*2&12*0+0.8+1.5*1\\1*(-2)+(-6)*0+7.2&1*0+(-6)*8+7.1\\\end{array}\right][/tex]
[tex]CF=\left[\begin{array}{ccc}-21&1.5\\12&-41\\\end{array}\right][/tex]
Now find value of B - CF:
[tex]B-CF=\left[\begin{array}{ccc}2&8\\6&3\\\end{array}\right] -\left[\begin{array}{ccc}-21&1.5\\12&-41\\\end{array}\right][/tex]
[tex]B-CF=\left[\begin{array}{ccc}23&6.5\\-6&44\\\end{array}\right][/tex]
∴ the value of B - CF is [tex]\left[\begin{array}{ccc}23&6.5\\-6&44\\\end{array}\right][/tex]
I hope this helps....
I don’t understand these problems
Both E and F are sets.
E = {w | w ≤ 2}
means that E is the set of all numbers w satisfying the condition that w ≤ 2. In other words, E contains all real numbers less than and including 2.
Similarly,
F = {w | w > 9}
is the set of all real numbers strictly greater than 9.
The intersection of E and F, denoted E ∩ F, is the set that contains the overlap of the two sets, or all the numbers that are common to both sets. In this case, E ∩ F is the empty set; this is because all numbers small than 2 cannot be larger than 9, so E ∩ F = ∅.
The union of E and F, written as E ∪ F, is the set containing all elements from both sets. In interval notation, E = (-∞, 2] and F = (9, ∞), so E ∪ F = (-∞, 2] ∪ (9, ∞).
Suppose a large shipment of televisions contained 9% defectives. If a sample of size 393 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 3%
Answer:
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose a large shipment of televisions contained 9% defectives
This means that [tex]p = 0.09[/tex]
Sample of size 393
This means that [tex]n = 393[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{393}} = 0.0144[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 3%?
Proportion between 0.09 - 0.03 = 0.06 and 0.09 + 0.03 = 0.12, which is the p-value of Z when X = 0.12 subtracted by the p-value of Z when X = 0.06.
X = 0.12
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.12 - 0.09}{0.0144}[/tex]
[tex]Z = 2.08[/tex]
[tex]Z = 2.08[/tex] has a p-value of 0.9812
X = 0.06
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0144}[/tex]
[tex]Z = -2.08[/tex]
[tex]Z = -2.08[/tex] has a p-value of 0.0188
0.9812 - 0.0188 = 0.9624
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Is the point (-3,2) part of the solution set to the system y < -4x - 3, x + 8y > 7
Answer:
Yes
Step-by-step explanation:
If you replace each x with -3 and each y with 2 you get:
1) 2<-4*(-3)
2<12
True
2) -3+8*2>7
13>7
True
Therefore the point is part of the solution set
Expand (2x - 4)2 using the square of a binomial formula.
(x)2 + 2(x)(4) + 42
O (2x)2 + 2(2x)(4) - 42
O(x2 - 2(x)(4) - 42
(2x)2 - 2(2x)(4) + 42
Step-by-step explanation:
We have to expand,
[tex]\longrightarrow [/tex] (2x — 4)²
(a ― b)² = a² + b² ― 2ab[tex]\longrightarrow [/tex] (2x)² + (4)² ― 2(2x × 4)
[tex]\longrightarrow [/tex] 4x² + 16 ― 2(8x)
[tex]\longrightarrow [/tex] 4x² + 16 ― 16x
[tex]\longrightarrow [/tex] 4x² ― 16x + 16
Hence, solved!
Answer:
D is the correct answer (2x)2 – 2(2x)(4) + 42
Step-by-step explanation:
SOMEONE HELP PLEASE! So for this problem the answer I got is $4000. Is that the correct or incorrect answer? Can someone please help me if it is the incorrect answer. Thank you for your time.
Answer:
You're correct
Step-by-step explanation:
A home gardener estimates that 24 apple trees will have an average yield of 104 apples per tree. But because of the size of the garden, for each additional tree planted the yield will decrease by two apples per tree. (a) How many additional trees should be planted to maximize the total yield of apples
Answer:
The farmer should plant 14 additional trees, for maximum yield.
Step-by-step explanation:
Given
[tex]Trees = 24[/tex]
[tex]Yield = 104[/tex]
[tex]x \to additional\ trees[/tex]
So, we have:
[tex]Trees = 24 + x[/tex]
[tex]Yield = 104 - 2x[/tex]
Required
The additional trees to be planted for maximum yield
The function is:
[tex]f(x) = Trees * Yield[/tex]
[tex]f(x) = (24 + x) * (104 - 2x)[/tex]
Open bracket
[tex]f(x) = 24 * 104 + 104x - 24 * 2x - x * 2x[/tex]
[tex]f(x) = 2796 + 104x - 48x - 2x^2[/tex]
[tex]f(x) = 2796 + 56x - 2x^2[/tex]
Rewrite as:
[tex]f(x) = - 2x^2 + 56x + 2796[/tex]
Differentiate
[tex]f'(x) = -4x + 56[/tex]
Equate [tex]f'(x) = -4x + 56[/tex] to 0 and solve for x to get the maximum of x
[tex]-4x + 56 = 0[/tex]
[tex]-4x =- 56[/tex]
Divide by -4
[tex]x =14[/tex]
The farmer should plant 14 additional trees, for maximum yield.
Please help, I’m running out of time. Please.
Answer:
which standard questions is it
Determine the domain and range of the function
Answer:
Domain: -4 ≤ x ≤ -1
Range: -1 ≤ y ≤ 3
Step-by-step explanation:
Hi there!
The domain is the possible x-values of a function.
The lowest x-value the function contains is -4, and the greatest is -1.
Therefore, the domain is -4 ≤ x ≤ -1.
The range is the possible y-values of a function.
The lowest y-value the function contains is -1, and the greatest is 3.
Therefore the range is -1 ≤ y ≤ 3.
I hope this helps!
If a driver averages 50 miles per hour, the number of hours it will take to drive 360 miles is
Divide total miles by speed:
360 / 50 = 7.2 hours