Write the equation of the line that passes through the points ( – 3, 2) and ( - 1,6).

Answers

Answer 1

Answer:

the answer is y=2x+8

Step-by-step explanation:


Related Questions

HELP BRAINLIEST?? ALL THE TUTORS ARE TAKEN

Answers

Answer:

The slope of the green line is 3

Step-by-step explanation:

The lines are perpendicular, so the slopes are negative inverses

-1/(-1/3)

3

in a school there are 650 girls. It is 26% of the whole students, how many boys are there in the school?​

Answers

Answer:

Step-by-step explanation:

Frt7v6c87buhinjomp,l.;

ANSWER ASAPPPP PLS



Complete the table below to solve the equation 2.5x − 10.5 = 64(0.5x).

x f(x) = 2.5x − 10.5 g(x) = 64(0.5x)
2
3
4
5
6

Answers

Answer:

I'm going to help you figure this out because I am actually on the same assignment. If you do not understand what it is asking, it is not asking you to break down the function notation, it is simply asking you to substitute (X) with 2,3,4,5,and 6 and then to solve it on each line

A charity raffle prize is $1,000. The charity sells 4,000 raffle tickets. One winner will be selected at random. At what ticket price would a ticket buyer expect to break even

Answers

Answer:

0.25

Step-by-step explanation:

Given that :

Charity raffle price = $1000

Amount of ticket sold = 4000

Only one winner is to be selected ;

Point ticket buyer is expected to break even :

Probability of winning = 1 / number of ticket sold = 1 / 4000 = 0.00025

P(winning) * raffle price = 0.00025 * 1000 = 0.25

Which of the following as describes the slope of the line below ? Help pls

Answers

Answer:

I think C

Step-by-step explanation:

Sorry if its wrong

I need help finding this solution.

Answers

9514 1404 393

Answer:

  -16∛2

Step-by-step explanation:

It can be helpful to have some familiarity with the cubes of small integers. For example, ...

  2³ = 8

  6³ = 216

With this in mind you recognize the expression as ...

  3∛((-6)³(2)) +∛((2³)(2))

  = 3(-6)∛2 +2∛2

  = (-18 +2)∛2

  = -16∛2

a student takes two subjects A and B. Know that the probability of passing subjects A and B is 0.8 and 0.7 respectively. If you have passed subject A, the probability of passing subject B is 0.8. Find the probability that the student passes both subjects? Find the probability that the student passes at least one of the two subjects

Answers

Answer:

0.64 = 64% probability that the student passes both subjects.

0.86 = 86% probability that the student passes at least one of the two subjects

Step-by-step explanation:

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

In this question:

Event A: Passing subject A

Event B: Passing subject B

The probability of passing subject A is 0.8.

This means that [tex]P(A) = 0.8[/tex]

If you have passed subject A, the probability of passing subject B is 0.8.

This means that [tex]P(B|A) = 0.8[/tex]

Find the probability that the student passes both subjects?

This is [tex]P(A \cap B)[/tex]. So

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

[tex]P(A \cap B) = P(B|A)P(A) = 0.8*0.8 = 0.64[/tex]

0.64 = 64% probability that the student passes both subjects.

Find the probability that the student passes at least one of the two subjects

This is:

[tex]p = P(A) + P(B) - P(A \cap B)[/tex]

Considering [tex]P(B) = 0.7[/tex], we have that:

[tex]p = P(A) + P(B) - P(A \cap B) = 0.8 + 0.7 - 0.64 = 0.86[/tex]

0.86 = 86% probability that the student passes at least one of the two subjects

What is the length of an arc with a central angle of 2/3pi radians and a radius of 24 centimeters?

Use 3.14 for pi.

Enter your answer, as a decimal, in the box.

Answers

9514 1404 393

Answer:

  50.24 cm

Step-by-step explanation:

Fill in the given numbers and do the arithmetic.

  s = rθ

  s = (24 cm)(2/3π) = (24 cm)(2/3)(3.14) = 50.24 cm

Consider the quadratic function F(x)=-x^2-x+20
The line of symmetry has the equation ?

