Answer:
5.76 μC
Explanation:
The induce emf, ε = -ΔΦ/Δt where ΔΦ = change in magnetic flux = NAΔB where N = number of turns of coil = 1000, A = cross-sectional area of coil = πd²/4 where d = diameter of coil = 2 cm = 2 × 10⁻² m and ΔB = change in magnetic field strength = B' - B where B' = final magnetic field = 0 T and B = initial magnetic field strength = 0.011 T. So, ΔB = 0 T - 0.011 T = -0.011 T
So, ε = -ΔΦ/Δt
ε = -NAΔB/Δt
ε = -NAΔB/Δt
Also ε = iR where i = current and R = combined resistance of circular coil and galvanometer = 200 Ω + 400 Ω = 600 Ω (since they are in series)
So, iR = -NAΔB/Δt
iΔt = -NAΔB/R
Δq = -NAΔB/R where Δq = charge = iΔt
substituting the values of the variables into the equation, we have
Δq = -1000 × π(2 × 10⁻² m)²/4 × -0.011 T/600 Ω
Δq = -1000 × 4π × 10⁻⁴ m²/4 × -0.011 T/600 Ω
Δq = 0.011π × 10⁻¹ m²T/600 Ω
Δq = 0.03456 × 10⁻¹ m²T/600 Ω
Δq = 5.76 × 10⁻⁶ C
Δq = 5.76 μC
Can you think of reasons why the charge on each ball decreases over time and where the charges might go
Answer:
By the principle of corona discharge.
Explanation:
The charge on each ball will decreases over time due to the electrical discharge in air.
According to the principle of corona discharge, when the curvature is small, the discharge of the charge takes placed form the pointed ends.
brainly A person's eye lens is 2.9 cm away from the retina. This lens has a near point of 25 cm and a far point at infinity. What must the focal length of this lens be in order for an object placed at the near point of the eye to focus on the retina
Answer: The focal length of the lens is 2.60 cm
Explanation:
The equation for lens formula follows:
[tex]\frac{1}{f}=\frac{1}{v}-\frac{1}{u}[/tex]
where,
f = focal length = ? cm
v = image distance = 2.9 cm
u = Object distance = -25 cm
Putting values in above equation, we get:
[tex]\frac{1}{f}=\frac{1}{2.9}-\frac{1}{(-25)}\\\\\frac{1}{f}=\frac{1}{2.9}+\frac{1}{(25)}\\\\\frac{1}{f}=\frac{25+2.9}{2.9\times 25}\\\\f=\frac{72.5}{27.9}=2.60cm[/tex]
Hence, the focal length of the lens is 2.60 cm
An electron in a hydrogen atom is in a p state. Which of the following statements is true?
a.
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).
b.
The electron has an energy of -13.6 eV.
c.
The electron has a total angular momentum of ħ.
d.
The electron has a z-component of angular momentum equal to sqrt(2)* ħ.
Answer:
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).
Explanation:
We know that the p-orbitals have nodes. A node is a region where the probability of finding an electron goes down to zero.
P orbitals are oriented along the x,y,z Cartesian axes and are known to have angular nodes along the axes.
Hence, if an electron in a hydrogen atom is in a p state, the electron’s wavefunction has at least one node
The energy truck travelling at 10 km/h has kinetic energy. How much kinetic energy does it have when it is loaded so its mass is twice and its speed is increased to twice?
Explanation:
The initial kinetic energy [tex]KE_0[/tex] is
[tex]KE_0 = \frac{1}{2}m_0v_0^2[/tex]
When its mass and velocity are doubled, its new kinetic energy KE is
[tex]KE = \frac{1}{2}(2m_0)(2v_0)^2 = \frac{1}{2}(2m_0)(4v_0^2)[/tex]
[tex]\:\:\:\:\:\:\:= 8 \left(\frac{1}{2}m_0v_0^2 \right)= 8KE_0[/tex]
Therefore the kinetic energy will increase by a factor of 8.
A hot air balloon is a sphere of volume 2210 m3. The density of the hot air inside is 1.13 kg/m3, while the air outside has a density of 1.29 kg/m3. The balloon itself has a mass of 240 kg. What is the TOTAL NET force acting on the balloon?
