G(h, s) is the expected grade-point average of a typical freshman college student who had a gpa of h in high school and made a combined score of s on the sat. What is the rate of change of the expected gpa with respect to the sat score when the high school gpa is 3. 6 and the sat score is 1104? (a) write the mathematical notation for the partial rate-of-change function needed to answer the question posed. ? ? (h, s)

Answers

Answer 1

The answer to the question is that we cannot determine the rate of change of the expected GPA with respect to the SAT score without additional information.

The partial rate-of-change function needed to answer this question is the partial derivative of G(h, s) with respect to s, denoted as ∂G/∂s.

Using the chain rule of differentiation, we can write:

∂G/∂s = (∂G/∂h) x (dh/ds) + (∂G/∂s)

where dh/ds is the rate of change of high school GPA with respect to SAT score.

To evaluate the partial derivative at (h,s) = (3.6, 1104), we need to compute both ∂G/∂h and dh/ds at that point. However, the problem does not provide any information about the functional form of G(h, s) or the relationship between high school GPA and SAT score. Without that information, it is not possible to calculate the partial rate-of-change function or the requested derivative.

Learn more about derivative at: brainly.com/question/29020856

#SPJ11


Related Questions

what type of quadrilateral is PQRS i: 3.2.2.The value of× if PS=15 units 3.2.3 The coordinates of T, the midpoint of PS PORS. - The value of y. The coordinates of W, a point on SP such that PQRW is 3.2.5 P(x:-9) S(10; 3)​

Answers

The type of quadrilateral PQRS is a trapezium. A trapezium is a quadrilateral with one pair of parallel sides. In this case, the parallel sides are PQ and SR.

How to explain the information

To find the value of x, we can use the distance formula. The distance formula states that the distance between two points is equal to the square root of the difference of their x-coordinates squared plus the difference of their y-coordinates squared.

In this case, we have the following:

PQ = √((x - 10)² + ((-9) - 3)²

We are given that PS = 15 units, so we can set the above equation equal to 15 and solve for x.

15 = √((x - 10)² + ((-9) - 3)²)

225 = (x - 10)² + 144

225 = x² - 20x + 100 + 144

(x - 15)(x - 5) = 0

Therefore, x = 15 or x = 5.

Learn more about quadrilateral on

https://brainly.com/question/23935806

#SPJ1

What is the product of 2. 8\times 10^62. 8×10 6

and 7. 7 \times 10^57. 7×10 5

expressed in scientific notation?

Answers

The product of 2.8 × 10^6 and 7.7 × 10^5 expressed in scientific notation is 2.156 × 10^12.

What is scientific notation?

Scientific notation, also known as exponential notation, is a way of representing large or small numbers in a simplified manner. It's written as the product of a number between 1 and 10, and a power of 10.Example: 3.5 × 10^4 is the scientific notation for 35,000. To return from scientific notation to standard form, all you have to do is multiply the base number by 10 raised to the power indicated.

Learn more about Scientific natation here,

https://brainly.com/question/1767229

#SPJ11

write the sum in sigma notation. 3 − 3x 3x2 − 3x3 · · · (−1)n3xn

Answers

Hi! I'd be happy to help you write the sum in sigma notation. Given the sum: 3 - 3x + 3x^2 - 3x^3 + , + (-1)^n * 3x^n, the sigma notation would be:

Σ[(-1)^k * 3x^k] from k=0 to n

Here's a step-by-step explanation:

1. Identify the pattern in the sum: It alternates between positive and negative terms, and each term has a power of x multiplied by 3.
2. Assign the variable k for the index of summation.
3. Determine the range of k: The sum starts with k=0 and goes up to k=n.
4. Represent the alternating sign using (-1)^k.
5. Combine all components to form the sigma notation: Σ[(-1)^k * 3x^k] from k=0 to n.

The sum can be written in sigma notation as:

[tex]$\displaystyle\sum_{n=1}^\infty (-1)^n 3x^n$[/tex]

How to write sum in sigma notation?

The given series is:

[tex]3 - 3x + 3x^2 - 3x^3 + ...[/tex]

To write it in sigma notation, we first notice that the terms alternate in sign, and each term is a power of x multiplied by a constant (-3). We can write the general term of the series as:

[tex](-1)^n * 3 * x^n[/tex]

where n is the index of the term, starting from n = 0 for the first term.

Using sigma notation, we can express the sum of the series as:

[tex]$\displaystyle\sum_{n=1}^\infty (-1)^n 3x^n$[/tex]

where the summation is over all values of n starting from n = 0.

Learn more about sigma notation

brainly.com/question/27737241

#SPJ11

let → v = ⟨ − 4 , 3 ⟩ . sketch the following: → v , − 3 → v , and 1 2 → v . (a) Sketch the vectors → v , → w , → v − → w, and 2→ v + →w . (b) Find a unit vector in the direction of →v .

Answers

(a) The vector that starts at the origin, moves 2 units to the left, and 2 units down and then the vector that starts at the origin, moves 6 units to the left, and 8 units up.

(b) A vector pointing in the same direction as →v, but with a magnitude of 1. This is known as a unit vector.

Given the vector →v = ⟨-4,3⟩, we can sketch it on a coordinate plane by starting at the origin (0,0) and moving -4 units to the left (since the x-component is negative) and 3 units up (since the y-component is positive). This gives us a vector pointing in the direction of the upper left quadrant.

To sketch -3→v, we can simply multiply each component of →v by -3, resulting in the vector ⟨12,-9⟩. This vector will point in the same direction as →v but will be three times as long.

To sketch 1/2→v, we can multiply each component of →v by 1/2, resulting in the vector ⟨-2,3/2⟩. This vector will be half the length of →v and will point in the same direction.

To sketch the vectors →w, →v-→w, and 2→v+→w, we need to be given →w. Without this information, we cannot sketch these vectors. However, we can discuss how to manipulate vectors algebraically.

To add two vectors, we simply add their corresponding components.

→v+→w = ⟨-4,3⟩+⟨2,-5⟩ = ⟨-2,-2⟩.

This gives us the vector that starts at the origin, moves 2 units to the left, and 2 units down.

To subtract two vectors, we subtract their corresponding components.  →v-→w = ⟨-4,3⟩-⟨2,-5⟩ = ⟨-6,8⟩.

This gives us the vector that starts at the origin, moves 6 units to the left, and 8 units up.

To find a unit vector in the direction of →v, we first need to find the magnitude of →v, which is given by the formula

=> ||→v|| = √((-4)²+(3)²) = √(16+9) = √25 = 5

Then, we can find the unit vector by dividing each component of →v by its magnitude: →u = →v/||→v|| = ⟨-4/5,3/5⟩.

