jrjrkeekkekekkwkkakkllalllalallalllalalaallalalaalalalalalallallallllallalalallaaallalallllllallllllllalaalalalaaaaalalaaaaaaalgjgiejxpwunfifjruritiririirieoeowowowowowowowowooeowowowoeeoeowowowowowowowoowowwowowowoozoeisiaokseekxidjdkdjfidjfjdjfjfjrifjrifjdirjdjrjfjrjfjrjfjrfuejwwuxmaneanfjkaosndjxieneamalhaqzeeshanvhorahfuensiwjakaksjdhfhfnfhfndjxnxmakaalalalwlwlwwow
Calculate density, specific weight and weight of one litter of petrol having specific gravity 0.7
Explanation:
mass=19kg
density=800kg/m³
volume=?
as we know that
density=mass/volume
density×volume=mass
volume=mass/density
putting the values
volume=19kg/800kg/m³
so volume=0.02375≈0.02m³
In a true Brayton cycle, the pressure ratio is 9. Air input temperature to the cycle 300 K pressure is 100 kPa. The maximum temperature in the cycle is 1300 K. Compressor and turbine their yields are equal to each other. Net work obtained from the cycle is 225 kJ / kg. Accordingly, the cycle find the overall yield. The specific temperatures are variable.
Answer:
i did not known answer but anobody help you
Page Title
Submit
Add a pair of radio buttons to your form, each nested in its own label element.
One should have the option of car and the other should have the option of bike.
Both should share the name attribute of “vehicle” to create a radio group
Make sure the radio buttons are nested with the form
Make sure that the name attributes appear after the type
Answer:
The code is as follows:
<form name = "myForm">
<div>
<input type="radio" name="vehicle" value="D0" id="D0"/>
<label for="D0">Car</label>
</div>
<div>
<input type="radio" name="vehicle" value="D1" id="D1"/>
<label for="D1">Bike</label>
</div>
</form>
Explanation:
This defines the first button
<input type="radio" name="vehicle" value="D0" id="D0"/>
<label for="D0">Car</label>
This defines the second button
<input type="radio" name="vehicle" value="D1" id="D1"/>
<label for="D1">Bike</label>
The code is self-explanatory, as it follows all the required details in the question
Water steam enters a turbine at a temperature of 400 o C and a pressure of 3 MPa. Water saturated vapor exhausts from the turbine at a pressure of 125 kPa. At steady state, the work output of the turbine is 530 kJ/kg. The surrounding air is at 20 o C. Neglect the changes in kinetic energy and potential energy. Determine (20 points) (a) the heat transfer from the turbine to the surroundings per unit mass flow rate, (b) the entropy generation during this process.
Answer:
a) -505.229 kJ/Kg
b) -1.724 kJ/kg
Explanation:
T1 = 400°C
P1 = 3 MPa
P2 = 125 kPa
work output = 530 kJ/kg
surrounding temperature = 20°C = 293 k
A) Calculate heat transfer from Turbine to surroundings
Q = h2 + w - h1
h ( enthalpy )
h1 = 3231.229 kj/kg
enthalpy at P2
h2 = hg = 2676 kj/kg
back to equation 1
Q = 2676 + 50 - 3231.229 = -505.229 kJ/Kg ( i.e. heat is lost )
b) Entropy generation
entropy generation = Δs ( surrounding ) + Δs(system)
= - 505.229 / 293 + 0
= -1.724 kJ/kg
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turbine if the steam is exhausted as a saturated vapor?
Answer:
[tex]\eta_{turbine} = 0.603 = 60.3\%[/tex]
Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ = [tex]h_{g\ at\ 125KPa}[/tex] = 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than [tex]s_g[/tex] and greater than [tex]s_f[/tex] at 125 KPa. Therefore, the steam is in a saturated mixture state. So:
[tex]x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88[/tex]
Now, we will find [tex]h_{2s}[/tex](enthalpy at the outlet for the isentropic process):
[tex]h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg[/tex]
Now, the isentropic efficiency of the turbine can be given as follows:
[tex]\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%[/tex]
If there is a discrepancy between Chick-fil-A food safety requirements and local Health Department
regulations, what should Team Member do?
