Write the word and balanced chemical equations for the reaction between:
Copper + zinc nitrate (zinc is more reactive than copper)

Answers

Answer 1

Answer:

Word Equation:

Zinc + Copper (II) nitrate → Copper + Zinc nitrate

Formula Equation:

Zn (s) + Cu(NO3)2 (aq) → Cu (s) + Zn(NO3)2 (aq)

Ionic Equation:

Zn (s) + Cu2+ (aq) → Zn2+ (aq) + Cu (s)

Description

A 1 gram granule of zinc metal was dropped into a test tube containing 10 cm

3

of clear blue copper nitrate solution (1 M). The zinc quickly began to react with the solution producing a clear green solution and a darker solid at the bottom of the test tube.

Explanation:


Related Questions

equal volumes of a 0.10 m solution of a weak acid, ha, with ka = 1.0 x 10-6, and a 0.20 m solution of naoh are combined. what is the ph of the resulting solution?

Answers

Equal volumes of a 0.10 m solution of a weak acid, ha, with ka = 1.0 x 10-6, and a 0.20 m solution of naoh are combined. The pH of the resulting solution is 3.

To solve this problem, we first need to write the chemical equation for the reaction between the weak acid (HA) and the strong base (NaOH). The balanced equation is:

HA + NaOH → H2O + NaA

where NaA is the salt formed from the reaction.

Next, we need to determine the moles of each reactant. We know the volume and concentration of the weak acid solution, so we can calculate the moles of HA:

moles of HA = volume of solution (in L) x concentration of HA (in mol/L)
moles of HA = 0.1 L x 0.10 mol/L
moles of HA = 0.01 mol

We also know the volume and concentration of the NaOH solution, so we can calculate the moles of NaOH:

moles of NaOH = volume of solution (in L) x concentration of NaOH (in mol/L)
moles of NaOH = 0.1 L x 0.20 mol/L
moles of NaOH = 0.02 mol

Since NaOH is a strong base, it will react completely with the weak acid. Therefore, the number of moles of NaOH used will equal the number of moles of HA reacted. In this case, 0.01 mol of NaOH reacts with 0.01 mol of HA.

To calculate the concentration of the resulting solution, we need to consider both the moles of acid that remain (after reaction with the NaOH) and the moles of salt formed (NaA). Since the reaction is a 1:1 ratio, the concentration of both will be equal.

concentration of NaA (and remaining HA) = moles of NaA (and remaining HA) / total volume of solution

moles of NaA (and remaining HA) = 0.01 mol (since 0.01 mol of NaOH reacts with 0.01 mol of HA)
total volume of solution = 0.1 L + 0.1 L = 0.2 L (since equal volumes of each solution were used)

concentration of NaA (and remaining HA) = 0.01 mol / 0.2 L
concentration of NaA (and remaining HA) = 0.05 mol/L

Now we can calculate the pH of the resulting solution. Since we are dealing with a weak acid, we need to use the equilibrium expression for the acid dissociation constant (Ka) to find the concentration of H+ ions in solution:

Ka = [H+][A-] / [HA]

where [A-] is the concentration of the conjugate base (in this case, NaA) and [HA] is the concentration of the weak acid.

Rearranging this expression, we get:

[H+] = sqrt(Ka x [HA] / [A-])

[H+] = sqrt(1.0 x 10^-6 x 0.05 mol/L / 0.05 mol/L)
[H+] = 1.0 x 10^-3 mol/L

Finally, we can find the pH of the solution using the pH equation:

pH = -log[H+]
pH = -log(1.0 x 10^-3)
pH = 3

Therefore, the pH of the resulting solution is 3.

To know more about weak acid click here:

https://brainly.com/question/22104949

#SPJ11

1. Is 1,6-hexanediamine listed as a potential carcinogen? 2. List the possible effects of inhaling excessive amounts of 1,10- decanedioicdiacid dichloride.

Answers

1)1,6-hexanediamine is not currently listed as a potential carcinogen by major regulatory agencies.

2)1,10-decanedioic acid dichloride inhalation can have a number of negative effects on the body. It can result in chemical burns and lung damage, as well as being a powerful irritant to the skin, eyes, and respiratory system. Coughing, wheezing, shortness of breath, chest pain, and throat irritation are some of the signs of exposure.

1)Major regulatory agencies do not currently list 1,6-hexanediamine as a possible carcinogen.

such as the United States Environmental Protection Agency (EPA) or the International Agency for Research on Cancer (IARC). However, some animal studies have shown that high doses of 1,6-hexanediamine may be associated with an increased risk of tumors.

2)Inhaling excessive amounts of 1,10-decanedioic acid dichloride can have several harmful effects on the body. It is a strong irritant to the skin, eyes, and respiratory system, and can cause chemical burns and lung damage. Symptoms of exposure may include coughing, wheezing, shortness of breath, chest pain, and throat irritation. Prolonged or repeated exposure to the substance can also lead to the development of respiratory conditions such as bronchitis or asthma. In severe cases, exposure to 1,10-decanedioic acid dichloride can result in chemical pneumonitis, a potentially life-threatening inflammation of the lungs. It is important to use proper protective equipment and handling procedures when working with this substance to minimize the risk of exposure.

For more such questions on carcinogen

https://brainly.com/question/1283466

#SPJ11

There is no evidence to suggest that 1,6-hexane diamine is listed as a potential carcinogen. However, it is still important to handle all chemicals with care and follow proper safety procedures.

Inhaling excessive amounts of 1,10-decanedioic acid dichloride can have several possible effects on human health, including:

Irritation of the respiratory system, eyes, and skin

Shortness of breath, coughing, and wheezing

Headache, dizziness, and nausea

Chemical burns on the skin and eyes

Pulmonary edema (fluid accumulation in the lungs)

Pneumonia and other respiratory infections

It is important to handle this chemical with extreme caution, wear appropriate personal protective equipment, and follow proper handling and disposal procedures.

Learn more about carcinogen here:

https://brainly.com/question/29422741

#SPJ11

A sample of air from a home is found to contain 4.3 ppm of carbon monoxide. This means that if the total pressure is 735 torr, then the partial pressure of CO is ________ torr.
3.2 ? 10^3
1.7 ? 108
3.2
5.9 ? 103
3.2 ? 10^-3

Answers

A sample from a home is found to contain 4.3 ppm of carbon monoxide, if the total pressure is 735 torr, then the partial pressure of CO is 3.2 × 10^-3 torr.

The partial pressure of CO in the air sample is 3.2 × 10^-3 torr. This is because ppm (parts per million) is a unit of concentration, which is defined as the amount of a substance present in a mixture divided by the total volume or mass of the mixture. In this case, the concentration of CO in the air sample is 4.3 ppm, which means that for every million parts of air, there are 4.3 parts of CO.