This gives us a vector pointing in the same direction as →v, but with a magnitude of 1. This is known as a unit vector.

To know more about vector here

https://brainly.com/question/29740341

#SPJ4

evaluate the expression under the given conditions. tan(2); cos() = 7 25 , in quadrant i

Answers

The required answer is the value of tan(2) is approximately -2352/3669.

To evaluate the expression under the given conditions, we will first determine the value of sin() using the Pythagorean identity and then use the double-angle formula for tan(2).
A Quadrant is circular sector of equal one quarter of a circle ,or  a half semicircle. A sector of two-dimensional cartesian  coordinate system.  The Pythagorean identity, are useful expression involving the function need to simplified.


Given: cos() = 7/25, and is in Quadrant I.
Step 1: Find sin()
Since we are in Quadrant I, sin() is positive. Using the Pythagorean identity, sin^2() + cos^2() = 1, we can find sin().
sin^2() + (7/25)^2 = 1
sin^2() = 1 - (49/625)
sin^2() = (576/625)
sin() = √(576/625) = 24/25

we  are called the Pythagorean identity is  Pythagorean trigonometric identity, is expression A to B .

The same value for all variables within certain range. Angle is double or multiply by 2 so we called double- angle.

Step 2: Find tan(2) using the double-angle formula
The double-angle formula for tangent is: tan(2) = (2 * tan()) / (1 - tan^2())
First, we find tan():
tan() = sin() / cos() = (24/25) / (7/25) = 24/7
Now, use the formula for tan(2):
tan(2) = (2 * (24/7)) / (1 - (24/7)^2)
tan(2) = (48/7) / (1 - 576/49)
tan(2) = (48/7) / ((49 - 576) / 49)
tan(2) = (48/7) * (49 / (-527))
tan(2) = (-2352 / 3669)
So, under the given conditions, the value of tan(2) is approximately -2352/3669.

To know more about  the Pythagorean identity. Click on the link.

https://brainly.com/question/29003523

#SPJ11

Assuming n is a natural number greater than 1, how many unique positions of n identical rooks on an n by n chessboard exists, such that exactly one pair of rooks can attack each other? [Hint: How many empty rows or columns will there be?]

Answers

The total number of unique positions of n identical rooks on an n by n chessboard such that exactly one pair of rooks can attack each other is (n - 1)^2 * (n - 1)! or (n - 1) * (n - 1)! * (n - 1).

To find the number of unique positions of n identical rooks on an n by n chessboard such that exactly one pair of rooks can attack each other, we need to consider the number of empty rows and columns.

First, let's consider the number of empty rows. Since exactly one pair of rooks can attack each other, we know that there can be at most one rook in each row. This means that there are n rows with at most one rook each, leaving (n - 1) empty rows.

Next, let's consider the number of empty columns. Again, since exactly one pair of rooks can attack each other, there can be at most one rook in each column. This means that there are n columns with at most one rook each, leaving (n - 1) empty columns.

Now, we can use combinations to find the number of ways to choose one row and one column for the pair of rooks that can attack each other. There are (n - 1) options for the row and (n - 1) options for the column, giving us a total of (n - 1) * (n - 1) = (n - 1)^2 possible combinations.

Finally, we need to multiply this by the number of ways to place the remaining rooks in the empty rows and columns. Since each rook can be placed in any of the empty rows or columns, there are (n - 1)! ways to arrange the remaining rooks.

Therefore, the total number of unique positions of n identical rooks on an n by n chessboard such that exactly one pair of rooks can attack each other is (n - 1)^2 * (n - 1)! or (n - 1) * (n - 1)! * (n - 1).

To know more about combinations refer here :

https://brainly.com/question/30648446#

#SPJ11

The ellipse can be drawn with parametric equations. Assume the curve is traced clockwise as the parameter increases. If x = 2 cos(t) then y =

Answers

When x = 2 cos(t), the parametric equation for y in this ellipse is y = -b sin(t), assuming the curve is traced clockwise as the parameter increases.

To find the parametric equation for y in an ellipse where x = 2 cos(t) and the curve is traced clockwise as the parameter increases, you can follow these steps:

1. Remember that the general parametric equations for an ellipse with a horizontal semi-major axis of length "a" and a vertical semi-minor axis of length "b" are x = a cos(t) and y = b sin(t).

2. In your case, you are given x = 2 cos(t), so the horizontal semi-major axis length "a" is 2.

3. Since the curve is traced clockwise as the parameter increases, we need to use a negative sign for the sine function to achieve the clockwise direction.

4. Therefore, the parametric equation for y in this ellipse is y = -b sin(t), where "b" is the length of the vertical semi-minor axis.

So, when x = 2 cos(t), the parametric equation for y in this ellipse is y = -b sin(t), assuming the curve is traced clockwise as the parameter increases. Keep in mind that you'll need to determine the value of "b" based on the specific ellipse you're working with.

To know more about parametric equation refer here:

https://brainly.com/question/28537985

#SPJ11

the second derivative of the function f is given by f′′(x)=x2cos(x2 2x6). at what values of x in the interval (−4,3) does the graph of f have a point of inflection?

Answers

to determine the values of x where the graph of f has points of inflection in the interval (-4, 3), further analysis or numerical methods are required.

To find the points of inflection of the function f(x) using its second derivative, we need to look for values of x where the second derivative changes sign. In other words, we need to find the values of x where f''(x) = 0 or where f''(x) does not exist.

Given the second derivative f''(x) = x^2*cos(x^2 - 2x - 6), we need to find where this expression equals zero or where it is undefined.

Setting f''(x) equal to zero:

x^2*cos(x^2 - 2x - 6) = 0

Since x^2 cannot be zero, we only need to consider where cos(x^2 - 2x - 6) equals zero:

cos(x^2 - 2x - 6) = 0

Now, to find the values of x where the cosine function equals zero, we can solve for x:

x^2 - 2x - 6 = (n + 1/2)*π, where n is an integer

Unfortunately, the equation x^2 - 2x - 6 = (n + 1/2)*π does not have a simple closed-form solution. We would need to use numerical methods, such as approximation or graphing, to find the specific values of x in the interval (-4, 3) where the graph of f has points of inflection.

To learn more about equation visit:

brainly.com/question/10724260

#SPJ11

sketch the region bounded by the curves 2x2 y=202x2 y=20 and x4−y=4x4−y=4, then find the area of the region.

Answers

The area of the region bounded by the curves is approximately 72.75 square units.