The following should be done by the team member:
It is important to follow both Chick-fil-A food safety requirements and local Health Department regulations. In the case when there is a discrepancy between the two, always follow the more stringent requirement. Any other appearance or grooming issue not covered in these materials may be addressed at the discretion of the Operator.
Learn more: brainly.com/question/17429689
Explain by Research how a basic generator works ? using diagram
Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24 C and exits at 1 bar. If the refrigerant undergoes a throttling process, what is the quality of the refrigerant exiting the expansion valve.
Answer:
[tex]h_{1} = h_2} = 293.45 KJ/kg[/tex].
The quality of the refrigerant exiting the expansion valve is
[tex]x_{2}=0.193596[/tex].
Explanation:
Fluid given Ammonia.
Inlet 1:-
Temperature [tex]T_{1}[/tex] = [tex]24^{o} C[/tex].
Pressure [tex]P_{1}[/tex] = 10 bar.
Exit 2:-
Pressure [tex]P_{2}[/tex] = 1 bar.
Solution:-
Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing again once scandal dies down. As long as the controversy fades, is there anything unethical about such a strategy?
Answer:
Explanation:
Tech Social Media giant FB is one of those companies. Not long ago the ceo was brought to court to accusations that his company was selling user data. Turns out this is true and they are selling their users private data to companies all over the word. Once the news turned to something else, people focused on something new but the company still continues to sell it's users data the same as before. This is completely unethical as the information belongs to the user and they are not getting anything while the corporation is profiting.
On a two-way roadway with a center lane, drivers from either direction can _________ from the center lane.
Determine the transfer function H(s) for a high pass filter with the following characteristics:
1. a cutoff frequency of 100 kHz
2. a stopband attenuation rate of 40 dB/decade
3. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency
Write the formula for H(s) that satisfies these requirements.
Answer:
H(s) = 10 / [ 1 + s / (200*10^3π ) ]^2
Explanation:
Characteristics of the high pass filter
Cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20dB = 20logK = 20
Formula for H(s) satisfying the requirements above
given that the stopband attenuation = 40 dB/decade the formula for H(s) that will satisfy the requirements is a second order filter
H(s) = K / ( 1 + s/Wo ) ^2 ----- ( 1 )
Wo = 2πf = 2π ( 100 * 10^3 ) = 200 * 10^3 π
K = 10
back to equation ( 1 )
H(s) = 10 / [ 1 + s / (200*10^3π ) ]^2
Find the general solution of the given differential equation. Give the largest interval over which the general solution is defined. Determine whether there are any transient terms in the general solution.
x dx/dy−y=x^2sinx
Answer:
Interval: x∈ ( 0, ∞ )
There are no transient terms
Explanation:
x (dy/dx) – y= x^2sinx
Attached below is the detailed solution of the Given problem
There are no transient terms found in the general solution
Interval: x∈ ( 0, ∞ )
ow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:
Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
If you are driving down to the sleep downgrade and you have reached the speed of 40 mph , you would apply the setrvice break until your speed dropped to below_____mph.
Answer:
35 miles
Explanation:
When you are driving a truck that has an air brake system you have to keep in mind that when driving down a steep downgrade, the truck will automatically accelerate due to the inclination of the road, so in order to keep the speed to a controllable situation, you need to activate the service brake until you've reached the 35 miles per hour mark.
Activity 1. Fill the blank with the correct answer. Write your answer on the blank. 1. ___________________ is a regular pattern of dots displayed on the screen which acts as a visual aid and also used to define the extent of your drawing. 2. Ortho is short for ___________________, which means either vertical or horizontal. 3. Tangent is a point where two _______________________ meet at just a single point. 4. If you want to create a new drawing, simply press ___________________ for the short cut key. 5. There are _______________Osnap that can help you performs your task easier.
Answer:
1. Drawing grid.
2. Orthogonal.
3. Geometries.
4. CTRL+N.
5. Thirteen (13).
Explanation:
CAD is an acronym for computer aided design and it is typically used for designing the graphical representation of a building plan. An example of a computer aided design (CAD) software is AutoCAD.
Some of the features of an AutoCAD software are;
1. Drawing grid: is a regular pattern of dots displayed on the screen of an AutoCAD software, which acts as a visual aid and it's also used to define the extent of a drawing.
