Answer:
64in^3
Step-by-step explanation:
6×3 = 18
18×2 = 36
4×7 = 28
36+28 = 64
Hope this helps! :)
Need help with this math
Answer:
Step-by-step explanation:
office at point A =(-7,-5) ........................in the form (x1,y1)
supermarket and point B = (-2,-6)........in the form (x2,y2)
home Home at point C = (4,-6).............in the from (x3,y3)
find the total distance from A to B + B to C
ABdist= sqrt[ (x2-x1)^2 + (y2-y1)^2 ]
ABdist = sqrt[ (-2-(-7))^2 + (-6-(-5))^2 ]
ABdist = sqrt[ (-2 + 7)^2 + (-6 +5)^2]
ABdist = sqrt[ [tex]5^{2}[/tex] + [tex](-1)^{2}[/tex]]
ABdist = sqrt[ 25 + 1 }
ABdist = [tex]\sqrt{26}[/tex]
BCdist= sqrt[ (x3-x2)^2 + (y3-y2)^2 ]
BCdist = sqrt[ (4-(-2))^2 + (-6-(-6))^2]
BCdist = sqrt[ 4+2)^2 + -6+6)^2 ]
BCdist = sqrt [ [tex]6^{2}[/tex] + [tex]0^{2}[/tex] ]
BCdist = [tex]\sqrt{36}[/tex]
BCdist = 6
total distance = [tex]\sqrt{26}[/tex] +6
The first answer looks good
What is the place value of the 4 in 4.09?
Choose 1 answer:
(Choice A)
Tens
(Choice B)
Ones
(Choice C)
Tenths
(Choice D)
Hundredths
Answer:
B: Ones.
Step-by-step explanation:
Because this number is 4.09, and the decimal is right next to the 4, that means that it is in the ones place. Decimals are always adjacent on the right to the ones place.
Use a linear approximation (or differentials) to estimate the given number. (Round your answer to five decimal places.) 3 217
Using a linear approximation, the estimated cube root of 217 is 6.00925.
Given that the number is,
The cube root of 217
Now, for the cube root of 217 using a linear approximation, use differentials.
So, the derivative of the function [tex]f(x) = x^{(1/3)[/tex] at a known point.
Taking the derivative of [tex]f(x) = x^{(1/3)[/tex], we get:
[tex]f'(x) = (\dfrac{1}{3} )x^{-2/3[/tex]
Now, we can choose a point near 217 to evaluate the linear approximation.
Let's use x = 216, which is a perfect cube.
Substituting x = 216 into the derivative, we get:
[tex]f'(216) = (\dfrac{1}{3} )(216)^{-2/3[/tex]
[tex]= 0.00925[/tex]
Next, use the linear approximation formula:
Δy ≈ f'(a)Δx
Since our known point is a = 216 and we want to estimate the cube root of 217,
since 217 - 216 = 1
Hence, Δx = 1
Δy ≈ f'(216)
Δx ≈ 0.00925 × 1
≈ 0.00925
Finally, add this linear approximation to the known value at the known point to get our estimate:
Estimated cube root of 217 ;
f(216) + Δy = 6 + 0.00925
= 6.00925
Therefore, the estimated cube root of 217 is 6.00925.
To learn more about the linear approximation visit:
https://brainly.com/question/2272411
#SPJ4
What is the mean of this data? 7,5,5,3,2,2
Answer:
4
Step-by-step explanation:
The mean is the average of a data set. It can be found by adding up all of the values in a data set and then dividing it by the number of values in the data set.
The values in this data set;
[tex]7,5,5,3,2,2[/tex]
The number of values in this data set,
[tex]6[/tex]
Find the mean;
[tex]\frac{sum\ of\ vlaues}{number\ of\ values}[/tex]
[tex]=\frac{7+5+5+3+2+2}{6}\\\\=\frac{24}{6}\\\\=4[/tex]
2 triangles are shown. The first triangle has side lengths 35, 20, and 20. The second triangle has side lengths x, 44, 44.
What value of x will make the triangles similar by the SSS similarity theorem?