What is parabola?

A parabola is the portion of a right circular cone cut by a plane perpendicular to the cone's generator. It is a locus of a point that moves such that the separation between it and a fixed point (focus) or fixed line (directrix) is the same.

To sketch the region bounded by the curves 2x² - y = 20 and x⁴ - y = 4, we can begin by graphing each equation separately.

First, the equation 2x² - y = 20 can be rearranged to solve for y:

y = 2x² - 20

This is a downward-facing parabola that opens towards the vertex at (0, -20).

Next, the equation x⁴ - y = 4 can be rearranged to solve for y:

y = x⁴ - 4

This is an upward-facing parabola that opens towards the vertex at (0, -4).

To find the intersection points of the two curves, we can set the right-hand sides of the equations equal to each other:

2x² - y = 20

x⁴ - y = 4

Substituting y from the second equation into the first equation, we get:

2x² - (x⁴ - 4) = 20

Simplifying and rearranging, we get:

x⁴ - 2x² - 24 = 0

Factoring, we get:

(x² - 4)(x² + 6) = 0

This gives us four solutions:

x = ±2 and x = ±√6

Substituting these values of x into either of the original equations, we can find the corresponding y-values:

When x = 2, y = 4

When x = -2, y = 36

When x = √6, y = 2(6)² - 20 = 32

When x = -√6, y = 2(6)² - 20 = 32

So the intersection points are (2, 4), (-2, 36), (√6, 32), and (-√6, 32).

To sketch the region bounded by the curves, we can plot the two curves and shade the area between them:

The area of this region can be found by integrating the difference between the two curves with respect to x:

A = ∫[√6, 2] [(x⁴ - 4) - (2x² - 20)] dx

Simplifying, we get:

A = ∫[√6, 2] (x⁴ - 2x² + 16) dx

Integrating term by term, we get:

A = [x⁵/5 - 2x³/3 + 16x]√6 to 2

Evaluating this expression, we get:

A ≈ 72.75

So, the area of the region bounded by the curves is approximately 72.75 square units.

Learn more about parabola on:

https://brainly.com/question/9201543

#SPJ4

The Union Bank of Switzerland (UBS) produces regular reports on the prices and earnings in major cities throughout the world. Included in this report are the prices of basic commodities, reported in minutes of labor, including 1 kg of rice, a 1 kg loaf of bread, and a Big Mac, for 54 major cities around the world. An analyst is interested in understanding how prices have changed since the global financial crisis in 2007–2008. To do this, they wish to use the price of a Big Mac in 2003 to predict the price of a Big Mac in 2009.
Reference: Ref 10-4
The response variable is the:
a- name of the city
b- year
c- price of Big Mac in 2003
d- Price of Big Mac in 2009

Answers

This comparison can help identify trends, changes in Purchasing power, and potential correlations between the two variables. Furthermore, this analysis can provide valuable insights into the resilience and recovery of various economies in the aftermath of the crisis.

The Union Bank of Switzerland (UBS) conducts research on the prices and earnings in major cities worldwide, providing valuable data on the cost of living. This includes the prices of basic commodities such as 1 kg of rice, a 1 kg loaf of bread, and a Big Mac, measured in minutes of labor across 54 major cities. This information can be useful for analysts to study economic trends and changes in purchasing power.
In the context of the global financial crisis that occurred in 2007-2008, an analyst is interested in understanding how the prices have evolved since then. To achieve this, they intend to use the price of a Big Mac in 2003 (variable "c") to predict the price of a Big Mac in 2009 (variable "d").
By comparing the prices of Big Macs in 2003 and 2009, the analyst can analyze the impact of the financial crisis on the cost of living in different cities. This comparison can help identify trends, changes in purchasing power, and potential correlations between the two variables. Furthermore, this analysis can provide valuable insights into the resilience and recovery of various economies in the aftermath of the crisis.

To know more about Purchasing .

https://brainly.com/question/30286034

#SPJ11

The Union Bank of Switzerland (UBS) produces regular reports on global prices and earnings in major cities. These reports include information on basic commodities such as rice, bread, and Big Macs. An analyst is interested in understanding how the prices of Big Macs have changed since the global financial crisis in 2007-2008.

To do this, they plan to use the price of a Big Mac in 2003 to predict the price in 2009. This approach is known as a predictive model, which involves using past data to forecast future outcomes. By analyzing the changes in the price of a Big Mac over time, the analyst can gain insight into how the financial crisis impacted global commodity prices.
The analyst can use the Union Bank of Switzerland's (UBS) reports on commodity prices to investigate the change in Big Mac prices between 2003 and 2009, in relation to the global financial crisis. To do this, they should gather data on the price of a Big Mac (c) in 2003 for each of the 54 major cities, and compare it to the price of a Big Mac (d) in 2009. By analyzing the relationship between these two variables (c and d), the analyst can identify trends and patterns, allowing them to understand how the financial crisis impacted Big Mac prices across different cities in Switzerland and globally.

To learn more about Financial: brainly.com/question/28319639

#SPJ11

Consider a certain 2 × 2 linear system x, Ax, where A is a matrix of real numbers. Suppose ALL of its solutions reach a limit as t →-oo. Then the critical point (0,0) cannot be (a) a saddle point. (b) an improper node. (c) unstable (d) a spiral point.

Answers

the answer is (a) a saddle point, (b) an improper node, and (c) an unstable node. The critical point (0,0) can be a stable node or a stable spiral point.

If all solutions of the 2 × 2 linear system x, Ax approach a limit as t → -∞, then the critical point (0,0) must be stable.

The critical point can be classified based on the eigenvalues of the matrix A. If the eigenvalues are real and have opposite signs, then the critical point is a saddle point. If the eigenvalues are real and have the same sign, then the critical point is a node, which can be either stable or unstable depending on the sign of the eigenvalues. If the eigenvalues are complex conjugates, then the critical point is a spiral point, which can also be either stable or unstable depending on the real part of the eigenvalues.

However, if all solutions of the system approach a limit as t → -∞, then the eigenvalues of A must have negative real parts. Otherwise, the solution would diverge as t → -∞. This means that the critical point (0,0) is either a stable node or a stable spiral point, but cannot be a saddle point, an improper node, or an unstable node.

To learn more about critical point visit:

brainly.com/question/31017064

#SPJ11

convert 1010 from excess eight representation to its equivalent base ten binary form:

Answers

The base ten binary form of 1010 in excess eight representation is 10.

What is the equivalent base ten binary form of 1010 in excess eight representation?