2. Ortho is short or an abbreviation for orthogonal, which means either vertical or horizontal.
3. Tangent is a point where two geometries meet at just a single point.
4. If you want to create a new drawing, simply press CTRL+N for the short cut key.
5. There are thirteen object snaps (Osnap) that can help you perform your task on AutoCAD easily. The 13 object snaps (Osnap) are; Endpoint, Midpoint, Apparent intersect, Intersection, Quadrant, Extension, Tangent, Center, Insert, Perpendicular, Node, Parallel, and Nearest.
The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.
Answer:
Explanation:
[tex]r_2=[/tex]∞
[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]
[tex]q=2\pi kD.[/tex]ΔT--------(1)
[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]
[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]
By equation (1) and (2)
[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT
[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)
From equation (3) and (4)
So for sphere [tex]R_a[/tex]→0
Represent each of the following units as a combination of primitive
dimensions where M=mass, L=length, T=time. As an example, miles per hour would
correspond to [L/T].
a. kilometer
b. quart
c. pascal
d. watt
e. newton
f. horsepower
Answer:
a. unit of length: [L]
b. unit of volume: [[tex]L^3[/tex]]
c. unit of pressure:[tex]P=\frac{F}{A} \equiv\frac{[MLT^{-2}]}{[L^2]}[/tex] [tex][ML^{-1}T^{-2}][/tex]
d. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]
e. unit of force: [tex][kg.m/s^2]\equiv [MLT^{-2}][/tex]
f. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]
Force: [tex]F=m.a=m.\frac{v}{t}=m.\frac{x}{t}\div t[/tex]
Power: [tex]P=\frac{W}{t}=\frac{F.x}{t}[/tex]
where:
F = force
A = area
W = work
t = time
a = acceleration
v = velocity
x = displacement
In low speed subsonic wind tunnels, the value of test section velocity can be controlled by adjusting the pressure difference between the inlet and test-section for a fixed ratio of inlet-to-test section cross-sectional area.
a. True
b. false
Answer:
Hence the given statement is false.
Explanation:
For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.
The speed within the test section is decided by the planning of the tunnel.
Thus by adjusting the pressure difference won't change the worth of test section velocity.
Answer:
The given statement is false .
what are some quality assurance systems
g Steel plates (AISI 1010) of 4 cm thickness initially at a uniform temperature of 500 deg C are cooled by air at 50 deg C with a convection coefficient of 30 W-m2-K-1. Estimate the time it will take for their midplane temperature to reach 100 deg C.
Solution :
Characteristic length = thickness / 2
[tex]$=\frac{0.04}{2}$[/tex]
= 0.02 m
Thermal conductivity for steel is 42.5 W/m.K
[tex]$\text{Biot number} = \frac{\text{convective heat transfer coefficient} \times \text{characteristic length}}{\text{thermal conductivity}}$[/tex]
[tex]$=\frac{30 \times 0.02}{42.5}$[/tex]
= 0.014
Since the Biot number is less than 0.01, the lumped system analysis is applicable.
[tex]$\frac{T-T_{\infty}}{T_0-T_{\infty}} = e^{-b\times t}$[/tex]
Where,
T = temperature after t time
[tex]$T_{\infty}$[/tex] = surrounding temperature
[tex]$T_0$[/tex] = initial temperature
[tex]$b=\frac{\text{heat transfer coefficient}}{\text{density} \times {\text{specific heat } \times \text{characteristic length }}}$[/tex]
t = time
We calculate B:
[tex]$b=\frac{30}{7833 \times 460 \times 0.02}$[/tex]
= 0.000416
Thus, [tex]$\frac{100-50}{500-50}=e^{-0.00416 \times t}$[/tex]
t = 5281.78 second
= 88.02 minutes
Thus the time taken for reaching 100 degree Celsius is 88.02 minutes.
The temperature gradient in a spherical (or cylindrical) wall at steady state will always decrease (in magnitude) with increasing distance from the center (line), i.e. radial distance.
A. True
B. False
Answer:
True
Explanation:
Yes it is true that the Temperature gradient would also decrease with magnitude just as the distances rise from the centre line.