15.9
59
77
96.8
Answer:
[tex]x = 77[/tex]
Step-by-step explanation:
Given
[tex]First \to Second[/tex]
[tex]35 \to x[/tex]
[tex]20 \to 44[/tex]
[tex]20 \to 44[/tex]
Required
Find x by SSS
Represent the triangle sides as a ratio
[tex]35 : x = 20 : 44[/tex]
Express as fraction
[tex]\frac{x}{35} = \frac{44}{20}[/tex]
Multiply by 35
[tex]x = \frac{44}{20} * 35[/tex]
[tex]x = \frac{44 * 35}{20}[/tex]
[tex]x = \frac{1540}{20}[/tex]
[tex]x = 77[/tex]
Answer:
ccccccccccccccccccccccccccc
Step-by-step explanation:
Sarah ordered 39 shirts that cost $8 each. She can sell each shirt for $16.19. She sold 32 shirts to customers. She had to return 7 shirts and pay a $1.4 charge for each returned shirt. Find Sarah's profit.
her profit is 204 dollars and 68 cents= 204.68
Can someone help me with this problem?
Two lamps marked 100 W - 110 V and 100 W - 220 V are connected i
series across a 220 V line. What power is consumed in each lamp?
The power consumed in the lamp marked 100W - 110V is 15.68W
The power consumed in the lamp marked 100W - 220V is 62.73W
Step-by-step explanation:
Given:
First lamp rating
Power (P) = 100W
Voltage (V) = 110V
Second lamp rating
Power (P) = 100W
Voltage (V) = 220V
Source
Voltage = 220V
i. Get the resistance of each lamp.
Remember that power (P) of each of the lamps is given by the quotient of the square of their voltage ratings (V) and their resistances (R). i.e
P = [tex]\frac{V^2}{R}[/tex]
Make R subject of the formula
⇒ R = [tex]\frac{V^2}{P}[/tex] ------------------(i)
For first lamp, let the resistance be R₁. Now substitute R = R₁, V = 110V and P = 100W into equation (i)
R₁ = [tex]\frac{110^2}{100}[/tex]
R₁ = 121Ω
For second lamp, let the resistance be R₂. Now substitute R = R₂, V = 220V and P = 100W into equation (i)
R₂ = [tex]\frac{220^2}{100}[/tex]
R₂ = 484Ω
ii. Get the equivalent resistance of the resistances of the lamps.
Since the lamps are connected in series, their equivalent resistance (R) is the sum of their individual resistances. i.e
R = R₁ + R₂
R = 121 + 484
R = 605Ω
iii. Get the current flowing through each of the lamps.
Since the lamps are connected in series, then the same current flows through them. This current (I) is produced by the source voltage (V = 220V) of the line and their equivalent resistance (R = 605Ω). i.e
V = IR [From Ohm's law]
I = [tex]\frac{V}{R}[/tex]
I = [tex]\frac{220}{605}[/tex]
I = 0.36A
iv. Get the power consumed by each lamp.
From Ohm's law, the power consumed is given by;
P = I²R
Where;
I = current flowing through the lamp
R = resistance of the lamp.
For the first lamp, power consumed is given by;
P = I²R [Where I = 0.36 and R = 121Ω]
P = (0.36)² x 121
P = 15.68W
For the second lamp, power consumed is given by;
P = I²R [Where I = 0.36 and R = 484Ω]
P = (0.36)² x 484
P = 62.73W
Therefore;
The power consumed in the lamp marked 100W - 110V is 15.68W
The power consumed in the lamp marked 100W - 220V is 62.73W
14. The Elizabeth Tower is 320 feet tall. At what time or times during your ride on the London Eye are you at the same height as the top of the tower? Show your work. (4 points: 2 points for finding the correct time(s), 2 points for work shown)
Answer:
Ok so on a clock there is 12 numbers where 12 is on top so at 12 am and 12 pm noon and midnight you will be at the top of the clock
Hope This Helps!!!
During the ride on the London Eye, you will be at the same height as the top of the Elizabeth Tower at approximately 21 minutes and 43.16 seconds after the start of the ride.
To determine the time(s) during the ride on the London Eye when you are at the same height as the top of the Elizabeth Tower (commonly known as Big Ben), we need to consider the height of the London Eye and its rotational motion.