To calculate the partial pressure of CO, we need to use the ideal gas law, which states that the pressure of a gas is directly proportional to the number of gas molecules present. Therefore, if the total pressure of the air sample is 735 torr, the partial pressure of CO is equal to the concentration of CO multiplied by the total pressure of the mixture, which gives us 3.2 × 10^-3 torr.

In summary, if a sample of air from a home contains 4.3 ppm of carbon monoxide and the total pressure is 735 torr, then the partial pressure of CO is 3.2 × 10^-3 torr. This calculation is based on the ideal gas law, which relates the pressure, volume, temperature, and number of gas molecules present in a mixture.

Know more about Partial Pressure here:

https://brainly.com/question/13199169

#SPJ11

what is the poh of a solution at 25.0∘c with [h3o ]=9.90×10−12 m?

Answers

The pOH of a solution at 25.0°C with [H₃O⁺]=9.90×10⁻¹² M is 4.00.

The pH and pOH of a solution are related through the equation pH + pOH = 14.

Therefore, to find the pOH of the solution, we need to first calculate the pH. The pH is given by the negative logarithm of the hydronium ion concentration, so we have:

pH = -log[H₃O⁺] = -log(9.90×10⁻¹²) = 11.00

Using the relationship pH + pOH = 14, we can find the pOH:

pOH = 14 - pH = 14 - 11.00 = 3.99 ≈ 4.00

Therefore, the pOH of the solution is 4.00.

To know more about pOH of a solution, refer here:

https://brainly.com/question/23227189#

#SPJ11

Two spherical waves with the same amplitude, A, and wavelength, ?, are spreading out from two point sources S1 and S2 along one side of a barrier. The two waves have the same phase at positions S1 and S2. The two waves are superimposed at a position P. If the two waves interfere constructively at P what is the relationship between the path length difference dx=d2-d1 and the wavelength. If the two waves interfere destructively at P, what is the relationship between the path length difference and the wavelength?

Answers

If the two waves interfere constructively at P, the path length difference dx is equal to an integer multiple of the wavelength. If the two waves interfere destructively at P, the path length difference dx is equal to a half-integer multiple of the wavelength.

When two spherical waves with the same amplitude and wavelength are emitted from two point sources, they will interfere constructively or destructively depending on the path length difference (dx) between the two waves.

If the two waves interfere constructively at a point P, the path length difference dx is such that it corresponds to an integer multiple of the wavelength. In other words, dx = nλ, where n is an integer.

This means that the crests of the two waves coincide at point P and add up to form a larger wave, resulting in constructive interference.

On the other hand, if the two waves interfere destructively at point P, the path length difference dx is equal to a half-integer multiple of the wavelength. In other words, dx = (n + 1/2)λ, where n is an integer.

This means that the crest of one wave coincides with the trough of the other wave, resulting in destructive interference.

In summary, the relationship between the path length difference and the wavelength is that dx must be equal to an integer multiple of the wavelength for constructive interference, and a half-integer multiple of the wavelength for destructive interference.

For similar question on wavelength

https://brainly.com/question/10728818

#SPJ11

The path length difference, dx, between the two waves S1 and S2 is directly related to the wavelength, λ. If the two waves interfere constructively at position P, then the path length difference, dx, must be equal to an integer multiple of the wavelength, λn, where n is an integer (i.e., dx = nλ). This is because the peaks of the two waves align with each other at position P, reinforcing each other and creating a larger amplitude.

On the other hand, if the two waves interfere destructively at position P, then the path length difference, dx, must be equal to an odd multiple of half the wavelength, (λ/2)n, where n is an integer. This is because the peaks of one wave align with the troughs of the other wave at position P, cancelling each other out and creating a smaller amplitude.

In summary, the relationship between path length difference and wavelength is different depending on whether the two waves interfere constructively or destructively at a given position.

Learn more about interfere constructively click here:

https://brainly.com/question/30709642

the molar mass of an ideal gas that has a density at 290 kelvin. kelvin at 1520 torr?

Answers

To get the molar mass, we need to take the reciprocal of the number of moles per gram, which gives us 56.04 g/mol.

We can use the ideal gas law to solve for the molar mass of the gas. The ideal gas law is PV=nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. Rearranging this equation to solve for n/V, we get n/V = P/RT.

We can use the given information to solve for n/V. The pressure is 1520 torr, which we convert to atm by dividing by 760 torr/atm. The temperature is 290 K and the gas constant is 0.08206 Latm/(molK). Plugging in these values, we get n/V = (1520/760)/(0.08206*290) = 0.0718 mol/L.

We can use the density to solve for the mass of the gas per unit volume. The density is 2.86 g/L. Therefore, the mass of the gas per mole is 2.86 g/L * 1 L/0.0718 mol = 39.74 g/mol. However, this is the mass of the gas in grams per mole, not the molar mass. To get the molar mass, we need to take the reciprocal of the number of moles per gram, which gives us 56.04 g/mol.

learn more about mass here:

https://brainly.com/question/14651380

#SPJ11

For the chemical equilibrium aA+bB <----> cC, the value of the equilibrium constant is 10. What is the value of the equilibrium constant for the following reaction?
2aA+2bB <-----> 2cC
a) 10
b) 20
c) 40
d) 100
e) 400

Answers

The value of the equilibrium constant for the reaction 2aA+2bB <-----> 2cC is 100(D).

The equilibrium constant for a chemical reaction is defined as the ratio of the concentrations of the products to the concentrations of the reactants, each raised to their stoichiometric coefficients.

For the given reaction, we can write the equilibrium constant expression as [C]^2/([A]^2[B]^2) = 10, where [A], [B], and [C] are the equilibrium concentrations of A, B, and C, respectively.

Now, if we double the stoichiometric coefficients of all the reactants and products in the given reaction, the new equilibrium constant expression becomes [C]^2/([A]^2[B]^2) * [A]^2[B]^2/[C]^2 = 10 * 1^2/1^2, which simplifies to [C]^2/([A]^2[B]^2) = 100. Therefore, the value of the equilibrium constant for the new reaction is D) 100.

For more questions like Equilibrium click the link below:

https://brainly.com/question/31027606

#SPJ11

a process with a positive increase in entropy of the system is always spontaneous. a process with a positive increase in entropy of the system is always spontaneous. true false

Answers

The given statement "a process with a positive increase in entropy of the system is always spontaneous. a process with a positive increase in entropy of the system is always spontaneous" is True.