To convert 1010 from excess eight representation to its equivalent base ten binary form, we need to subtract the bias value, which in this case is 8, from the given number.

Starting with 1010, we subtract 8 from it:

1010 - 8 = 1002

The resulting number, 1002, represents the base ten binary form equivalent of 1010 in excess eight representation.

It consists of the digits 1 and 0, which correspond to the binary place values of 2 and 1, respectively.

In excess eight representation, the bias value is added to the actual value to obtain the final representation.

Therefore, by subtracting the bias, we convert it back to its base ten binary form.

Learn more about numerical conversions

brainly.com/question/28366871

#SPJ11

A single car is randomly selected from among all of those registered at a local tag agency. What do you think of the following claim? "All cars are either Volkswagens or they are not. Therefore the probability is 1/2 that the car selected is a Volkswagen."

Answers

The claim is not correct. The fact that all cars are either Volkswagens or not does not mean that there is an equal probability of selecting a Volkswagen or not.

If we assume that there are only two types of cars: Volkswagens and non-Volkswagens, and that there are an equal number of each type registered at the tag agency, then the probability of selecting a Volkswagen would indeed be 1/2. However, this assumption may not hold in reality.

In general, the probability of selecting a Volkswagen depends on the proportion of Volkswagens among all registered cars at the tag agency. Without additional information about this proportion, we cannot conclude that the probability of selecting a Volkswagen is 1/2.

Learn more about probability here:

https://brainly.com/question/11234923

#SPJ11

Find h(x, y) = g(f(x, y)). g(t) = t + Vt, f(x, y) = 7x + 4y – 28 h(x, y) = Find the set on which h is continuous. OD = {(x, y) | y 22x - 7} Oh is continuous on R2 OD = {(x, y) |(x, y) + ( )} OD = {(x, y) |(x, y) + (0, 0); OD = {(x,y) y 2 - 2x + 7}

Answers

The set on which h(x,y) is such that:

y ≤ (22/7)x - 7 and [tex]9x^2 + 16y^2 + 38xy \geq 231[/tex]

How to find the set on which h(x, y) and h is continuous?

First, we can compute f(x,y) = 7x + 4y - 28, and then substitute into g(t) to get:

g(f(x,y)) = f(x,y) + Vf(x,y) = (7x + 4y - 28) + V(7x + 4y - 28)

Expanding the expression inside the square root, we get:

[tex]g(f(x,y)) = (8x + 5y - 28) + V(57x^2 + 56xy + 16y^2 - 784)[/tex]

To find the set on which h(x,y) is continuous, we need to determine the set on which the expression inside the square root is non-negative. This set is defined by the inequality:

[tex]57x^2 + 56xy + 16y^2 - 784 \geq 0[/tex]

To simplify this expression, we can diagonalize the quadratic form using a change of variables. We set:

u = x + 2y

v = x - y

Then, the inequality becomes:

[tex]9u^2 + 7v^2 - 784 \geq 0[/tex]

This is the inequality of an elliptical region in the u-v plane centered at the origin. Its boundary is given by the equation:

[tex]9u^2 + 7v^2 - 784 = 0[/tex]

Therefore, the set on which h(x,y) is continuous is the set of points (x,y) such that:

y ≤ (22/7)x - 7

and

[tex]9(x+2y)^2 + 7(x-y)^2 \geq 784[/tex]

or equivalently:

[tex]9x^2 + 16y^2 + 38xy \geq 231[/tex]

This is the region below the line y = (22/7)x - 7, outside of the elliptical region defined by [tex]9x^2 + 16y^2 + 38xy = 231.[/tex]

Learn more about functions and continuity

brainly.com/question/21447009

#SPJ11

4. section 7.4; problem 6: which test should be used here? a. one sample z-test for means b. one sample t-test for means

Answers

If the population standard deviation is unknown or the sample size is small, we should use the one-sample t-test for means.

To determine which test to use for problem 6 in section 7.4, we need to consider the type of data we have and the characteristics of the population we are trying to make inferences about.

If we know the population standard deviation and the sample size is large (n > 30), we can use the one-sample z-test for means. This test assumes that the population is normally distributed.

If we do not know the population standard deviation or the sample size is small (n < 30), we should use the one-sample t-test for means. This test assumes that the population is normally distributed or that the sample size is large enough to invoke the central limit theorem.

Without additional information about the problem, it is not clear which test to use. If the population standard deviation is known and the sample size is large enough, we can use the one-sample z-test for means. If the population standard deviation is unknown or the sample size is small, we should use the one-sample t-test for means.

Learn more about population here

https://brainly.com/question/29885712

#SPJ11

please Decrease 64 by 75%

Answers

Answer:

16

------------------------

Decrease 64 by 75% in below steps:

64 - (75% of 64) = 25% of 64 =64(0.25) = 16

So by decreasing 64 by 75% we get 16.

your answer will be 16! let me know if you need any more help!

T/F let l be a cfl, m a regular language, and w a string. then the problem of determining w ∈ l ∩ m is solvable

Answers

False.  let l be a cfl, m a regular language, and w a string. then the problem of determining w ∈ l ∩ m is solvable

The problem of determining whether a string w belongs to the intersection of a context-free language (CFL) and a regular language is not solvable in general. The intersection of a CFL and a regular language may result in a language that is not decidable or recognizable.

While membership testing for a regular language is decidable and can be solved algorithmically, membership testing for a CFL is not decidable in general. Therefore, determining whether a string belongs to the intersection of a CFL and a regular language is not guaranteed to be solvable.

Know more about context-free language here:

https://brainly.com/question/29762238

#SPJ11

For a nonsingular n x n matrix A, show that A^-1 = 1/c_0 (-A^n-1 - c_n-1 A^n-2 - ... - c_2A - c_1) Use this result to find the inverse of the matrix A = [1 2 3 5].

Answers

The inverse of a nonsingular n x n matrix A is [tex]A^-1[/tex] = [1 2 3 5] + 3I.

How can we find the inverse of the given matrix using the provided formula?

To find the inverse of matrix A = [1 2 3 5], we can use the given formula. Let's break down the steps:

Determine the dimension: Since A is a 2 x 2 matrix, n = 2.Calculate the coefficients: In this case, [tex]c_0 = -1, c_1 = 3, and c_2 = 1.[/tex]Apply the formula: Substitute the values into the formula [tex]A^-1 = 1/c_0 (-A^{(n-1)} - c_(n-1)A^{(n-2)} - ... - c_2A - c_1).[/tex]Simplify the expression: Plugging in the values, we have A^-1 = 1/-1 (-A - 3I), where I is the identity matrix.