Given that the Elizabeth Tower is 320 feet tall, we need to find the position of the London Eye when its height aligns with the top of the tower.
The London Eye has a height of 443 feet, and it completes one full rotation in approximately 30 minutes (or 1800 seconds). This means that it moves at a constant angular velocity of 360 degrees per 1800 seconds.
To find the time(s) when the heights align, we can set up a proportion:
(Height of the Elizabeth Tower) / (Height of the London Eye) = (Angle covered by the London Eye) / 360 degrees
Substituting the given values:
320 / 443 = (Time to align) / 1800
Simplifying the equation:
(Time to align) = (320 / 443) * 1800
Calculating the value:
(Time to align) ≈ 1303.16 seconds
Converting the time to minutes and seconds:
(Time to align) ≈ 21 minutes and 43.16 seconds
Therefore, during the ride on the London Eye, you will be at the same height as the top of the Elizabeth Tower at approximately 21 minutes and 43.16 seconds after the start of the ride.
To know more about London Eye. here
https://brainly.com/question/16401602
#SPJ2
A plane flying horizontally at an altitude of 2 miles and a speed of 410 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 5 miles away from the station.
Answer:
[tex]82\sqrt{21}\text{ or approximately 375.77 miles per hour}[/tex]
Step-by-step explanation:
Please refer to the diagram below. R is the radar station and x is the distance from the station to the plane.
We are given that the plane is flying horizontally at an altitude of two miles and at a speed of 410 mph. And we want to find the rate at which the distance from the plane to the station is increasing when it is five miles away from the station.
In other words, given da/dt = 410 and x = 5, find dx/dt.
From the Pythagorean Theorem:
[tex]a^2+4=x^2[/tex]
Implicitly differentiate both sides with respect to time t. Both a and x are functions of t. Hence:
[tex]\displaystyle 2a\frac{da}{dt}=2x\frac{dx}{dt}[/tex]
Simplify:
[tex]\displaystyle a\frac{da}{dt}=x\frac{dx}{dt}[/tex]
Find a when x = 5:
[tex]a=\sqrt{5^2-2^2}=\sqrt{21}[/tex]
Therefore, dx/dt when da/dt = 410, x = 5, and a = √(21) is:
[tex]\displaystyle \frac{dx}{dt}=\frac{(\sqrt{21})(410)}{5}=82\sqrt{21}\approx 375.77\text{ mph}[/tex]
The rate at which is distance from the plane to the radar station is increasing at a rate of approximately 375.77 miles per hour.
Which expression is equivalent to…
Answer:
D
Step-by-step explanation:
What is the value of x?
Answer:
22
Step-by-step explanation:
3x-14= 4(x-9)
3×-14= 4x-36
4x-36-3x+14=0
×-22÷0
x=22
You are a 60 year old male. You want $1,000,000.00 in term life insurance. It will cost you $13.22 per $1,000.
Calculate the annual premium.
A $11,220.00
B $12,220.00
C $13,220.00
D $14,220.00
Answer:
C $13,220
Step-by-step explanation:
If four pounds of potatoes cost $6.00, how much would 10 pounds of potatoes cost.
SHOW ALL YOUR WORK!!!!!
Answer:
10 pounds of potatoes would cost $15.
Step-by-step explanation:
Set up proportion.
4/6=10/x
simplify 4/6 into 2/3,
2/3=10/x
cross product,
2*x=3*10
2x=30
x=30/2
x=15
lemme just add some to the great reply above,
[tex]\begin{array}{ccll} lbs&\$\\ \cline{1-2} 4&6\\ 10&x \end{array}\implies \cfrac{4}{10}=\cfrac{6}{x}\implies 4x = 60\implies x = \cfrac{60}{4}\implies x = 15[/tex]
what is 2x + 4 = x + 40
[tex]{\boxed{\boxed { ⎆ Answer :- }}} \ [/tex]
[tex]2x + 4 = x + 40 \\ 2x - x = 40 - 4 \\ x = 36[/tex]
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ ツ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
The volume of a cube is 2,744 m3. What is the side length of the cube?