The second law of thermodynamics states that the total entropy of an isolated system always increases over time, implying that spontaneous processes lead to an increase in the entropy of the system.

If the entropy of a system increases during a process, then the system is more disordered and has more possible arrangements, which increases its probability of occurring spontaneously.

Therefore, a process with a positive increase in entropy of the system is always spontaneous.

However, it is important to note that other factors, such as energy and temperature changes, can also affect the spontaneity of a process, and should be considered alongside entropy changes.

To know more about thermodynamics, refer here:

https://brainly.com/question/1604031#

#SPJ11

which of the following molecules or ions have various resonance structures? co2 o3 co32-

Answers

The molecules or ions that have various resonance structures are [tex]O_3[/tex] (ozone) and [tex]CO3_{2}^-[/tex] (carbonate ion).

Ozone ([tex]O_3[/tex]) has resonance structures because it contains a central oxygen atom bonded to two other oxygen atoms by double bonds. The double bonds can be delocalized, meaning the electrons can move between the oxygen atoms, resulting in different possible arrangements of the double bonds. This leads to the formation of resonance structures for ozone, where the double bonds are alternately distributed between the oxygen atoms. Similarly, the carbonate ion ([tex]CO3_2^-[/tex]) also has resonance structures. It consists of a central carbon atom bonded to three oxygen atoms. One of the oxygen atoms is doubly bonded to the carbon, and the other two oxygen atoms are singly bonded to the carbon. The double bond can be delocalized, resulting in resonance structures where the double bond shifts between the carbon and different oxygen atoms. Resonance structures are representations of a molecule or ion that differ in the placement of electrons but maintain the same overall connectivity of atoms. They are used to describe the delocalization of electrons and provide a more accurate depiction of the electron distribution in a molecule or ion.

Learn more about resonance structures here:

https://brainly.com/question/29547999

#SPJ11

Give the expected product(s) resulting from addition of Br₂ to (E)-3-hexene.(Z)-3,4-dibromo-3-hexeneO a mixture of optically active enantiomeric dibromides (3R, 4R and 35, 4S)O a meso dibromide (3R, 4S or 3S, 4R which are actually the same compound)O a mixture of diasteromeric isomersO (E)-3,4-dibromo-3-hexene

Answers

The expected product resulting from the addition of Br₂ to (E)-3-hexene is a mixture of optically active enantiomeric dibromides, specifically (3R, 4R) and (3S, 4S) isomers. This is because (E)-3-hexene is an achiral molecule, and the addition of Br₂ to the double bond results in the formation of a chiral center at the 3rd and 4th carbon atoms. As a result, two pairs of enantiomers are produced.

Additionally, a meso dibromide is also formed, specifically the (3R, 4S) or (3S, 4R) isomer. This compound is achiral despite having chiral centers because it possesses a plane of symmetry that allows for internal cancellation of the chiral properties.

Therefore, the products obtained from the addition of Br₂ to (E)-3-hexene are a mixture of optically active enantiomeric dibromides, a meso dibromide, and (E)-3,4-dibromo-3-hexene.

To know more about the optically active enantiomeric refer here :

https://brainly.com/question/30176248#

#SPJ11

Maltase is an enzyme that hydrolyzes maltose into two glucose molecules. What are the reactants and products of the reaction?

Answers

The reactant of the reaction catalyzed by maltase is maltose, and the products are two glucose molecules is disaccharide maltose and glycosidic.

Maltase is an enzyme that specifically acts on maltose, a disaccharide composed of two glucose molecules linked together. The enzyme catalyzes the hydrolysis of the glycosidic bond between the two glucose units, breaking it apart. As a result, the reactant maltose is converted into two individual glucose molecules.

During the reaction, maltase binds to the maltose molecule and facilitates the breaking of the glycosidic bond. This enzymatic process is known as hydrolysis, which involves the addition of a water molecule to break the bond.

The hydrolysis reaction catalyzed by maltase can be represented as follows:

Maltose + H₂O ⇒ Glucose + Glucose

In this reaction, maltose and water are the reactants, and glucose is the product. The enzyme maltase speeds up the reaction by reducing the activation energy required for the hydrolysis glucose  of maltose. As a result, the disaccharide maltose is broken down into two glucose molecules, which are then available for further metabolic processes in the body.

Learn more about glucose  here

https://brainly.com/question/31366424

#SPJ11

evaluate the indefinite integral as an infinite series. arctan(x2) dx [infinity] n = 0 c'

Answers

To evaluate the indefinite integral [tex]arctan(x^2) dx[/tex] as an infinite series, we can use the Taylor series expansion of [tex]arctan(x)[/tex].

Calculus is based on the idea of an indefinite integral, commonly referred to as an antiderivative. It is an illustration of differentiation working backwards. The indefinite integral establishes a family of functions that, when differentiated from a given function, provide the original function. Following the function to be integrated and the differential symbol for the variable of integration, the integral sign () is used to express an indefinite integral. An indefinite integral produces a function with an additional arbitrary constant, known as the constant of integration. In the family of antiderivatives, this constant covers every conceivable function. Many mathematical and physical issues, such as locating the areas under curves and resolving differential equations, can be resolved using indefinite integrals.

Recall that the Taylor series expansion of arctan(x) is:
[tex]arctan(x) = x - (1/3)x^3 + (1/5)x^5 - (1/7)x^7 + ...[/tex]

We can substitute x^2 for x in this expansion to obtain:
[tex]arctan(x^2) = x^2 - (1/3)x^6 + (1/5)x^10 - (1/7)x^14 + ...[/tex]

Now, we can integrate term by term to obtain the indefinite integral as an infinite series:
[tex]\int\limits^{} \, dx arctan(x^2) dx = (1/3)x^3 - (1/21)x^7 + (1/45)x^(11) - (1/99)x^(15) + ... + c'[/tex]

where c' is the constant of integration.

Therefore, the indefinite integral arctan(x^2) dx can be expressed as an infinite series of powers of x with alternating signs and coefficients determined by the odd integers.

Learn more about indefinite integral here:

https://brainly.com/question/31966433


#SPJ11

how many translational, rotational, and vibrational degrees of freedom do the hcn molecule have?

Answers

The HCN molecule has 3 translational, 2 rotational, and 4 vibrational degrees of freedom.

For the HCN molecule, we need to determine the translational, rotational, and vibrational degrees of freedom.

1. Translational Degrees of Freedom:
For any molecule, there are always 3 translational degrees of freedom. This is because molecules can move in the x, y, and z directions.

2. Rotational Degrees of Freedom:
HCN is a linear molecule. Linear molecules have 2 rotational degrees of freedom, as they can rotate about the two axes perpendicular to the molecular axis (in this case, the y and z axes).