Answers

Answer:

[tex]x = - \frac{1}{2} [/tex]

Step-by-step explanation:

[tex]x = \frac{ - b}{2a} = \frac{1}{ - 2} [/tex]

1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 24 customers per hour or 0.4 customers per minute.
a. What is the mean or expected number of customers that will arrive in a five-minute period?
b. Assume that the Poisson probability distribution can be used to describe the arrival process. Use the arrival rate in part (a) and compute the probabilities that exactly 0, 1, 2, and 3 customers will arrive during a five-minute period.
c. Delays are expected if more than three customers arrive during any five-minute period. What is the probability that delays will occur?
2. In the Willow Brook National Bank waiting line system (see Problem 1), assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6 customers per minute. Use the exponential probability distribution to answer the following questions:
a. What is the probability that the service time is one minute or less?
b. What is the probability that the service time is two minutes or less?
c. What is the probability that the service time is more than two minutes?

Answers

Answer:

1.

a. 2

b. 0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

c. 0.1428 = 14.28% probability that delays will occur.

2.

a. 0.4512 = 45.12% probability that the service time is one minute or less.

b. 0.6988 = 69.88% probability that the service time is two minutes or less.

c. 0.3012 = 30.12% probability that the service time is more than two minutes.

Step-by-step explanation:

Poisson distribution:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

Question 1:

a. What is the mean or expected number of customers that will arrive in a five-minute period?

0.4 customers per minute, so for 5 minutes:

[tex]\mu = 0.4*5 = 2[/tex]

So 2 is the answer.

Question b:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-2}*2^{0}}{(0)!} = 0.1353[/tex]

[tex]P(X = 1) = \frac{e^{-2}*2^{1}}{(1)!} = 0.2707[/tex]

[tex]P(X = 2) = \frac{e^{-2}*2^{2}}{(2)!} = 0.2707[/tex]

[tex]P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1805[/tex]

0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

Question c:

This is:

[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]

In which:

[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

The values we have in item b, so:

[tex]P(X \leq 3) = 0.1353 + 0.2707 + 0.2707 + 0.1805 = 0.8572[/tex]

[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8572 = 0.1428[/tex]

0.1428 = 14.28% probability that delays will occur.

Question 2:

[tex]\mu = 0.6[/tex]

a. What is the probability that the service time is one minute or less?

[tex]P(X \leq 1) = 1 - e^{-0.6} = 0.4512[/tex]

0.4512 = 45.12% probability that the service time is one minute or less.

b. What is the probability that the service time is two minutes or less?

[tex]P(X \leq 2) = 1 - e^{-0.6(2)} = 1 - e^{-1.2} = 0.6988[/tex]

0.6988 = 69.88% probability that the service time is two minutes or less.

c. What is the probability that the service time is more than two minutes?

[tex]P(X > 2) = e^{-1.2} = 0.3012[/tex]

0.3012 = 30.12% probability that the service time is more than two minutes.

(3a+2b-4c)+(3a+2b-4c)​

Answers

6

+

4

8

Step-by-step explanation:

Please mark me as brain list and please like my answer and rate also

Answer:

hope this will help you more

You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 95% confidence level and a margin of error of 2%. A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.

How many in the workforce should be interviewed to meet your requirements? (Round up your answer to the next whole number.)

Answers

Answer:

865 in the workforce should be interviewed to meet your requirements

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is given by:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.

This means that [tex]\pi = \frac{5}{50} = 0.1[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

How many in the workforce should be interviewed to meet your requirements?

Margin of error of 2%, so n for which M = 0.02.

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.02 = 1.96\sqrt{\frac{0.1*0.9}{n}}[/tex]

[tex]0.02\sqrt{n} = 1.96\sqrt{0.1*0.9}[/tex]

[tex]\sqrt{n} = \frac{1.96\sqrt{0.1*0.9}}{0.02}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.1*0.9}}{0.02})^2[/tex]

[tex]n = 864.4[/tex]

Rounding up:

865 in the workforce should be interviewed to meet your requirements

Convert the equation (y + 2) = –1/3(x – 4) to the point-slope form. Then fill in the blanks below to describe how to graph the equation. Plot the point _______, move _______ unit(s) down, and _______ unit(s) over to find the next point on the line.