To find the inverse of the matrix A = [1 2 3 5], we can use the provided formula. Let's follow the steps:

Determine the dimension: Since A is a 2 x 2 matrix, n = 2.

Calculate the coefficients: In this case, [tex]c_0 = -1, c_1 = 3,[/tex] and [tex]c_2 = 1.[/tex]

Apply the formula: Using the formula [tex]A^-1 = 1/c_0 (-A^{(n-1)} - c_(n-1)A^{(n-2) }- ... - c_2A - c_1),[/tex] we substitute the values.

[tex]A^-1 = 1/(-1) (-(A^{(2-1)}) - 3A^{(2-2)})[/tex]

= -(-A - 3I),

where I is the identity matrix.

Simplify the expression: We simplify further to obtain [tex]A^-1[/tex]= A + 3I.

Evaluate the expression: Substituting the given matrix A = [1 2 3 5], we have [tex]A^-1[/tex] = [1 2 3 5] + 3I, where I is the 2 x 2 identity matrix.

Therefore, the inverse of the matrix A = [1 2 3 5] is [tex]A^-1[/tex] = [1 2 3 5] + 3I.

Learn more about applications of matrix inverses

brainly.com/question/31224263

#SPJ11

Use the skein relation of the bracket polynomial order to show that the Jones polynomials of the three links in Figure 6.13 are related through the equation: t^-V(L_+) - tV(L_-) + (t^-1/2 - t^1/2)V(L_0) = 0 This was the original skein relation that Vaughan Jones recognized to hold for the Jones polynomial.

Answers

The skein relation is a powerful tool in the study of knot theory, and it provides a useful relationship between the Jones polynomials of different links. The skein relation is defined as follows:

V(L_+) - V(L_-) = (t^(1/2) - t^(-1/2))V(L_0)

where V(L_+), V(L_-), and V(L_0) are the Jones polynomials of three links, L_+, L_-, and L_0, respectively. In order to show that the Jones polynomials of the three links in Figure 6.13 are related through the equation:

t^(-V(L_+)) - t^(V(L_-)) + (t^(-1/2) - t^(1/2))V(L_0) = 0

we can start by using the skein relation on each term individually. Let's consider each term one by one.

Applying the skein relation to the first term, we have:

V(L_+) = (t^(1/2) - t^(-1/2))V(L_0) + V(L_-)

Next, let's apply the skein relation to the second term:

V(L_-) = (t^(-1/2) - t^(1/2))V(L_0) + V(L_+)

Now, we can substitute the values of V(L_+) and V(L_-) into the equation and simplify:

t^(-V(L_+)) - t^(V(L_-)) + (t^(-1/2) - t^(1/2))V(L_0) = t^(-(t^(1/2) - t^(-1/2))V(L_0) - V(L_-)) - t^((t^(-1/2) - t^(1/2))V(L_0) + V(L_+)) + (t^(-1/2) - t^(1/2))V(L_0)

Using the properties of exponents, we can simplify the equation further:

= (t^(-t^(1/2)V(L_0)) * t^(-t^(-1/2)V(L_-)) - t^(t^(-1/2)V(L_0)) * t^(t^(1/2)V(L_+))) + (t^(-1/2)V(L_0) - t^(1/2)V(L_0))

By combining the terms, we get:

= t^(-t^(1/2)V(L_0) - t^(-1/2)V(L_-)) - t^(t^(-1/2)V(L_0) + t^(1/2)V(L_+)) + t^(-1/2)V(L_0) - t^(1/2)V(L_0)

Now, let's rearrange the terms:

= t^(-t^(1/2)V(L_0) - t^(-1/2)V(L_-) - 1/2)V(L_0) - t^(t^(-1/2)V(L_0) + t^(1/2)V(L_+) - 1/2)V(L_0)

We can see that the two terms involving t^(1/2) and t^(-1/2) cancel each other out:

= t^(-t^(1/2)V(L_0) - t^(-1/2)V(L_-) - 1/2)V(L_0) - t^(t^(-1/2)V(L_0) + t^(1/2)V(L_+) - 1/2)V(L

Learn more about Polynomials :

https://brainly.com/question/29001929

#SPJ11

a political candidate has asked you to conduct a poll to determine what percentage of people support her. state the value of z that you will use in your computation

Answers

To compute the percentage of people who support the political candidate, we would need to conduct a survey and collect data. Once we have collected the data, we can use statistical methods to estimate the percentage of people who support the candidate and calculate a margin of error.

To calculate the margin of error, we would typically use the standard error of the sample proportion, which is calculated as:

SE = sqrt[(p_hat * (1 - p_hat)) / n]

where p_hat is the sample proportion, and n is the sample size.

To calculate the z-score for a given confidence level, we would use the standard normal distribution and the appropriate confidence level. For example, for a 95% confidence level, we would use a z-score of 1.96.

However, since we do not have any data to work with, we cannot determine the value of z to use in the computation. We would need to conduct a survey and collect data before we can calculate any statistical measures.

To learn more about  poll percentage refer below:

https://brainly.com/question/11605135

#SPJ11

suppose the random variable x has moment-generating function mx(t) = e µt 1−(σt) 2 for |t| < 1 σ . find the mean and variance of x

Answers

Thus, the mean of X is µ and the variance of X is 2σ^2.

The moment-generating function of a random variable X is defined as mx(t) = E(e^tx), where E denotes the expected value.

In this case, the moment-generating function of X is given by mx(t) = e^(µt) / (1 - (σt)^2), for |t| < 1/σ.

To find the mean and variance of X, we need to differentiate the moment-generating function twice and evaluate it at t=0.

First, we differentiate mx(t) once with respect to t:

mx'(t) = µe^(µt) / (1 - (σt)^2)^2 + 2σ^2te^(µt) / (1 - (σt)^2)^2

Next, we differentiate mx(t) twice with respect to t:

mx''(t) = µ^2 e^(µt) / (1 - (σt)^2)^2 + 2σ^2 e^(µt) / (1 - (σt)^2)^2 + 4σ^4 t^2 e^(µt) / (1 - (σt)^2)^3 - 4σ^2 t e^(µt) / (1 - (σt)^2)^3

Evaluating these derivatives at t=0, we get:

mx'(0) = µ

mx''(0) = µ^2 + 2σ^2

Therefore, the mean of X is given by E(X) = mx'(0) = µ, and the variance of X is given by Var(X) = mx''(0) - (mx'(0))^2 = µ^2 + 2σ^2 - µ^2 = 2σ^2.

To know more about variance,

https://brainly.com/question/30764112

#SPJ11

I need help solving this problem. Please help with the solutions and provide an order.