3. Vibrational Degrees of Freedom:
The vibrational degrees of freedom can be calculated using the formula:
vibrational degrees of freedom = 3N - 6 for non-linear molecules and 3N - 5 for linear molecules, where N is the number of atoms in the molecule.
For HCN, which is a linear molecule with 3 atoms, the vibrational degrees of freedom are:
vibrational degrees of freedom = 3(3) - 5 = 9 - 5 = 4

In summary, the HCN molecule has 3 translational, 2 rotational, and 4 vibrational degrees of freedom.

For more questions on HCN molecule:

https://brainly.com/question/1687160

#SPJ11

The HCN molecule has 6 degrees of freedom: 3 translational, 2 rotational, and 1 vibrational. Its linear structure means it only has 1 vibrational degree of freedom.

There are a total of 6 degrees of freedom in the HCN (hydrogen cyanide) molecule: 3 translational, 2 rotational, and 1 vibrational. While rotational degrees of freedom refer to the molecule's ability to rotate around two axes perpendicular to the molecular axis, translational degrees of freedom describe the molecule's ability to move in space along three axes. The stretching and bending of the chemical bonds inside the molecule are referred to as the vibrational degree of freedom. Because of its linear structure, the HCN molecule only has one vibrational degree of freedom, which means that there is only one manner in which the atoms can vibrate in relation to one another.  

learn mnore about HCN molecule here:

https://brainly.com/question/13838935

#SPJ11

a. oxidation–reduction reactions 1. 1 oxidation of magnesium. write a description of the reaction. what did the litmus tests reveal?

Answers

The oxidation of magnesium involves the reaction of magnesium with oxygen to produce magnesium oxide.

The balanced chemical equation for the reaction is:

2Mg(s) + O2(g) → 2MgO(s)

During the reaction, magnesium loses electrons and is oxidized, while oxygen gains electrons and is reduced. The litmus tests reveal that the reaction is exothermic and releases heat.

In addition, the reaction is also highly reactive, and the magnesium metal reacts vigorously with oxygen in the air, producing a bright white flame.

The reaction is also characterized by the formation of a white powdery residue of magnesium oxide.

Overall, the oxidation of magnesium is an important chemical reaction with numerous industrial and biological applications, including the production of magnesium alloys, batteries, and fertilizers, as well as its role in human metabolism.

To know more about magnesium oxide refer here

brainly.com/question/1533548#

#SPJ11

Which of the following is the most abundant positively charged component of seawater? 72) _____. A) Calcium B) Chloride C) Magnesium D) Sodium

Answers

The most abundant positively charged component of seawater is sodium. Sodium is one of the major electrolytes in seawater, and it is present in large quantities.

In fact, it is estimated that sodium makes up about 30.6% of the ions in seawater, which makes it the most abundant cation in seawater. Chloride is the most abundant anion in seawater, and it is usually found in almost the same concentration as sodium. Calcium and magnesium are also present in seawater, but in much smaller quantities compared to sodium and chloride. The most abundant positively charged component of seawater is sodium. Sodium is one of the major electrolytes in seawater, and it is present in large quantities. Calcium and magnesium are important ions for marine organisms, as they play crucial roles in processes such as shell formation and metabolism. However, in terms of abundance, sodium and chloride are the dominant ions in seawater. It is worth noting that the concentration of ions in seawater can vary depending on location and environmental conditions.

learn more about component

https://brainly.com/question/16896935

#SPJ11

how many moles of o are in 5.40 moles of aluminum nitrate?

Answers

The molar ratio of O to aluminum nitrate is 15:3, which simplifies to 5:1. Therefore, there are 27.0 moles of O in 5.40 moles of aluminum nitrate.

The formula for aluminum nitrate is Al(NO₃)₃, which indicates that there are three nitrate ions (NO₃⁻) per one aluminum ion (Al³⁺). The nitrate ion consists of one nitrogen atom and three oxygen atoms. Therefore, each aluminum nitrate molecule contains three aluminum atoms, nine nitrogen atoms, and 27 oxygen atoms.

To determine the number of moles of oxygen in 5.40 moles of aluminum nitrate, we need to use the molar ratio between oxygen and aluminum nitrate. From the formula of aluminum nitrate, we know that there are 27 oxygen atoms per one aluminum nitrate molecule.

Since we are given 5.40 moles of aluminum nitrate, we can use the mole-to-mole ratio to calculate the number of moles of oxygen. The molar ratio of oxygen to aluminum nitrate is 27:1, which means that for every one mole of aluminum nitrate, there are 27 moles of oxygen.

Therefore, to find the number of moles of oxygen in 5.40 moles of aluminum nitrate, we multiply 5.40 by the molar ratio of oxygen to aluminum nitrate:

5.40 moles Al(NO₃)₃ x (27 moles O / 1 mole Al(NO₃)₃) = 145.8 moles O

To know more about number of moles, refer here:

https://brainly.com/question/15209553#

#SPJ11

now that you have learned how to name alkenes in section 10.3, name each of the following epoxides as an alkene oxide

Answers

To name an epoxide as an alkene oxide, we first need to identify the alkene it was derived from. An epoxide is a cyclic ether that has three atoms in the ring, with one oxygen atom and two carbon atoms.

This ring can be opened to form an alkene oxide by breaking one of the carbon-oxygen bonds, resulting in a double bond between the two carbon atoms.

For example, let's consider the epoxide ethylene oxide. This epoxide is derived from the alkene ethylene, which has two carbon atoms and a double bond between them. To name ethylene oxide as an alkene oxide, we simply add the prefix "oxy" to the alkene name, giving us the name "ethene oxide".

Similarly, we can name propylene oxide as "propene oxide", since it is derived from the alkene propylene. The same goes for butene oxide (derived from butene), pentene oxide (derived from pentene), and so on.

In summary, to name an epoxide as an alkene oxide, we identify the alkene it was derived from and add the prefix "oxy" to the alkene name. This is a simple and straightforward way to name these important organic compounds.

You can learn more about ethylene at: brainly.com/question/28303854

#SPJ11

calculate the molarity ( m ) of 157.1 g of h2so4 in 1.375 l of solution.

Answers

The molarity of 157.1 g of [tex]H_2SO_4[/tex] in 1.375 L of the solution is 1.165 M.