[?]N
The total net force acting on the balloon will be 24498 Newtons
Given that
Volume of the balloon = 2210 cubic meter
Density of the air inside the balloon = 1.13 kg/m3
What will be the net force exerted on the balloon ?Here force on the balloon will be equal to the weight of the air displaced by balloon
[tex]F= mass of air displaced\times gravity[/tex]
[tex]F= Density \times volume \times gravity[/tex]
[tex]F=1.13 \times 2210 \times 9.81[/tex]
[tex]F=24498 N[/tex]
The total net force acting on the balloon will be 24498 Newtons
To know more about buoyancy force follow
https://brainly.com/question/117714
Name the electrolyte in the chemical method of generating electricity
A satellite of mass m, originally on the surface of the Earth, is placed into Earth orbit at an altitude h. (a) Assuming a circular orbit, how long does the satellite take to complete one orbit
Answer:
T = 5.45 10⁻¹⁰ [tex]\sqrt{(R_e + h)^3}[/tex]
Explanation:
Let's use Newton's second law
F = ma
force is the universal force of attraction and acceleration is centripetal
G m M / r² = m v² / r
G M / r = v²
as the orbit is circular, the speed of the satellite is constant, so we can use the kinematic relations of uniform motion
v = d / T
the length of a circle is
d = 2π r
we substitute
G M / r = 4π² r² / T²
T² = [tex]\frac{4\pi ^2 }{GM} \ r^3[/tex]
the distance r is measured from the center of the Earth (Re), therefore
r = Re + h
where h is the height from the planet's surface
let's calculate
T² = [tex]\frac{4\pi ^2}{ 6.67 \ 10^{-11} \ 1.991 \ 10^{30}}[/tex] (Re + h) ³
T = [tex]\sqrt{29.72779 \ 10^{-20}} \ \sqrt[2]{R_e+h)^3}[/tex]
T = 5.45 10⁻¹⁰ [tex]\sqrt{(R_e + h)^3}[/tex]
When an object is in free fall, ____________________.
Answer:
Objects that are said to be undergoing free fall, are not encountering a significant force of air resistance; they are falling under the sole influence of gravity.
Explanation:
Under such conditions, all objects will fall with the same rate of acceleration, regardless of their mass.
What power (in kW) is supplied to the starter motor of a large truck that draws 260 A of current from a 25.5 V battery hookup
Answer:
P = 6.63 kW
Explanation:
Given that,
Current, I = 260 A
Voltage of the battery, V = 25.5 V
We need to find the power supplied to the starter motor. We know that,
P = VI
Put all the values,
P = 25.5 × 260
P = 6630 W
or
P = 6.63 kW
So, the power supplied to the motor is 6.63 kW.
Answer:
The power is 6.63 kW.
Explanation:
Current, I = 260 A
Voltage, V = 25.5 V
Power of an electrical appliance is given by
P = V I
P = 25.5 x 260
P = 6630 W
1 kW = 1000 W
So, the power is
P = 6.63 kW
The gravitational field strength due to its planet is 5N/kg What does it mean?
Answer:
The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.
Weight can be calculated using the equation:
weight = mass × gravitational field strength
This is when:
weight (W) is measured in newtons (N)
mass (m) is measured in kilograms (kg)
gravitational field strength (g) is measured in newtons per kilogram (N/kg)
An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration
Answer:
a= -80.357 m/s
Explanation:
use the formula
vf^2=vi^2+2a(xf-xi)
Plug in givens
0=(7.50)^2+2a(0.350m)
solve for acceleration
a= -80.357 m/s
g Three masses are located in the x- y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system
Answer:
Xcm = (6 * 0 + 4 & 3 + 2 * 0) / 12 = 1
Ycm = (6 * 0 + 4 * 0 + 2 * 3) / 12 = 1/2
(Xcm , Ycm) = (1 , 1/2)
Using definition of center of mass
Write one advantage of MKS system over CGS system.
Drag the titles to the correct boxes to complete the pairs.
Harmonics a.are components of a complex waveform. b.have frequencies that are integer multiples of the frequency of the complex waveform. c.are pure tones. d.have sinusoidal waveforms. e.all of the above
Answer:
b.have frequencies that are integer multiples of the frequency of the complex waveform
Explanation:
Please correct me if I am wrong
Find the amount og work done
Answer:
100j
Explanation:
A uniform 1500-kg beam, 20.0 m long, supports a 15,000-kg printing press
5.0 m from the right support column (Figure slide 8). Calculate the force
on each of the vertical support columns.
Answer:
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
Explanation:
The missing image of the figure slide is attached in below.
However, from the model, it is obvious that it is in equilibrium.
As a result, the relation of the force and the torque is said to be zero.
i.e.