A. (–2, 4), one, three


B. (4, –2), one, three


C. (2, 4), one, three


D.(4, –2), three, one

Answers

Answer:

A. (–2, 4), one, three

Step-by-step explanation:

For a linear equation:

y = a*x + b

the point-slope form is:

(y - y₁) = m*(x - x₁)

Where we know that this line has the slope m, and passes through the point (x₁, y₁)

In this case, the equation:

(y + 2) = –1/3(x – 4)

is already in the point-slope form.

here we have:

y₁ = -2

x₁ = 4

then the point is (-2, 4)

m = -(1/3)

m = -1/3 means that when we move 3 units to the right, we need to move one unit down. (or the inverse, we can move one unit down and 3 to the right)

So, to complete the statement we have:

plot the point (-2, 4),  move one unit down, and three units over to find the next point on the line.

The correct option is A.

Which figure can be formed from the net?
pls answer fast for brainiest !

Answers

Answer:

It should be the top right one

(with 6ft as the height)

Step-by-step explanation:

Answer:

It must be the lower to the left choice.

Step-by-step explanation:

As you can see, the net we have is composed of only triangles.

So we should be choosing a figure with a triangular base.

Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.

The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.

Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.

If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.

Hope this helps

Help! This is timed!

Answers

Answer: 5 ft i think so

Use the Pythagorean theorem

Given that Z1 = 1 + i and Z2 = 3 - 4i, find z1z2

Answers

Answer:

7-i

Step-by-step explanation:

It is asking for the product of the given complex numbers.

Z1Z2 means Z1 times Z2

(1+i)(3-4i)

You can do the whole foil thing here since we are multiplying a pair of binomials. But all you are doing when you do that is multiplying every term in the first ( ) to every term in the second ( ).

1(3)+1(-4i)+i(3)+i(-4i)

Simplify each term. That is, perform the multiplication in each term:

3-4i+3i-4i^2

Combine like terms and also replace i^2 with (-1):

3-1i-4(-1)

Multiplication identity property used:

3-i+4

Combine like terms:

7-i

Please help me there’s a image above.

Answers

Answer:

4,-1 that is the answer so

The shaded region R in diagram below is enclosed by y-axis, y = x^2 - 1 and y = 3.
Determine the volume of the solid generated when the shaded region R is revolved
about x = -1 by using Disk method.

Answers

Cross sections of the volume are washers or annuli with outer radii x(y) + 1, where

y = x(y) ² - 1   ==>   x(y) = √(y + 1)

and inner radii 1. The distance between the outermost edge of each shell to the axis of revolution is then 1 + √(y + 1), and the distance between the innermost edge of R on the y-axis to the axis of revolution is 1.

For each value of y in the interval [-1, 3], the corresponding cross section has an area of

π (1 + √(y + 1))² - π (1)² = π (2√(y + 1) + y + 1)

Then the volume of the solid is the integral of this area over [-1, 3]:

[tex]\displaystyle\int_{-1}^3\pi y\,\mathrm dy = \frac{\pi y^2}2\bigg|_{-1}^3 = \boxed{4\pi}[/tex]

[tex]\displaystyle\int_{-1}^3 \pi\left(2\sqrt{y+1}+y+1\right)\,\mathrm dy = \pi\left(\frac43(y+1)^{3/2}+\frac{y^2}2+y\right)\bigg|_{-1}^3 = \boxed{\frac{56\pi}3}[/tex]

Draw a line representing the “rise” and a line representing “run” of the line. State the slope of the line in simplest form

Answers

Answer: The rise and run is the two point between each other on a line for example 1/2 rise over run. 1 is rise and 2 is run so y=mx +b the slope is m and the y int is b so

Y= 1/2x + 3 the 3 is going to be on the Y acis not the X its important not to mix the two. In other words go to 0,0 make a line go up.. the from 0,0 go doen the same length

Step-by-step explanation:

What is the approximate percent change in temperature that went down from 120 degrees to 100 degrees?