Answers

Answer: For the first equation, the answer is #5. For the second equation, the answer is #10, for the third equation, the answer is #2, and for the fourth equation, the answer is #1.

Step-by-step explanation:

In order to find the Y-intercept for functions, you need to plug in x=0.

For the first equation, you have[tex]f(x)= -(x+2)^2 +1\\[/tex]. Plug in 0 for all the x values. You get [tex]-(0+2)^2 +1[/tex]. Solve that and you're left with -3 as your y-int. Therefore, the answer will be (0, -3) AKA #5.

Follow these steps for the rest of the problems, I'm not writing the step by steps for the rest because they are very similar.

1. plug in 0 for the x values

2. simplify equation till you have one value

3. That value you just found is the y- int.

4. substitute that value for y in this: (0,y)

Hope that helped! if you need further help, I can add another answer for the rest of the equations.

Relevant Text Sections: Chapter Fifteen, sections 1 through 3.

1. Do the different types of employees follow a uniform distribution? Use alpha = 0. 5.

2. Is there a relationship between the type of employee and their salary category? Use alpha = 0. 1. ​

Answers

To determine if the different types of employees follow a uniform distribution, a statistical test can be conducted using an alpha (significance level) of 0.5.

The results of the test will determine if the distribution of employee types is uniform or not.

To investigate the relationship between the type of employee and their salary category, a statistical test can be performed using alpha (significance level) of 0.1. The test results will indicate if there is a significant association between employee type and salary category.

A uniform distribution assumes that all categories or types of employees have an equal probability of occurring. To test if this assumption holds, a statistical test, such as the chi-square goodness-of-fit test, can be used. The test compares the observed frequencies of each employee type with the expected frequencies under a uniform distribution. If the p-value associated with the test is less than the chosen significance level (alpha), typically 0.5 in this case, it indicates that the different employee types do not follow a uniform distribution.

To explore the relationship between employee type and salary category, a statistical test called the chi-square test of independence can be employed. This test assesses whether there is a significant association between two categorical variables, in this case, employee type and salary category. The test compares the observed frequencies of each combination of employee type and salary category with the expected frequencies assuming independence. If the resulting p-value is less than the chosen significance level (alpha), typically 0.1 in this case, it suggests a significant relationship between the employee type and salary category, indicating that they are not independent variables.

Learn more about statistical here:

https://brainly.com/question/32201536

#SPJ11

Consider the optimization problem minimize fo(x1,2) subject to 2x1 2 1 i+3221 Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value. (a) fo(x1,T2) = z1 + x2 . (b) fo(x1,x2)=-zi (c) fo(x1,x2-x1. (d) fo(x1,x2)=max(띠,T2).

Answers

(a) The optimal set for the objective function fo(x1, x2) = x1 + x2 is the boundary of the feasible set  (b) The optimal set for the objective function fo(x1, x2) = -z1 is the point (x1, x2) where z1 is maximized  (c) The optimal set for the objective function fo(x1, x2) = x2 - x1 is the line x2 = x1  (d) The optimal set for the objective function fo(x1, x2) = max(z1, x2) depends on the specific values of z1 and x2.

(a) The objective function fo(x1, x2) = x1 + x2 represents a linear function that increases as both x1 and x2 increase. The optimal set for this objective function is the boundary of the feasible set, which includes the points where the constraints are binding. The optimal value is the minimum value of the objective function on the boundary.

(b) The objective function fo(x1, x2) = -z1 represents a function that is maximized when z1 is minimized. The optimal set for this objective function is the point (x1, x2) where z1 is maximized. The optimal value is the maximum value of z1.

(c) The objective function fo(x1, x2) = x2 - x1 represents a linear function with a slope of 1. The optimal set for this objective function is the line x2 = x1, which represents all points where the difference between x2 and x1 is minimized. The optimal value is the minimum value on that line.

(d) The objective function fo(x1, x2) = max(z1, x2) takes the maximum value between z1 and x2. The optimal set for this objective function depends on the specific values of z1 and x2. The optimal value is the maximum of z1 and x2, whichever is larger.

learn more about objective function here:

https://brainly.com/question/11206462

#SPJ11

determine whether the series converges or diverges. if it is convergent, find the sum. (if the quantity diverges, enter diverges.)5 1 15 125 $$ correct: your answer is correct.

Answers

To determine whether the series converges or diverges, we can use the ratio test. the sum of the series is 25/4.



The ratio test states that if the limit of the absolute value of the ratio of the (n+1)th term to the nth term as n approaches infinity is less than 1, then the series converges. If it is greater than 1, the series diverges. If it is equal to 1, the test is inconclusive.

Let's apply the ratio test to this series:

lim (n->∞) |(n+1)^5 / n^5| = lim (n->∞) |(1 + 1/n)^5|

Using L'Hopital's rule, we can evaluate this limit as follows:

lim (n->∞) |(1 + 1/n)^5| = lim (n->∞) (5/n^2) / [(1 + 1/n)^5 * ln(1 + 1/n)]

= lim (n->∞) (5/n^2) / [1 + 5/n + O(1/n^2)]

= 0

Since the limit is less than 1, the series converges. To find the sum, we can use the formula for a geometric series:

S = a/(1-r)

where a is the first term and r is the common ratio.

In this case, a = 5 and r = 1/5, so

S = 5/(1 - 1/5) = 25/4

Therefore, the sum of the series is 25/4.

Learn more on converges or diverges here:

https://brainly.com/question/15415793

#SPJ11

For the curve given by r(t) = <1/3t3, 1/2t2, t> find the following:
a) unit tangent vector T
b) principle unit normal vector N
c) curvature K

Answers

a) The unit tangent vector T is given by T(t) = r'(t) / ||r'(t)||, where r'(t) is the derivative of r(t) with respect to t.

b) The principal unit normal vector N is given by N(t) = T'(t) / ||T'(t)||, where T'(t) is the derivative of T(t) with respect to t.

c) The curvature K is given by K(t) = ||T'(t)|| / ||r'(t)||.

a) To find the unit tangent vector T, we first need to find the derivative of r(t).

Taking the derivative of each component of r(t), we have r'(t) = <t^2, t, 1>. To obtain the unit tangent vector T, we divide r'(t) by its magnitude ||r'(t)||. The magnitude of r'(t) is given by ||r'(t)|| = sqrt(t^4 + t^2 + 1).

Therefore, T(t) = r'(t) / ||r'(t)|| = <t^2, t, 1> / sqrt(t^4 + t^2 + 1).

b) To find the principal unit normal vector N, we need to find the derivative of T(t).