To calculate the molarity (M) of 157.1 g of [tex]H_2SO_4[/tex] in 1.375 L of solution, we need to use the formula:

M = moles of solute/volume of solution (in L)

First, we need to determine the number of moles of [tex]H_2SO_4[/tex]:

moles of [tex]H_2SO_4[/tex] = mass of H2SO4 / molar mass of [tex]H_2SO_4[/tex]

moles of [tex]H_2SO_4[/tex] = 157.1 g / 98.08 g/mol (molar mass of [tex]H_2SO_4[/tex])

moles of [tex]H_2SO_4[/tex] = 1.602 mol

Next, we can substitute the values into the formula to calculate the molarity:

M = 1.602 mol / 1.375 L

M = 1.165 M

Therefore, the molarity of 157.1 g of [tex]H_2SO_4[/tex] in 1.375 L of solution is 1.165 M.

To know more about molarity, here

brainly.com/question/31545539

#SPJ4

Give the IUPAC name for (CH3)2C=CHCH2CH2OH. Spell out the full name of the compound. Submit Request Answer
Previous question

Answers

The IUPAC name for (CH3)2C=CHCH2CH2OH is 4-methyl-2-penten-1-ol the parent chain of the compound is a five-carbon chain, which is a pentene. The double bond is located between the second and third carbon atoms, and there is a methyl group attached to the fourth carbon.

The hydroxyl group is located at the first carbon, which gives the suffix -ol. Therefore, the name of the compound is 4-methyl-2-penten-1-ol. The numbering of the carbon atoms starts from the end closest to the double bond, which gives the smallest number to the hydroxyl group.

Learn more about compound here:

https://brainly.com/question/13516179

#SPJ11

A sample of CO2 gas (3.0 mol) effused through a pinhole in 18.0 s. It will take ____s for the same amount of H2 to effuse under the same conditions.
A.3.84
B.84.4
C.396
D.0.818
E.1.92

Answers

The answer is E. 1.92.

The effusion rate of a gas is directly proportional to the square root of its molar mass. Therefore, we can use Graham's law of effusion to calculate the time it will take for the same amount of H2 gas to effuse through the same pinhole.
First, we need to find the molar mass of CO2 and H2. The molar mass of CO2 is 44.01 g/mol, while the molar mass of H2 is 2.02 g/mol. Since both gases are at the same temperature and pressure, we can use the following formula:
(rate of CO2 effusion) / (rate of H2 effusion) = square root of (molar mass of H2 / molar mass of CO2)
Plugging in the values, we get:
(3.0 mol / 18.0 s) / (x mol / t s) = sqrt(2.02 g/mol / 44.01 g/mol)
Simplifying, we get:
x = 3.0 mol / 18.0 s * sqrt(44.01 g/mol / 2.02 g/mol) * t
Solving for t, we get:
t = x * 18.0 s / (3.0 mol * sqrt(44.01 g/mol / 2.02 g/mol))
Plugging in x = 3.0 mol and simplifying, we get:
t = 1.92 s
Therefore, the answer is E. 1.92.

To know more about Graham's law visit:
https://brainly.com/question/31635430
#SPJ11

consider a sparingly soluble salt a3b2 with a solubility product equilibrium constant of 4.6*10^-11. determien the moalr solubility of the compound in water

Answers

The molar solubility of sparingly soluble salt a³b² with a solubility product equilibrium constant of 4.6 × 10⁻¹¹ in water is 5.2 × 10⁻⁵ M.

To determine the molar solubility of sparingly soluble salt in water can be determined using the solubility product equilibrium constant (Ksp) of the salt. For the salt a³b² with a Ksp of 4.6 × 10⁻¹¹, the equilibrium expression is:

Ksp = [a]³[b]²

where [a] and [b] are the molar concentrations of the ions in solution.

Assuming that the salt dissolves completely and dissociates into its constituent ions, we can let x be the molar solubility of the salt, and the molar concentrations of the ions are given by:

[a] = 3x

[b] = 2x¹

Substituting these expressions into the Ksp equation, we get:

Ksp = (3x)³(2x)²
4.6 × 10⁻¹¹ = 108x⁵

Solving for x, we get:

x = (4.6 × 10⁻¹¹ / [tex]108)^{\frac{1}{5} }[/tex]

x = 5.2 × 10⁻⁵ M

Therefore, the molar solubility of the salt a³b² in water is 5.2 × 10⁻⁵ M.

Learn more about molar solubility: https://brainly.com/question/31493083

#SPJ11

(a) How many turns of anα helix are required to span a lipid bilayer (-30 Å across)? (b) What is the minimum number of residues required? (c) Why do most transmembrane helices contain more than the minimum number of residues?The number of turns of -helix required to span the lipid bilayer is approximately 30Å is 5.6.The number of minimum residues formed during the single span of the lipid bilayer is 20 residues.The extra residues in the transmembrane form a helix, which partially meets the hydrogen bonding requirements.

Answers

Having more residues can allow for more interactions with the lipid bilayer and surrounding environment, leading to greater stability and function of the transmembrane protein.

(a) To span a lipid bilayer that is approximately 30 Å across, around 5.6 turns of an α helix are required.
(b) The minimum number of residues required for a single span of a lipid bilayer is 20 residues.
(c) Most transmembrane helices contain more than the minimum number of residues because the extra residues help to stabilize the helix by partially fulfilling the hydrogen bonding requirements.

The many components of the bilayer are responsible for a number of significant properties of the membrane. The nonpolar fatty acid tails of the phospholipids are what cause the hydrophobic interior of the lipid bilayer, which means that it repels water molecules. On the lipid bilayer's surface, there are hydrophilic polar head groups that interact with the aqueous environment.

The selective permeability of the membrane is partly a result of the lipid bilayer surface, which controls which molecules can flow through. The surface is covered with many proteins and channels that let certain molecules, such water or ions, pass through.

Learn more about lipid bilayer here

https://brainly.com/question/31919785

#SPJ11

give the product of the reaction of cesium with iodine. a. a) cs i2 b. b) cs2i3 c. c) cs2i d. d) cs i e. e) cs i3

Answers

(d) Cs I is the appropriate response.

Cesium iodide (C s I), which has the chemical formula Cs + I2 -> CsI, is the end result of the cesium and iodine synthesis. In this synthesis reaction, iodine and cesium combine to generate a single chemical.

Iodine (I), which has a strong propensity to gain an electron due to its electronegativity, receives the outermost electron from cesium (Cs) in this reaction. Iodine becomes I- and cesium becomes Cs+ as a result. Cesium iodide (C s I),  an ionic molecule made up of the ions Cs+ and I-, is created when these ions come together.

For more such questions on chemical

https://brainly.com/question/29886197

#SPJ11

The product of the reaction of cesium with iodine is CsI. Cesium iodide (CsI) is an ionic compound composed of cesium cations (Cs+) and iodide anions (I-).