Answer:
The length is 14 and the area is 196 cm².
The side length of the cube is 14 meters.
We have,
Volume of Cube = 2744 m³
To find the side length of a cube when given its volume, you can use the formula:
Side length = ∛(Volume)
So, substitute this value into the formula to calculate the side length:
Side length = ∛(2,744)
= ∛ 14 x 14 x 14
= 14 m
Therefore, the side length of the cube is 14 meters.
Learn more about Volume of cube here:
https://brainly.com/question/29275443
#SPJ2
I NEED HELP FAST!!!!!!
Answer:
6.
Step-by-step explanation:
.
Answer:
[tex]C)\:8[/tex]
8 units tiles must be added
--------------------------------------
~HOPE IT HELPS~
~HAVE A GREAT DAY!!~
Domain and function
Function or not a function
Answer:
Top left: not a function
Top right: not a function
Bottom left: function
Bottom right: not a function
Step-by-step explanation:
A function is a relationship where each x value has it's own y value ( note that domain = x values and range = y values)
For the one on the top left.
S and n have more than one y value.
Because s and n have more than one y value the relation is not a function
For the one of the top right.
There x value "c" has multiple y values therefore the relation is not a function
For the one on the bottom left
Each x value has it's own y value therefore it is a function ( note that the y values can repeat. It's only the x values that can't repeat. )
For the one on the bottom right
The x value "-5" has multiple y values therefore the relation is not a function
In the diagram below, BC is an altitude of ABD. To the nearest whole unit, what is the length of CD?
Answer:
B. 23
Step-by-step explanation:
BC = 32
CA = 44
To find the length of CD, apply the altitude of right triangle formula, (altitude-on-hypotenuse theorem) which is given as:
h = √(xy)
Where,
h = CB = 32
x = CA = 44
y = CD = ?
Plug in the values
32 = √(44 × CD)
Square both sides
32² = 44 × CD
1,024 = 44 × CD
Divide both sides by 44
1,024/44 = CD
CD = 23 units (nearest whole unit)
Mark purchashed 3 giant jawbreakers at 75cents each.he also bought 1/4 pound of hot tamales.which sell for $2.76 a pound.he gave the clerk a $5 bill.how much change did mark recieve? Whith his change,mark decided to buy 1/2 pound of m&ms at $3.24 a pound.how much money does mark have left?
Answer: $0.44
Step-by-step explanation: a) (3 * 0.75) + ((1/4)*2.76) = 2.25 + 0.69 = 2.94
Pays with $5 - $2.94 = $2.06 Change
((1/2) * 3.24) = $1.62
Money left = 2.06 - 1.62 => $0.44
if cars A and B are traveling at the speed of 55km/hr and 75km/hr respectively. What is their average speed?
Answer:
130 km/hr
Step-by-step explanation:
Average Speed = Total Distance / Total Time.
Let us just make up 2 distances from a time
A: 55 km/hour for 2 hours = 110 km
B: 75 km/hour for 2 hours = 150 km
Total Distance = 260 km
Total Time = 2 hours.
Average Speed = 260 / 2 = 130 km/hr
Now let's try it again. If we get a different answer, then the problem is unanswerable.
A: 55 km/hr for 3 hours = 165 km
B: 75 km/hr for 3 hours = 225 km
Total distance = 390 km
Total time = 3 hours
Average speed = 390 / 3 = 130 which is the same answer we got before.
please help me solve this math
Answer:
d
Step-by-step explanation:
indicate the following pairs of lines are coinciding, parallel ,perpendicular or neither
PLEASE HELPPP ASAP!!! I tried all sorts of equations but no correct answer! Not sure how to approach this problem.
Answer:
[tex]44[/tex]
Step-by-step explanation:
The dimensions of the garden is 12 by 8. If we have a walkway that surrounds the garden, the dimensions of the walkway is 2. Since it surrounds the rectangle all sides add 2 to each of the dimensions so now the dimensions of the garden and walkway is 14×10.
The area of the garden is 96 square ft.
The area of the garden and walkway is 140 so let subtract the area of the garden from the total area of both the garden and walkway.
[tex]140 - 96 = 44[/tex]
The area is 44.