Answers

The answer would be approximately 17%.

Answer:

17%

Step-by-step explanation:

change in temprature=100-120=-20

% chsnge in temp.=-20/120 ×100=-50/3 %=-16.66666...≈-17%

negative sign shows temperature is coming down.

Polinômio (2x+6y)(4x-2y)

Answers

Answer:

I'm pretty sure it's 8x^2+20xy-12y^2

Answer:

pff don't know .  sssory

Step-by-step explanation:

Match the number of significant figures to the value or problem.
1
?
0.008
4
?
54
3
?
1002. 43.2
2
?
1.068

Answers

Answer:

answer is 1 2 3 and 4 respectively of given match the following

please answer me as soon as posible​

Answers

Answer:

yes your answer is right

Answer:

Yes it's Perfectly correct

PLEASE I NEED HELP!!!!!



Find the volume of this sphere.
Use 3 for TT.
L-r=3ft
V [?]ft3
V = Tr3

Answers

Answer:

113.1 =VOLUME , 4/3 X 3.14 (3) ^3 = 113.1

A carpet expert believes that 9% of Persian carpets are counterfeits. If the expert is right, what is the probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%

Answers

Answer:

0.0060 = 0.6% probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

A carpet expert believes that 9% of Persian carpets are counterfeits.

This means that [tex]p = 0.09[/tex]

Sample of 686:

This means that [tex]n = 686[/tex]

Mean and standard deviation:

[tex]\mu = p = 0.09[/tex]

[tex]s = \sqrt{\frac{0.09*0.91}{686}} = 0.0109[/tex]

What is the probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%?

Proportion lower than 9% - 3% = 6% or higher than 9% + 3% = 12%. The normal distribution is symmetric, thus these probabilities are equal, so we can find one of them and multiply by 2.

Probability it is lower than 6%

p-value of Z when X = 0.06. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.06 - 0.09}{0.0109}[/tex]

[tex]Z = -2.75[/tex]

[tex]Z = -2.75[/tex] has a p-value of 0.0030

2*0.0030 = 0.0060

0.0060 = 0.6% probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%

Evaluate 19C1 PLEASE HELP

Answers

Answer:

[tex]{19}C_1=19[/tex]

Step-by-step explanation:

We need to find the value of [tex]{19}C_1[/tex].

C stands for combination.

The formula of combination is as follows :

[tex]nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Here,

n = 19 and r = 1

So,

[tex]nC_r=\dfrac{19!}{1!(19-1)!}\\\\nC_r=\dfrac{19!}{1!\times 18!}\\\\nC_r=\dfrac{19\times 18!}{1!\times 18!}\\\\nC_r=19[/tex]

So, the value of [tex]{19}C_1[/tex] is 19.

Answer:

Your answer will be 19C1 =19

What is the answer
5 10 25 100 × ÷ ÷

Answers

Answer: 1/50, or 0.02

Step-by-step explanation:

I'm assuming this is 5*10/25/100. if you just follow the equation, you get 50/25/100, which is 2/100, or 1/50.

is 7/4 bigger than -4 / 7​

Answers

Answer:

7/4 is larger than -4/7

Step-by-step explanation:

7/4 is greater than a whole. 4/4 = 1 whole and the fraction is 7/4. -4/7 is smaller than a whole and is a negative number.

Therefore 7/4 is bigger

Hope this helps!