It is a colorless or white crystalline solid with a cubic crystal structure. CsI has a high melting point and is soluble in water and polar solvents. It is commonly used in scintillation detectors, as a flux in the preparation of certain metals, and as a source of cesium ions in atomic clocks. CsI has a wide range of applications in medical imaging, radiation therapy, and nuclear physics due to its high sensitivity to X-rays and gamma rays. Iodine is a chemical element with the symbol I and atomic number 53. It is a nonmetal in the halogen group on the periodic table, with properties similar to other halogens such as fluorine, chlorine, and bromine. Iodine is a lustrous, purple-black solid at standard conditions, sublimating readily into a purple-pink gas that has an irritating odor.

Learn more about cesium with iodine here:

https://brainly.com/question/28300274

#SPJ11

To what speed must a proton be accelerated from rest for it to have a de Broglie wavelength of 100pm? What accelerating potential difference is needed ?

Answers

The speed of the proton must be determined using the de Broglie wavelength formula.

How to determine proton speed?

To determine the speed of a proton, we can use the de Broglie wavelength formula, which relates the wavelength of a particle to its momentum. The de Broglie wavelength is given by the equation λ = h / p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle.

Given the de Broglie wavelength of 100 pm (picometers) for the proton, we can rearrange the equation to solve for the momentum. Once we have the momentum, we can use the equation p = mv, where m is the mass of the proton and v is its velocity. Solving for the velocity will give us the required speed of the proton.

In addition, the accelerating potential difference can be determined using the concept of energy conservation. The kinetic energy gained by the proton through acceleration can be equated to the potential energy gained from the potential difference. By rearranging the equations and solving for the potential difference, we can find the value needed for the proton to achieve the desired speed.

By following these calculations, we can determine both the speed of the proton and the accelerating potential difference required to achieve a de Broglie wavelength of 100 pm.

Learn more about proton

brainly.com/question/12535409

#SPJ11

how many grams of co2 are present in 4.54 grams of cobalt(ii) iodide? grams co2 .

Answers

The grams of co2 are present in 4.54 grams of cobalt(ii) iodide is 4.57 grams.

To answer this question, we need to know the molar mass of cobalt(II) nitrite, which can be calculated as follows:

Co(NO2)2

Molar mass of Co = 58.93 g/mol

Molar mass of NO2 = 46.01 g/mol (14.01 g/mol for N and 2x16.00 g/mol for O)

Total molar mass = 150.95 g/mol

So, one mole of cobalt(II) nitrite has a mass of 150.95 g.

To find the number of moles of cobalt(II) nitrite in 4.57 grams, we divide the mass by the molar mass:

4.57 g / 150.95 g/mol = 0.030 mol

Now, we can use the balanced chemical equation for the reaction that forms Co2+ and cobalt(II) nitrite to determine the amount of Co2+ that corresponds to 0.030 mol of cobalt(II) nitrite. The equation is:

Co(NO2)2 + 2H2O + O2 → Co2+ + 2NO3- + 2H+

According to the equation, 1 mole of Co(NO2)2 produces 1 mole of Co2+. Therefore, 0.030 mol of Co(NO2)2 will produce 0.030 mol of Co2+.

Finally, we can use the molar mass of Co2+ to convert from moles to grams:

0.030 mol Co2+ x 58.93 g/mol = 1.77 g Co2+

So, 4.57 grams of cobalt(II) nitrite contain 1.77 grams of Co2+.

For such more question on grams:

https://brainly.com/question/30599358

#SPJ11

The grams of co2 are present in 4.54 grams of cobalt(ii) iodide is 4.57 grams.To answer this question, we need to know the molar mass of cobalt(II) nitrite, which can be calculated as follows:

Co(NO2)2Molar mass of Co = 58.93 g/molMolar mass of NO2 = 46.01 g/mol (14.01 g/mol for N and 2x16.00 g/mol for O)Total molar mass = 150.95 g/molSo, one mole of cobalt(II) nitrite has a mass of 150.95 g.To find the number of moles of cobalt(II) nitrite in 4.57 grams, we divide the mass by the molar mass:4.57 g / 150.95 g/mol = 0.030 molNow, we can use the balanced chemical equation for the reaction that forms Co2+ and cobalt(II) nitrite to determine the amount of Co2+ that corresponds to 0.030 mol of cobalt(II) nitrite. The equation is:Co(NO2)2 + 2H2O + O2 → Co2+ + 2NO3- + 2H+According to the equation, 1 mole of Co(NO2)2 produces 1 mole of Co2+. Therefore, 0.030 mol of Co(NO2)2 will produce 0.030 mol of Co2+.Finally, we can use the molar mass of Co2+ to convert from moles to grams:0.030 mol Co2+ x 58.93 g/mol = 1.77 g Co2+So, 4.57 grams of cobalt(II) nitrite contain 1.77 grams of Co2+.

Lean more about grams here:

brainly.com/question/30599358

#SPJ11

A chemical firm produces sodium bisulfate in 100-pound bags. Demand for this product is 20 tons per day. The capacity for producing the product is 50 tons per day. Setup costs $100, and storage and handling costs are $5 per ton a year. The firm operates 200 days a year. (Note: 1 ton = 2,000 pounds.)
a. How many bags per run are optimal? (Round your intermediate calculations to 2 decimal places and final answer to the nearest whole number.)
b. What would the average inventory be for this lot size? (Round your intermediate calculations to 2 decimal places and final answer to the nearest whole number.)
c. Determine the approximate length of a production run, in days. (Round your intermediate calculations to 2 decimal places and final answer to the nearest whole number.)
d. About how many runs per year would there be? (Round your intermediate calculations to 2 decimal places and final answer to the nearest whole number.)

Answers

The optimal number of bags per run is 18, the average inventory is 89,400 pounds, the length of a production run is 1 day, and there would be about 8,073 runs per year.

To find the optimal number of bags per run, we can use the EOQ formula:

EOQ = √[(2DS)/(H)]

where D is the demand per day (20 tons/day), S is the setup cost ($100), and H is the holding cost per unit per year (which is $5/2000 = $0.0025/pound/day).

First, we need to convert the demand to pounds per day;

20 tons/day x 2000 pounds/ton = 40,000 pounds/day

Now we can plug in the values;

EOQ = √[(2 x 40,000 x 100)/(0.0025)] ≈ 1,788.85

Since each bag weighs 100 pounds, we should produce batches of about 18 bags;

1,788.85 pounds / 100 pounds per bag = 17.89 bags per run

Rounding up to the nearest whole number, the optimal number of bags per run is 18.

The average inventory will be calculated by using the formula;

Average inventory = EOQ/2

Average inventory = 1,788.85/2

≈ 894 bags

Since each bag weighs 100 pounds, the average inventory in pounds is;

894 bags x 100 pounds per bag = 89,400 pounds

Rounding to the nearest whole number, the average inventory is 89,400 pounds.