Answer:
120 square feet
Step-by-step explanation:
(8+2*2)
(18+2*2) - 8*18 = 120 square feet.
The maintenance department at the main campus of a large state university receives daily requests to replace fluorecent lightbulbs. The distribution of the number of daily requests is bell-shaped and has a mean of 54 and a standard deviation of 3. Using the 68-95-99.7 rule, what is the approximate percentage of lightbulb replacement requests numbering between 54 and 63?
Answer:
The approximate percentage of lightbulb replacement requests numbering between 54 and 63 is of 49.85%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 54, standard deviation = 3.
What is the approximate percentage of lightbulb replacement requests numbering between 54 and 63?
63 = 54 + 3*3
So between the mean and 3 standard deviations above the mean.
The normal distribution is symmetric, which means that 50% of the values are below the mean and 50% are above.
Of those 50% above, 99.7% are below 63. So
0.5*0.997 = 0.4985
0.4985*100% = 49.85%
The approximate percentage of lightbulb replacement requests numbering between 54 and 63 is of 49.85%.
A ball is thrown vertically upward with an initial velocity of 19 m/s. Its height, h(t)metres after t seconds, is given by the equation h(t) = -3t2 + 20t + 2.0.
The time taken by the ball to reach the maximum height is ________ seconds. Round your answer to the nearest tenth.
Answer:
Step-by-step explanation:
There are 2 different ways to do this: calculus and by completing the square. In this particular instance, calculus is WAY easier, and since I don't know for what class you are doing this, I'll do both ways. First the calculus way. We know the position equation, and the first derivative of the position is velocity. We also know that when the velocity is equal to 0 is when the object is at its max height. So we'll find the derivative first, then solve it for t:
If [tex]s(t)=-3t^2+20t+2[/tex] then the first derivative is
v(t) = -6t + 20 Solving for t requires that we set the velocity equal to 0 (again, this is where the object is at its max height), so
0 = -6t + 20 and
-20 = -6t so
t = 3.3 seconds. Now that we know that at 3.3 seconds the object is at its highest point, we sub that time into the position function to see where it is at that time:
s(3.3) = [tex]-3(3.3)^2+20(3.3)+2[/tex] and
s(3.3) = 35.3 meters.
Now onto the more difficult way...completing the square. Begin by setting the position function equal to 0 and then move over the constant to get:
[tex]-3t^2+20t=-2[/tex] Since the leading coefficient is not a 1 (it's a 3), we have to factor out the 3, leaving us with:
[tex]-3(t^2-\frac{20}{3}t)=-2[/tex] Now the rule is to take half the linear term, square it, and add it to both sides. Our linear term is [tex]\frac{20}{3}[/tex] and half of that is [tex]\frac{20}{6}[/tex]. Squaring that:
[tex](\frac{20}{6})^2=\frac{400}{36}=\frac{100}{9}[/tex]. We will add that in to both sides. On the left it's easy, but on the right we have to take into account that we still have that -3 sitting out front, refusing to be ignored. So we have to multiply it in when we add it to the right. Doing that gives us:
[tex]-3(t^2-\frac{20}{3}t+\frac{100}{9})=-2-\frac{100}{3}[/tex] We will clean this up a bit now. The reason we do this is because on the left we have created a perfect square binomial which will give us the time we are looking for to answer this question. Simplifying the right and at the same time writing the perfect square binomial gives us:
[tex]-3(t-\frac{20}{6})^2=-\frac{106}{3}[/tex] Now the last step is to move the constant back over and set the quadratic back equal to y:
[tex]y=-3(t-\frac{20}{6})^2+\frac{106}{3}[/tex]. The vertex of this quadratic is
[tex](\frac{20}{6},\frac{106}{3})[/tex] where
[tex]\frac{20}{6}=3.3[/tex] as the time it takes for the ball to reach its max height of
[tex]\frac{106}{3}=35.3[/tex] meters.
I'd say if you plan on taking calculus cuz you're not there yet, you'll see that many of these types of problems become much simpler when you know it!
An investor puts $1,200 into an account that pays 5.5% interest compounded annually. The total amount A in the account after t years is given by which function below?