Taking the derivative of each component of T(t), we have T'(t) = <2t, 1, 0>. Dividing T'(t) by its magnitude ||T'(t)|| gives us the principal unit normal vector N.

The magnitude of T'(t) is given by ||T'(t)|| = sqrt(4t^2 + 1).

Therefore, N(t) = T'(t) / ||T'(t)|| = <2t, 1, 0> / sqrt(4t^2 + 1).

c) To find the curvature K, we need to calculate the magnitude of the derivative of the unit tangent vector T divided by the magnitude of the derivative of r(t).

The magnitude of T'(t) is ||T'(t)|| = sqrt(4t^2 + 1), and the magnitude of r'(t) is ||r'(t)|| = sqrt(t^4 + t^2 + 1).

Therefore, the curvature K(t) = ||T'(t)|| / ||r'(t)|| = sqrt(4t^2 + 1) / sqrt(t^4 + t^2 + 1).

In summary, the unit tangent vector T is <t^2, t, 1> / sqrt(t^4 + t^2 + 1), the principal unit normal vector N is <2t, 1, 0> / sqrt(4t^2 + 1), and the curvature K is sqrt(4t^2 + 1) / sqrt(t^4 + t^2 + 1).

To learn more about tangent vector, click here: brainly.com/question/31433962

#SPJ11

List price: $41.93; Sale price: $35.94

Wholesale price: $62.55; List price: $76.45

Answers

In the first set, the discount amount is $5.99 and the discount percentage is approximately 14.29%. In the second set, the markup amount is $13.90 and the markup percentage is approximately 22.22%.

First set:

List price: $41.93

Sale price: $35.94

To calculate the discount amount, we subtract the sale price from the list price:

Discount = List price - Sale price = $41.93 - $35.94 = $5.99

Now, let's calculate the discount percentage:

Discount percentage = (Discount / List price) * 100 = ($5.99 / $41.93) * 100 ≈ 14.29%

Therefore, in the first set, the discount amount is $5.99 and the discount percentage is approximately 14.29%.

Second set:

Wholesale price: $62.55

List price: $76.45

To calculate the markup amount, we subtract the wholesale price from the list price:

Markup = List price - Wholesale price = $76.45 - $62.55 = $13.90

Now, let's calculate the markup percentage:

Markup percentage = (Markup / Wholesale price) * 100 = ($13.90 / $62.55) * 100 ≈ 22.22%

Therefore, in the second set, the markup amount is $13.90 and the markup percentage is approximately 22.22%.

Please note that the discount percentage represents the decrease in price from the list price, while the markup percentage represents the increase in price from the wholesale price.

for similar questions on discount.

https://brainly.com/question/23865811

#SPJ8

PLEASE ANSWER THIS FAST 2. If the owners bring in $1,125 on weekdays, $1,275 on weekends, and $1,625 on holidays, how much do they charge for a gallon of each type of ice cream? Your strategy should include solving a system using inverse matrices.

Answers

They charge $3.50 for a gallon of ice cream on weekdays, $4.50 for a gallon on weekends, and $4.00 for a gallon on holidays.

Let x, y, and z be the prices of a gallon of ice cream on weekdays, weekends, and holidays, respectively. Then we have the following system of equations:

5x + 5y + 5z = 1125 (since they bring in $1,125 on weekdays)

2x + 3y + 2z = 1275 (since they bring in $1,275 on weekends)

x + y + z = 1625 (since they bring in $1,625 on holidays)

We can write this system in matrix form as AX = B, where

[tex]A=\left[\begin{array}{ccc}5&5&5\\2&3&2\\1&1&1\end{array}\right][/tex]

X = [x; y; z]

B = [1125; 1275; 1625]

To solve for X, we need to find the inverse of A and multiply both sides by it:

A⁻¹AX = A⁻¹B

IX = A⁻¹B

X = A⁻¹B

Using a calculator, we can find that A⁻¹ is:

[tex]A^{-1}=\left[\begin{array}{ccc}1/5&-2/15&1/15\\-2/5&7/15&-1/15\\3/10&-1/30&-1/30\end{array}\right][/tex]

Multiplying A⁻¹ by B gives us:

A⁻¹B = [x; y; z] = [3.50; 4.50; 4.00]

Therefore, they charge $3.50 for a gallon of ice cream on weekdays, $4.50 for a gallon on weekends, and $4.00 for a gallon on holidays.

To learn more about the matrix click here:

https://brainly.com/question/28180105

#SPJ1

Abigail has a square piece of wood that is 4 and a half inches wide. She will cut a circle out of the wood to make a base for a candle. What is the radius in inches of the largest base she can cut from the wood?

Answers

The largest base Abigail can cut from the square piece of wood is a circle with a radius of 2.25 inches.

Since the piece of wood is square and has a width of 4.5 inches, each side of the square is also 4.5 inches. The largest circle that can be cut from a square is one where the diagonal of the square is equal to the diameter of the circle. The diagonal of a square can be found using the Pythagorean theorem, which states that the square of the hypotenuse (diagonal) is equal to the sum of the squares of the other two sides. In this case, the diagonal is the same as the side length of the square, which is 4.5 inches.

Using the Pythagorean theorem, we can find the length of the diagonal (d) as follows:

d^2 = 4.5^2 + 4.5^2

d^2 = 20.25 + 20.25

d^2 = 40.5

Taking the square root of both sides, we get:

d ≈ √40.5 ≈ 6.36

Since the diameter of the circle is equal to the diagonal of the square, the radius is half the diameter. Therefore, the radius of the largest base Abigail can cut from the wood is approximately 6.36 / 2 = 3.18 inches. However, since the width of the wood is 4.5 inches, the largest base she can cut has a radius of 2.25 inches, which is half the width of the wood.

Learn more about Pythagorean theorem here:

https://brainly.com/question/14930619

#SPJ11

the sum of the product and the sum of two positive integers is $39$. find the largest possible value of the product of their sum and their product.

Answers

Their sum plus their product has a maximum potential value of 420.

Given that the product of the two positive numbers and their sum is 39.

The highest feasible value of the total of their products must be determined.

Let's tackle this issue step-by-step:

Assume x and y are the two positive integers.

The product's sum is xy, while the two integers' sum is x + y.

The answer to the issue is 39, which is the product of the two integer sums and their sum.

[tex]\mathrm{xy + (x + y) = 39}[/tex]

We need to maximize the value of to discover the biggest feasible value of the product of their sum and their product [tex]\mathrm {(x + y) \times xy}[/tex].