The length of a production run can be estimated using the formula;

Length of production run = EOQ/D

Length of production run = 1,788.85/40,000 pounds per day ≈ 0.04 days

Since we can't have a production run of 0.04 days, we should round up to the nearest whole number, which means the length of a production run is 1 day.

The number of runs per year can be calculated using the formula;

Runs per year = (D/EOQ) x 365

Runs per year = (40,000/1,788.85) x 365 ≈ 8,073.06

Rounding to the nearest whole number, there would be about 8,073 runs per year.

To know more about average inventory here

https://brainly.com/question/31858999

#SPJ4

The thermite reaction, used for welding iron, is the reaction of Fe3O4 with Al. 8 Al (s) + 3 Fe3O4 (s) \longrightarrow ⟶ 4 Al2O3 (s) + 9 Fe (s) \Delta Δ H° = -3350. kJ/mol rxn Because this large amount of heat cannot be rapidly dissipated to the surroundings, the reacting mass may reach temperatures near 3000. °C. How much heat (in kJ) is released by the reaction of 16 g of Al with 76.3 g of Fe3O4? Enter a positive number since released already tells us it is a negative number (to 1 decimal place).

Answers

The amount of heat released by the reaction of 16 g of Al with 76.3 g of Fe₃O₄ is -365.9 kJ (to 1 decimal place).  To calculate the amount of heat released by the reaction of 16 g of Al with 76.3 g of Fe₃O₄, we need to first determine the limiting reactant.

16 g Al x (1 mol Al/26.98 g Al) = 0.593 mol Al
76.3 g Fe₃O₄ x (1 mol Fe₃O₄/231.54 g Fe₃O₄) = 0.329 mol Fe₃O₄

Next, we will use the mole ratios from the balanced equation to determine which reactant is limiting. The mole ratio of Al to Fe₃O₄ is 8:3.

0.593 mol Al x (3 mol Fe₃O₄/8 mol Al) = 0.221 mol Fe₃O₄

Since 0.221 mol Fe₃O₄ is less than the amount of Fe₃O₄ we started with (0.329 mol), Fe₃O₄ is the limiting reactant.

Now, we can use the stoichiometry of the balanced equation and the enthalpy change to calculate the heat released.

0.329 mol Fe₃O₄ x (-3350 kJ/mol rxn) / (3 mol Fe₃O₄) = -365.9 kJ

Therefore, the amount of heat released by the reaction of 16 g of Al with 76.3 g of Fe₃O₄ is -365.9 kJ (to 1 decimal place).

To know more about heat released, refer

https://brainly.com/question/22862842

#SPJ11

alculate the δg°rxn using the following information. 2 hno3(aq) no(g) → 3 no2(g) h2o(l) δg°rxn = ? δg°f (kj/mol) -110.9 87.6 51.3 -237.1

Answers

The δg°rxn for the given reaction  2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) is 51.0 kJ/mol.

To do this, we will use the following formula: ΔG°rxn = Σ(ΔG°f_products) - Σ(ΔG°f_reactants) For the reaction:

2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)

We have the following ΔG°f values (in kJ/mol): HNO3(aq) = -110.9 NO(g) = 87.6 NO2(g) = 51.3 H2O(l) = -237.1

To calculate the δg°rxn, we need to use the formula:
δg°rxn = Σ(δg°f products) - Σ(δg°f reactants)
Using the given δg°f values:
Σ(δg°f products) = 3(51.3) + (-237.1) = -83.2 kJ/mol
Σ(δg°f reactants) = 2(-110.9) + 87.6 = -134.2 kJ/mol
Therefore, δg°rxn = (-83.2) - (-134.2) = 51.0 kJ/mol
So the δg°rxn for the given reaction is 51.0 kJ/mol.

For more such questions on reaction , Visit:

https://brainly.com/question/11231920

#SPJ11

Given the following unbalanced chemical equation, answer the following: Cu + HNO3 + Cu(NO3)2 + NO + H2O 2 If you begin a reaction with 5.499 g of nitric acid, how many grams of copper (II) nitrate can you theoretically produce, assuming an excess of copper is present?

Answers

You can produce 0.031 g of [tex]Cu(NO_3)_2[/tex] from 5.499 g of [tex]HNO_3[/tex], assuming excess copper.

The balanced chemical equation for the reaction between Cu and [tex]HNO_3[/tex] to form [tex]Cu(NO_3)_2[/tex], NO, and [tex]H_2O[/tex] is:

[tex]3Cu + 8HNO_3\ - > 3Cu(NO_3)_2 + 2NO + 4H_2O[/tex]

From the equation, we can see that 3 moles of Cu reacts with 8 moles  [tex]HNO_3[/tex] to produce 3 moles of [tex]Cu(NO_3)_2[/tex].

To calculate the theoretical yield of [tex]Cu(NO_3)_2[/tex], we need to first convert the given mass of nitric acid to moles. The molar mass of [tex]HNO_3[/tex] is 63.01 g/mol, so 5.499 g of [tex]HNO_3[/tex] corresponds to 0.0873 mol.

Therefore, we can use the stoichiometry of the balanced equation to calculate the theoretical yield of [tex]Cu(NO_3)_2[/tex] :

3 moles [tex]Cu(NO_3)_2[/tex]= 8 moles [tex]HNO_3[/tex]

0.0873 mol [tex]HNO_3[/tex] x (3 mol [tex]Cu(NO_3)_2[/tex] / 8 mol [tex]HNO_3[/tex]) x (187.56 g [tex]Cu(NO_3)_2[/tex]/mol) = 0.031 g [tex]Cu(NO_3)_2[/tex]

To know more about nitric acid, here

brainly.com/question/29769012

#SPJ4

calculate the amount of heat required to heat 725 g of water from 22.1oc to 100.0oc. (swater = 4.184jg-1oc-1) A. 236.3 kJB. 15.3 kJC. 0.51 kJD. -64.1 kJ

Answers

The amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ.


To calculate the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC, we can use the formula:
Q = m × c × ΔT
where Q is the amount of heat, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Substituting the given values, we get:
Q = 725 g × 4.184 J/g.oC × (100.0oC - 22.1oC)
Q = 725 g × 4.184 J/g.oC × 77.9oC
Q = 236337.08 J or 236.3 kJ (rounded to one decimal place)

Therefore, the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ. This is a significant amount of heat and highlights the importance of understanding the properties of water when studying thermodynamics and heat transfer.