[tex]\sum F = 0[/tex] and [tex]\sum \tau = 0[/tex]
From the image, expressing the forces through the y-axis, we have:
[tex]F_1+F_2 = W_B + W_P \\ \\ \implies 9.8(1500+15000) \\ \\ \implies \mathtt{1.617\times 10^5 \ N}[/tex]
Also, let the force [tex]F_1[/tex] be the pivot and computing the torque to determine [tex]F_2[/tex]:
Then:
[tex]F_1(0)+F_2(20.0) = 10.0W_B + 15.0W_P[/tex]
[tex]F_2 = \dfrac{((10*1500)+(15*15000))*9.8}{20.0}[/tex]
[tex]F_2 = 117600 \ N[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
For the force equation:
[tex]F_1+F_2=1.617*10^5 \ N;[/tex]
where:
[tex]F_2 = 1.176*10^5 \ N[/tex]
Then:
[tex]F_1+1.176*10^5 \ N=1.617*10^5 \ N[/tex]
[tex]F_1=1.617*10^5 \ N-1.176*10^5 \ N[/tex]
[tex]F_1=44100\ N[/tex]
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass first passes through the equilibrium position, and the position of the mass at any time is described by
The question is incomplete. The complete question is :
A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass first passes through the equilibrium position, and the position of the mass at any time is described by x = (4.7 cm)sin[(7.9 rad/s)πt].
Determine the following:
(a) frequency of the motion
(b) period of the motion
(c) amplitude of the motion
(d) first time after t = 0 that the object reaches the position x = 2.6 cm
Solution :
Given equation : x = (4.7 cm)sin[(7.9 rad/s)πt].
Comparing it with the general equation of simple harmonic motion,
x = A sin (ωt + Φ)
A = 4.7 cm
ω = 7.9 π
a). Therefore, frequency, [tex]$f=\frac{\omega}{2 \pi}$[/tex]
[tex]$=\frac{7.9 \pi}{2 \pi}$[/tex]
= 3.95 Hz
b). The period, [tex]$T=\frac{1}{f}$[/tex]
[tex]$T=\frac{1}{3.95}[/tex]
= 0.253 seconds
c). Amplitude is A = 4.7 cm
d). We have,
x = A sin (ωt + Φ)
[tex]$x_t=4.7 \sin (7.9 \pi t)$[/tex]
[tex]$2.6 = 4.7 \sin (7.9 \pi t)$[/tex]
[tex]$\sin (7.9 \pi t) = \frac{26}{47}$[/tex]
[tex]$7.9 \pi t = \sin^{-1}\left(\frac{26}{47}\right)$[/tex]
Hence, t = 0.0236 seconds.
An electric lamp consumes 60W at 220 volts. How many dry cells of 1.5 V and internal resistance 1 Ohm are required to glow the lamp?
Answer:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
Explanation:
We'll begin by calculating the resistance. This can be obtained as follow:
Power (P) = 60 W
Voltage (V) = 220 V
Resistance (R) =?
P = V²/R
60 = 220² / R
Cross multiply
60 × R = 220²
60 × R = 48400
Divide both side by 60
R = 48400 / 60
R ≈ 807 Ohm
1. Determination of the number of dry cells of 1.5 V required.
Voltage (V) = 220
Dry Cells = 1.5 V
Number of dry cells (n) =?
n = Voltage / Dry cells
n = 60 / 1.5
n = 40
2. Determination of the number of internal resistance of 1 ohm required.
Resistance (R) = 807 Ohm
Internal resistance (r) = 1 ohm
Number of internal resistance (n) =?
n = R/r
n = 807 / 1
n = 807
SUMMARY:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
A conducting sphere of radius 5.0 cm carries a net charge of 7.5 µC. What is the surface charge density on the sphere?
Answer:
[tex]\sigma=0.014\ C/m^2[/tex]
Explanation:
Given that,
The radius of sphere, r = 5 cm = 0.05 m
Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C
We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,
[tex]\sigma=\dfrac{7.5\times 10^{-6}}{\dfrac{4}{3}\pi \times (0.05)^3}\\\\=0.014\ C/m^2[/tex]
So, the surface charge density on the sphere is [tex]0.014\ C/m^2[/tex].
The block in the drawing has dimensions L0×2L0×3L0,where L0 =0.2 m. The block has a thermal conductivity of 150 J/(s·m·C˚). In drawings A, B, and C, heat is conducted through the block in three different directions; in each case the temperature of the warmer surface is 35 ˚C and that of the cooler surface is 16 ˚C Determine the heat that flows in 6 s for each case.