We have this cylinder equation as
[T1-T2 / ln(r1-r2)]2πKL
The radial distance is r2-r1
The gradient of temperature is T1-T2
From the equation,
The temperature gradient has a direct and proportional relationship to radial distance
T1-T2 ∝ ln(r2-r1)
1/T1-T2 = k(r2-r1)
This inverse relationship above confirms that the statement is true
CO2 enters an adiabatic nozzle, operating at steady state, at 200 kPa, 1500 K, 5 m/s and exits at 100 kPa, 1400 K. The exit area of the nozzle is 10 cm2. Using the PG model, determine the exit velocity
Answer:
[tex]v_2=549.2 m/s\\[/tex]
Explanation:
Given:
[tex]P_1=2500kPa\\T_1=1500 k\\V_1=5 m/s\\P_2=100 kPa\\T_2=1400 k\\A_2=10 cm^2[/tex]
Solution:
For [tex]Co_2[/tex] y=1.4
Since Nozzle is adiababic
So,
[tex]h_1+\frac{V_1^2}{2}=h_2+\frac{V_2^2}{2}\\\frac{v_2^2}{2}=(h_2-h_2)+\frac{r^2}{2}\\v_2^2=2(h_1-h_2)+v_1^2\\v_2=\sqrt{2(h_1-h_2)+v_1^2}[/tex]
Now,
[tex]h_1-h_2=Cp_1T_1-CP_2T_2\\h_1-h_2=(1989-1838.2)*10^3\\ =150.8 * 10^3\\Cp for co_2\\C_{p1}=1.326 kj/kg\\C_{p2}=1.313 kj/kg\\v_2=\sqrt{301600+25}\\ =549.2 m/s[/tex]
HELP PLEASE!! ASAP!!!!
can some answer this 2 questions please as paragraph i want it nowww it is graded what action should be taken to make it safe ? also the first question
Actions violated:
Long hair isn't tied upThe girl isn't wearing a lab coatThe girl isn't wearing safety gogglesExtra: There doesn't seem to be an emergency fire blanket in the safeActions to be taken:
Make sure the girl wears a lab coat or kick her outMake sure the girl wears safety goggles or kick her outMake sure her hair is tied up or kick her outEdit: Use these to write your paragraph.
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.
Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 seconds. In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 2 seconds (i.e., Eager Mode execution time is 60% of Lazy Mode execution time).
After finishing computation, the app sends some data to the cloud, regardless of the mode it’s in. The data size sent to the cloud is 600 MB. The bandwidth of communication is 15 MBps for WiFi and 5 MBps for 4G. Assume that the communication radio is idle during the computation time. Assume that the communication radio for WiFi has a power consumption of 75 mW when active and 15 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization). A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.
Required:
What is the average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G?
The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.
Why reducing leads to increasing wages?Reducing such a need to move in between multiple tabs, the split-screen has been valuable for increasing wages. In the several instances running a two or more desktop system will allow different programs to run throughout multiple devices. That works with the same process on both PC and laptop monitors.
Just display them side by side, instead of the switching among both the apps that has been used frequently. In this phase, an app that the snap to either left or right occupies a third of the display, and yet another app holds the two-thirds remaining. It refers to Split-Screen Mode.
Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization.
Therefore, The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.
Learn more about average power on:
https://brainly.com/question/14831024
#SPJ2
(50 POINTS) How many people use pipes in the world? How do you know this?
Answer:
7.9 billion people
Explanation:
a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive voice rather than any human agents at the request of the instructor.) Student Lab Report Identical tensile test procedures were performed on all test specimens. Each of the metal specimens ____1____ [have] an indentation near the center to ensure that the fracture point would occur in this region. Tension tests ____2____ [conduct] as follows. Two pieces of reflective tape ____3____ [place] approximately 1 inch apart in the center of the specimen where the indentation 4 [locate]. The width and the thickness of the specimen at this location _____5_____ [measure] using a Vernier caliper. Then the specimen _____6____ [secure] in the MTS Load Frame. A laser extensometer _____7_____ [place] into position to measure the deformation of the specimen. The laser extensometer ______8_ __ [use] to measure the original distance between the pieces of reflective tape. The MTS ________9____ [set] to elongate the specimen one tenth of an inch every minute.