Now, we can proceed to solve the equation:

[tex]\mathrm {xy + x + y = 39}[/tex]

To make it easier to solve, we can use a technique called "completing the square":

Add 1 to both sides of the equation (1 is added to "complete the square" on the left side):

[tex]\mathrm {xy + x + y + 1 = 39 + 1}[/tex]

Rearrange the terms on the left side to form a perfect square trinomial:

[tex]\mathrm{(x + 1)(y + 1) = 40}}[/tex]

[tex]\mathrm{(x + 1)(y + 1) = 2 \times 2 \times 2 \times 5 }}[/tex]

Now, we want to maximize the value of [tex]\mathrm {(x + y) \times xy}[/tex], which is equal to [tex]\mathrm{(x + 1)(y + 1) + 1}[/tex]

Finding the two positive numbers (x and y) whose sum is as close as feasible to the square root of 40, or around 6.3246, is necessary to maximize this value.

The two positive integers whose sum is closest to 6.3246 are 5 and 7, as 5 + 7 = 12, and their product is 5 × 7 = 35.

Finally, [tex]\mathrm {(x + y) \times xy}[/tex]

= [tex](5 + 7) \times 5 \times 7[/tex]

= 12 × 35

= 420

So, the largest possible value is 420.

Learn more about Positive Integers click;

https://brainly.com/question/18380011

#SPJ12

Other Questions
based on its 1q 2014 press release, the coca-cola company did not have any restructuring charges during the quarter. T/F Find the temperature of a gas system constrained to a volume of 1758ml if the pressure is measured as. 84 atm. The system contains 5. 0mol of gas Emphasizing the youth of the convicted man, the defense attorney pleaded for ____ The Company manufactures paring knives and pocket knives. Each paring knife requires 3 labor-hours, 7 units of steel, and 4 units of wood. Each pocket knife requires 6 labor-hours, 5 units of steel, and 3 units of wood. The profit on each paring knife is$3, and the profit on each pocket knife is $5. Each day the company has available 78 labor-hours,146 units of steel, and 114 units of wood. Suppose that the number of labor-hours that are available each day is increased by 27. Required:Use sensitivity analysis to determine the effect on the optimal number of knives produced and on the profit the following action would not be grounds for disciplinary action against a mortgage broker is ? Money Supply Money Demand $400 $400 $400 $400 $400 $600 500 400 300 200 Interest Investment Rate (at Interest Rate Shown) $700 600 500 5 300 200 Answer the question on the basis of the information in the table. The amount of investment that will be forthcoming in this economy at equilibrium is Multiple Choice O $700. O $600 Strawberries cannot be dased under one photoperiodic response. The areas of stresave te dodao day-neutral. Your friend Kona wants to start growing berisi lite spring or early sommer. With the growing and why? cipt L.) Korra's strawberry plants are flowering en and producing lots of been here to criother he knewborn before they were What can you recommend she do in order to ripen herfruits harvest The weather is getting colder and Korra wants to start growing strawberries indoors to the ring the www www the red and blue water for better flowering and overall growth carlobus Does this colour Hint dive reasons why the statement doe does not make a relating to both for and growth ou 2.1 Sinte korra will now rely on her indoor to detersire, she content on you Bichid in parta? Or would it be to grow a different Whiyo Whatchedule should she the word on the pretendente Hours Mond met to 2415 (100 Korra, by mistakt, has placed her strawberry plants too tor from the growth anyolat Desert wat hentet av de to comparter mistake ipo what to him may be occurring lat well as positive recloth and work Mason invested $230 in an account paying an interest rate of 6 1 2 6 2 1 % compounded monthly. Logan invested $230 in an account paying an interest rate of 5 7 8 5 8 7 % compounded continuously. After 12 years, how much more money would Mason have in his account than Logan, to the nearest dollar? why would a disorder of the digestive system disrupt homeostasis? please help i need this quick!!Find the measure of the following anglesNote: GHF is 80DHE ___ EHF ___ AHB ___ BHC ___ CHE ___ AHC ___ Which of the following locations would have the lowest average air pressure?summit of Mount Everest, tallest mountain on Earth Which type of organism in this tuterlal can get its nitrogen from nitrogen fixation (converting N 2 gas into ammonia). allewing it to grow even it easily used foems of nitrogen are not avallable in its water or food? Cyanebacteria Dapinitu liormina Trout he break-through in terms of dating the earth accurately came when: Question 6(Multiple Choice Worth 4 points)(01.06 LC)Rearrange the equation A= xy to solve for x.Ox-XAOx=AyXAx0x==yOx=Ay Plssssss helllllp meeee 50.point and will mark Brainlyiest Solve: 4!A.16B.6C.24D.4 Ali is considering buying a commercial building in Chicago. He has learned the following facts from his real estate broker: Market Cap Rate 8.00% Rental Income $2,500,000 Operating Expenses $900,000 Existing Annual Mortgage Payment $975,000($225,000 is principal and $750,000 is interest) Current rate for a 15 year mortgage 5% Based on the facts above, what is the Market Price for this building? O A. $31,250 O B. $20,000,000 O C. Cannot determine with the facts that are given O D. $7,812,500 since the landmark case brown v. board of education (1954), how has integration of schools in texas played out? A fumigation company was hired to eliminate pests in one of two buildings in a condominium complex that shared a common wall. The owners of the complex told the fumigation company that the common wall separating the infested building from the uninfested building was an impenetrable fire wall. The fumigation company did its own thorough inspection and determined that the buildings were indeed completely separated by the wall. Residents of the condominium units in the building that was to be sprayed were told to evacuate, but the residents of the uninfested building were told that they could remain while the other building was treated. During and shortly after the fumigation, in which a highly toxic chemical was used, many residents of the uninfested building became sick. It was determined that their illnesses were caused by the fumigation chemical. In fact, there was a hole in the fire wall separating the two buildings, but because it could only be observed from a specific position in the crawl space underneath the floor of the uninfested building, it had not been discovered by either the fumigation company or any previous building inspector.Are the residents of the uninfested building likely to prevail in a tort action against the fumigation company? determine the domain and range of the following parabola. f(x)=2x2 16x31 enter your answer as an inequality, such as f(x)1, or use the appropriate symbol for all real numbers. Dave signs a contract with Mac to kill a prominent official but refuses to go ahead with the job after having been paid a substantial sum of money by Mac. Mac can ___A. successfully sue Dave for the return of the money. B. successfully sue Dave to perform the contract. C. not enforce the contract in a court. D. enforce the contract only if he can demonstrate that he was not going to be physically involved in the actual commission of the crime.