A = 1200(1.55) t
A = 1200(1.055) t
A = 1200(1.055) t
A = 1200 + (1.055) t
Let's see
[tex]\\ \tt\leadsto A=P(1+r/n)^{nt}[/tex]
n=1[tex]\\ \tt\leadsto A=1200(1+0.055)^t[/tex]
[tex]\\ \tt\leadsto A=1200(1.055)^t[/tex]
Answer:
[tex]\sf A=1200(1.055)^t[/tex]
Step-by-step explanation:
Annual Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+r\right)^{t} $}[/tex]
where:
A = final amountP = principal amountr = interest rate (in decimal form)t = time (in years)Given:
P = $1,200r = 5.5% = 0.055t = t yearsSubstitute the given values into the equation:
[tex]\implies \sf A=1200(1+0.055)^t[/tex]
[tex]\implies \sf A=1200(1.055)^t[/tex]
Learn more about compound interest here:
https://brainly.com/question/27222595
https://brainly.com/question/26865309
the volume of pyramid a is the volume of pyramid b. if the heigh of pyramid b increases to twice that of pyramid a the new volume of pyramid b the volume of pyramid a
Answer:
12.259-12.25 890654321
1. Find the exact value of sin( a−B), given that sin a=−4/5 and cos B=12/13, with a in quadrant III and B in quadrant IV.
2. Find all real numbers in the interval [0,2pi) that satisfy the equation.
3sec^2 x tan x =4tan x
3. Simplify the following trigonometric expressions, using identities as needed:
sin(x)/1−cos(x) + 1−cos(x)/sin(x)
(1) Recall that
sin(x - y) = sin(x) cos(y) - cos(x) sin(y)
sin²(x) + cos²(x) = 1
Given that α lies in the third quadrant, and β lies in the fourth quadrant, we expect to have
• sin(α) < 0 and cos(α) < 0
• sin(β) < 0 and cos(β) > 0
Solve for cos(α) and sin(β) :
cos(α) = -√(1 - sin²(α)) = -3/5
sin(β) = -√(1 - cos²(β)) = -5/13
Then
sin(α - β) = sin(α) cos(β) - cos(α) sin(β) = (-4/5) (12/13) - (-3/5) (-5/13)
==> sin(α - β) = -63/65
(2) In the second identity listed above, multiplying through both sides by 1/cos²(x) gives another identity,
sin²(x)/cos²(x) + cos²(x)/cos²(x) = 1/cos²(x)
==> tan²(x) + 1 = sec²(x)
Rewrite the equation as
3 sec²(x) tan(x) = 4 tan(x)
3 (tan²(x) + 1) tan(x) = 4 tan(x)
3 tan³(x) + 3 tan(x) = 4 tan(x)
3 tan³(x) - tan(x) = 0
tan(x) (3 tan²(x) - 1) = 0
Solve for x :
tan(x) = 0 or 3 tan²(x) - 1 = 0
tan(x) = 0 or tan²(x) = 1/3
tan(x) = 0 or tan(x) = ±√(1/3)
x = arctan(0) + nπ or x = arctan(1/√3) + nπ or x = arctan(-1/√3) + nπ
x = nπ or x = π/6 + nπ or x = -π/6 + nπ
where n is any integer. In the interval [0, 2π), we get the solutions
x = 0, π/6, 5π/6, π, 7π/6, 11π/6
(3) You only need to rewrite the first term:
[tex]\dfrac{\sin(x)}{1-\cos(x)} \times \dfrac{1+\cos(x)}{1+\cos(x)} = \dfrac{\sin(x)(1+\cos(x))}{1-\cos^2(x)} = \dfrac{\sin(x)(1+\cos(x)}{\sin^2(x)} = \dfrac{1+\cos(x)}{\sin(x)}[/tex]
Then
[tex]\dfrac{\sin(x)}{1-\cos(x)}+\dfrac{1-\cos(x)}{\sin(x)} = \dfrac{1+\cos(x)+1-\cos(x)}{\sin(x)}=\dfrac2{\sin(x)}[/tex]
Plzz prove this tomorrow is my test plzz help me
Step-by-step explanation:
this is the correct answer for the question