To know more about heat capacity of water visit:

https://brainly.com/question/24130199

#SPJ11

Other Questions
Jake net pay is $160. 65 after deductions of $68. 85. He makes $8. 50 per hour how much hours did he work? Show working outs **Excerpt taken from The Historic Rise of Old Hickory by Suzanne B. Williams**Four major candidates ran in the 1824 election, all under the "Democratic-Republican" name. One of the candidates, Andrew Jackson, was already famous. In the 1780s, he earned the right to practice law and served in various offices of the state government, including senator. He earned the nickname "Old Hickory" for his toughness as a general during the War of 1812 and First Seminole War. Jackson supported slavery and "Indian removal." This earned him support from voters in southern and frontier states. The other three candidates were John Quincy Adams of Massachusetts, Henry Clay of Kentucky, and William Crawford of Georgia.U.S. presidents are elected through the Electoral College. The Founding Fathers worried that Americans were too spread out to learn enough about the candidates. Under the Electoral College, Americans cast their ballot for the popular vote, which chooses the electors for each state. The number of electoral votes each state equals the number of representatives and senators combined. The candidates must win an absolute majority of electoral votes to win the election.In 1824, Andrew Jackson won the popular vote, but he did not win it in each state. Jackson and Adams both won many electoral votes. Jackson won the most with 99. However, a candidate needs an absolute majority of electoral votes to win. In 1824, Jackson needed 131 to win. When there is not majority winner, the election goes to the House of Representatives. This has only happened twice in U.S. history.Even though he won the popular vote and many electoral votes, Andrew Jackson lost the presidency in 1824. John Quincy Adams was the Secretary of State at this time. Henry Clay was the Speaker of the House of Representatives. Henry Clay, receiving the least, was left out. However, as a leader in the House of Representatives, he had influence over the other members. Clay openly hated Jackson and there were rumors that Clay made a deal with Adams in exchange for his support. The House election declared John Quincy Adams president. Soon, he chose Henry Clay to fill the seat he left vacant, Secretary of State. Jackson was shocked and enraged. Although there was no inquiry of possible wrongdoing, Jackson accused Adams and Clay of making a "corrupt bargain."John Quincy Adams was a disappointment as president. Many of his goals created divisions like federal funds for internal improvement. Some states thought that taking federal funds would force them to follow certain rules. They felt this reduced their rights as independent states. Jackson took advantage of issues like this one to gather more support. More Jackson supporters found their way to seats in Congress. He was as a man of the people and said Adams could never understand the common mans concerns.John Quincy Adams ran against Andrew Jackson in the 1828 election. Personal attacks grew even more vicious, but Andrew Jackson appealed to many. He believed government was for the common man. He believed in strict reading of the law and limited internal improvements. He also believed in states rights.Andrew Jackson easily won the 1828 election, winning both the popular vote and a majority of electoral votes. Historians note the sectional nature of the voting. Support for Jackson was concentrated in South while Adams support was mostly in the North. Jackson was so popular because he brought changes to the government. He also wanted to make sure the government was responsible for its actions. Jackson pushed settlement into the frontier. He supported the Indian Removal act. He also defended the spread of slavery. Though his support was heavier in the South, he was determined to keep a unified nation. The rise and presidency of Old Hickory is memorable to Americans today.**Which of the following did Andrew Jackson not support?**A) A limited national governmentB) Spreading of slavery to the frontierC) Federal funds for internal improvementsD) A strict interpretation of the U.S. Constitution how many moles of n2o, nitrous oxide, are contained in 250. ml of the gas at stp? r = 0.08206 latm/kmol An electronic component dissipates 0.38 Watts through a heat sink by convection and radiation (Black Body) into surrounds at 20C. What is the surface temperature of the heat sink if the convective heat transfer coefficient is 6 W/m2K, and the heat sink has an effective area of 0.001 m2? Water flows through the 30-mm-diameter pipe and is ejected with a velocity of 25 m/s at B from the 10-mm diameter nozzle. Determine the pressure and the velocity of the water at A 300 mm 3. what is the coupon rate on a bond with a par value of $1,000, semi-annual coupons, 8 years until maturity, yield to maturity of 8.50 %, and price of $925.64 6.Shortly after the Big Bang occurred, about 14 billion years ago, the Universe was very hot, about 3000 K, why then today, is the CMB at about 2.7 K ? The standard free energy change for the conversion of glucose to glucose-6-phosphate by hexokinase is Go = -16.6 kJ/mol (T = 37 oC). What is the equilibrium constant for the hexokinase reactionAnswer: 624.9 Please explain Emerald bout 50 pineapples at 50coins each and sold the for $31. 0. Calculate the profit on the 50 pineapples A boat travels with velocity vector (25, 253). What is the directional bearing of the boat?ON 30 EOE 30 SOE 30 NON 30 W choose the citation that uses the correct mla capitalization punctuation and formatting rules Red blood cells are destroyed by phagocytic cells in the liver, spleen and red bone marrow collectively known as this term. - revitalized management system - morphized lymph system - mononuclear monocytic system - reticuloendothelial system 1. Procedure mem.alloc (n) allocates storage from: segment (choose from............... list: storage, stack, static, heap) G(h, s) is the expected grade-point average of a typical freshman college student who had a gpa of h in high school and made a combined score of s on the sat. What is the rate of change of the expected gpa with respect to the sat score when the high school gpa is 3. 6 and the sat score is 1104? (a) write the mathematical notation for the partial rate-of-change function needed to answer the question posed. ? ? (h, s) an investment grows at 24ompounded monthly. how many years will it take to do the following? (round your answers to one decimal place.) engaging in protectionism is in everyone's best interest since it protects american industry from foreign competition. true false The E. coli bacteria can have several mutations that affect the lac operon system. One mutation inhibits the ability of RNA polymerase to bind to the lac operon. How would this affect the cell? there would be less transcription Now choose from one of the following options Why? a) The cell would make more lactose. There would be no lactose outside of the cell. c. The cell would not be able to process tryptophan. (d) The cell would not be able to process lactose, A. Is Genetic Condition One most likely a dominant or a recessivetrait? Explain your reasoning.B. Is Jan most likely to be homozygous dominant, heterozygous, orhomozygous recessive? The Man Who Was Not a Spy achieve3000What is this story mainly about?A.A bookstore owner with mind-control abilities who helps find missing peopleB.A bookstore owner who is constantly looking for ways to experience real dangerC.A bookstore owner who is drawn into helping a man with mind-control abilitiesD.A bookstore owner with money problems who can't resist hiding cookbooks Besides the obvious geographic differences associated with ________, there may be deep cultural and value-system differences between the various countries that an organization operates in.a) nationalizatonb) globalizationc) individualizationd) culturalization