Answer:
1140 J, 6840 J, 10260 J
Explanation:
Lo x 2 Lo x 3 Lo, Lo = 0.2 m, K = 150 J/(s · m · C˚) , T = 35 ˚C, T' = 16 ˚C,
time, t = 6 s
The heat conducted is
[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 1140 J[/tex]
The heat conducted is
[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 6840 J[/tex]
The heat conducted is
[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{2\times 0.2}\\\\H = 10260 J[/tex]
Two positive charges, 91 = 5 x 10-'[C] and q2 =1 x 10-9 [C], are
separated by a distance of d=0.05 m. At location 'P' between the
two charges, the net electric field is found to be zero.
b. [10 points] The distance between charge qı and location 'P' is
considered to be 'x'. Find the value of 'x' in [cm]
Answer:
wareffctgggyyggghhhh
Displacement of a body moving in circular motion is
Explanation:
Displacement of a body moving in circular motion is called uniform circular motion.
hope it is helpful to you
Answer:
A constantly moving object with consistent circular movement. However, for its change in direction, it is accelerating
Explanation:
Uniform circular motion in a circle at constant rate can be described as the motion of the object. When an object moves in a circle, it changes its direction constantly. The object moves tangently to the circle at all times. As the velocity vector direction is the same as the object motion direction, the velocity vector is tangent to the circle. This is shown in the animation on the right by a vector arrow.
An item is accelerating that moves in a circle. Objects that accelerate are subjects that change their speed – either the velocity (i.e. the vecteur magnitude) or the direction. An object with consistent circular movement moves at a constant speed. However, because of its change in direction, it is accelerating. The acceleration direction is inside. The animation on the right shows this through a vector arrow
For an object with only a uniform circular movement, the final motion is the net force. The The net force acting on this object is directed to the middle of the circle. The net force is an inner or centripetal force. Without such a deepest force, an object would continue in a straight direction, never deviating. Regrettably, with the inward net force, perpendicular to the vector, the object changes the direction and is accelerated internally.
(a) What is the maximum frictional force (in N) in the knee joint of a person who supports 45.0 kg of her mass on that knee if the coefficient of static friction is 0.016
Answer:
f = 7.06 N
Explanation:
The maximum frictional force on the knee joint of the person can be given by the following formula:
[tex]f = \mu R = \mu W \\[/tex]
where,
f = maximum frictional force = ?
μ = static friction coefficient = 0.016
W = Weight load on knee = mg
m = mass supported by knee = 45 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]f = \mu mg\\f = (0.016)(45\ kg)(9.81\ m/s^2)\\[/tex]
f = 7.06 N
Which level of government relies the most on income tax?
OA.
federal
state
OC.
local
Answer:
Its the Federal government
A proton traveling due west in a region that contains only a magnetic field experiences a vertically upward force (away from the surface of the earth). What is the direction of the magnetic field?
South
Explanation:
The magnetic force F on a point charge moving with a velocity v in the presence of a magnetic field B is given by
[tex]\vec{\textbf{F}} = q\vec{\textbf{v}}\textbf{×}\vec{\textbf{B}}[/tex]
and according to the right-hand rule, an upward magnetic force on a proton moving westward is only possible if the magnetic field is directed southward.
What is the total number of moles of products involved in the following reaction?
CaCO3 (s) + 2HCl (aq) - CaCl2 (aq) + CO2 (g) + H20 (g)
O 6
2.
3
5
Answer:
3
Explanation:
You must first make sure the equation is balanced. This one is. Then, you simply add up the coefficients of each compound on the products side of the equation. When the coefficient is not specified, you can assume it is 1 mole. So, in this equation, there is 1 mole of CaCl₂, 1 mole of CO₂, and 1 mole of H₂O = 3 moles.
The reactant side of the equation also has three moles:
1 mole of CaCO₃ and 2 moles of HCl.
A television tube can accelerate electrons to 2.00 · 104 ev. Calculate the wavelength of emitted X-rays with the highest energy.
λ = _____ m
9.9 x 10 -30
6.2 x 10 -11
1.6 x 10 10
7.1 x 10 -57
Answer:
6.2 × 10^-11 m
Explanation:
1 eV = 1.602 × 10-19 joule
2.00 × 104 ev. = 2.00 × 10^4 eV × 1.602 × 10^-19 joule/1eV
= 3.2 × 10^-15 J
From;
E= hc/λ
λ = hc/E
λ = 6.6 × 10^-34 × 3 × 10^8/3.2 × 10^-15
λ = 6.2 × 10^-11 m
Physics help please
Answer:
i think the answer is 0.001m³