Answer:

yes 7/4 is bigger than -4/7

Step-by-step explanation:

its bigger because its positive!

what is the inverse of the function shown

Answers

Step-by-step explanation:

the down function clearly is

y = x - 5, -2 <= x <= 8

the reasons :

1. it is linear. so, we have only a form of ax+b

2. x=0 => y=-5

x=5 => y=0

so, with these 2 points alone we can see

y = ax + b

-5 = a×0 +b = b

0 = a×5 - 5

5 = a×5

1 = a

the inverse function is based on

y = x - 5

=>

x = y + 5

now renaming the variables so that y is the result and x the input variable delivers

y = x + 5

and because the original function only delivered y- values between -7 and +3, this is also the defined domain for the inverse function.

so,

y = x + 5, -7 <= x <= +3

so, we have the points

x=-7 => y=-2

x=+3 => y=8

you need to draw the line between these 2 points with filled dots at the end points (as they are included in the function).

(a)234.3x13 (b) 31.38 X 5 (c) 0.653X 45 (d) 21.45X 10
(e) 25.41X 18 (f) 93.2 X 47 (g) 234.2X 342 (h) 89.4X20

(a)1.1 X 3.0 (b) 2.5 X 1.4 (c) 3.4X 4.6 (d) 2.4X4.8
(e) 2.6 X 12.3 (f) 6.72 X 56.1 (e) 24.59 X 31.2 (f) 27.15 X 3.7

Answers

A. 3045.9
B. 156.9
C. 29.385
D. 214.5
E. 457.38
F. 4380.4
G. 80096.4
H. 1788

A. 3.3
B. 3.5
C. 15.64
D. 11.52
E. 31.98
F. 376.992
E. 767.208
F. 100.455
Other Questions
Find the cost of 5 Kgs of apples using the data given in the graph. HELP!!!! The diagram below shows a portion of the water cycle. What does Y most likely represent What is the square root of 538? Please help thank you! Why is international trade important for most countries?A. It makes countries more independent and less reliant on foreign countries.B. It prevents countries from having a trade deficit that harms their economies.C. It gives countries access to essential goods they cannot produce themselves.D. It encourages countries to produce a wider variety of products for their citizens. Fern, Inc., Ivy, Inc., and Jeremy formed a general partnership. Fern owns a 50% interest, and Ivy and Jeremy both own 25% interests. Fern, Inc. files its tax return on an October 31 year-end; Ivy, Inc., files with a May 31 year-end, and Jeremy is a calendar year taxpayer. Which of the following statements is true regarding the taxable year the partnership can choose?A) The partnership must choose the calendar year because it has no principal partners. B) The partnership must choose an October year-end because Fern, Inc., is a principal partner. C) The partnership can request permission from the IRS to use a January 31 fiscal year under 444. D) The partnership must use the "least aggregate deferral" method to determine its "required" taxable year. E) None of the above items are true. I dont know the answer Rodrigo traveled at an average speed of 55 miles per hour for 5 hours to get from one national park to the next on his vacation. What is the distance between the national parks? What stanza structure is for Annabel Lee by Edgar Allan Poe One thousand dollars is invested at 5% continuous annual interest. this means the value of the investment will grow exponentially, with k equaling the decimal rate of interest. What will the value of the investment be after 7 1/2 years?a. $1, 375.00.b. $375.00.c. $1, 454.99.d. $454.99. 190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner? As it pulls itself up to a branch, a chimpanzee accelerates upward at 2.4 m/s2 at the instant it exerts a 260-N force downward on the branch.Find the magnitude of the force the chimpanzee exerts on the Earth. What is the area of this figure PLZZ HELP I REALLY DONT WANNA GO DOWN!!!!!!!!!!!! HELP PLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS Identify the domain of the function shown in the graph. Factorize : 4(x+y)^2 -9(x-y)^2 A flashlight is projecting a triangle onto a wall, as shown below.A picture shows a flashlight projecting a triangle onto a wall. The original triangle and its projection are similar. The original triangle has 2 sides labeled 15 and one side labeled 20. The projected triangle has two sides labeled 30 and one side labeled n. The triangles have congruent angles.The original triangle and its projection are similar. What is the missing length n on the projection? The speed (S) an object falls varies directly with time. If the speed is 49.0m/s after 5 seconds, then what is the speed after 3 seconds Find the inverse of the given function. (pictured below)