Answer:
Each of the metal specimens HAS an indentation near the center to ensure that the fracture point would occur in this region. Tension tests WERE CONDUCTED as follows. Two pieces of reflective tape WERE PLACED approximately 1 inch apart in the center of the specimen where the indentation 4 WAS LOCATED. The width and the thickness of the specimen at this location WAS MEASURED using a Vernier caliper. Then the specimen WAS SECURED in the MTS Load Frame. A laser extensometer WAS PLACED into position to measure the deformation of the specimen. The laser extensometer WAS USED to measure the original distance between the pieces of reflective tape. The MTS WAS SET to elongate the specimen one tenth of an inch every minute.
Hans, a scheduler at Mangel-Wurzel Transport, gets a call from a regular customer needing to move of rock and soil, which Hans knows from previous experience has an average density of . Hans has available a dump truck with a capacity of and a maximum safe load of .Calculate the number of trips the dump truck will have to make to haul the customer's load away.
Complete Question:
Hans, a scheduler at Mangel-Wurzel Transport, gets a call from a regular customer needing to move 19.8m³ of rock and soil, which Hans knows from previous experience has an average density of 650/kgm³. Hans has available a dump truck with a capacity of 4m³ and a maximum safe load of 3700kg. Required: calculate the number of trips the dump truck will have to make to haul the customer's load away.
Answer:
Mangel-Wurzel Transport
The number of trips that the dump truck will have to make to haul the customer's load away is:
= 5 trips.
Explanation:
a) Data and Calculations:
Volume of customer's load (rock and soil) = 19.8m³
Density of load = 650 kg/m³
Mass of load = Volume of load * Density of load
= 19.8m³ × 650 kg/m³
= 12,870 kg
The maximum safe load (mass) of the dump truck = 3,700 kg
Volume of the dump truck = 4m³
Assuming the truck is to carry 4m³ of the load.
The mass of load that the 4m³ capacity truck can carry = 4m³ × 650kg/m³
= 2,600kg
Quick Check:
Mass = 2,600kg < 3,700 kg, satisfying required conditions.
The number of trips that the truck would make to haul the customer's load away is, therefore, calculated as follows:
Number of trips = N
N = total volume of load/ volume per trip
N = 19.8/4
N = 4.95
N = 5 trips approx.
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
The system is initially moving with the cable taut, the 15-kg block moving down the rough incline with a speed of 0.080 m/s, and the spring stretched 39 mm. By the method of this article, (a) determine the velocity v of the block after it has traveled 99 mm, and (b) calculate the distance d traveled by the block before it comes to rest.
Solution :
The spring is expanded by 2 times of the block when it moves down an inclined by x times.
Here, [tex]$x_1$[/tex] = 39 mm
[tex]x_2[/tex] = 225 mm
a). From the work energy principal,
Work forces = kinetic energy
[tex]$(mg \sin 50^\circ)\times \frac{99}{1000}-(\mu_k mg \cos 50^\circ) \times \frac{99}{1000} -\frac{1}{2}k(0.225^2 - 0.039^2)=\frac{1}{2}m(V^2_2-0.08^2)$[/tex]
[tex]$(112.6 \times 0.099)-(14.17 \times 0.099)-4.91= 7.5(V^2_2-0.08^2)$[/tex]
[tex]$9.75= 7.5(V^2_2-0.08^2)$[/tex]
[tex]$1.3= V^2_2-0.08^2$[/tex]
[tex]$V_2=1.14\ m/s$[/tex]
b). calculating the distance travelled by the block before it comes to rest.
Substitute the value of [tex]V_2[/tex] in (1),
[tex]$-(\mu_kmg \cos 50^\circ)x + (mg \sin 50^\circ)x-\frac{1}{2}k\left( ( 2x+0.039)^2 - 0.039^2\right)= -\frac{1}{2}m(0.08)^2$[/tex]
[tex]$-14.17x+112.6x - 100(4x^2+0.156x)=-0.048$[/tex]
[tex]$98.43x - 100(4x^2+0.156x)+0.048=0$[/tex]
[tex]$98.43x - 400x^2-15.6x+0.048=0$[/tex]
[tex]$82.83x - 400x^2+0.048=0$[/tex]
[tex]$ 400x^2- 82.83x-0.048=0$[/tex]
x = 0.20 m