Answer:
Step-by-step explanation:
2498x2364
explaine how to solve
Answer:
5 905 272
Step-by-step explanation:
you can refer to this lattice multiplication or u can search you tube for the examples of lattice multiplication
if TS is a midsegment of PQR find TS
Answer:
B. 7
Step-by-step explanation:
Recall: according to thee Mid-segment Theorem of a triangle, the Mid-segment of a triangle is half the length of the base of the triangle
Base length of the traingle, RQ = 14 (given)
Mid-segment = TS
Therefore,
TS = ½(RQ)
Plug in the value
TS = ½(14)
TS = 7
An item is regularly priced at $84. Ashley bought it on sale for 70% off the regular price.
Use the ALEKS calculator to find how much Ashley paid
Answer:
58.80
Step-by-step explanation:
84 x .7(70%) =58.80
An amusement park offers 2 options on tickets into the park. People can either buy 5 admission tickets for $130 or buy 1 admission ticket for $30. How much money will a group of 5 people save by buying 5 admission tickets for $130?
Answer:
You could save $20
Step-by-step explanation:
For buying them separately for $30 each for 5 people it would be $150 but if you buy the first option you would get 5 admission tickets for only $130
Answer:
20 dollars
Step-by-step explanation:
for the first deal is 5 for $130
and the second is for $30
$30 times 5 (the number of people) = $150
$150-$130= is 20
answer: $20
The mean number of words per minute (WPM) typed by a speed typist is 149 with a standard deviation of 14 WPM. What is the probability that the sample mean would be greater than 147.8 WPM if 88 speed typists are randomly selected
Answer:
78.81%
Step-by-step explanation:
We are given;
Population mean; μ = 149
Sample mean; x¯ = 147.8
Sample size; n = 88
standard deviation; σ = 14
Z-score is;
z = (x¯ - μ)/(σ/√n)
Plugging in the relevant values;
z = (147.8 - 149)/(14/√88)
z = -0.804
From z-distribution table attached, we have; p = 0.21186
P(X > 147.8) = 1 - 0.21186 = 0.78814
In percentage gives; p = 78.81%
Get brainly if right!! Plsss help
The 8t h term in the arithmetic sequence is 17, and 12t h term is 25. Find the first
term, and the sum of the first 20 terms.
Step-by-step explanation:
t8 = a1 + (n - 1)*d
t8 = 17
17 = a1 + 7*d
t12 = 25
25 = a1 + 11d
17 = a1 + 7d Subtract
8 = 4d Divide by 4
8/4 = 4d/4
2 = d
17 = a1 + 7d
17 = a1 + 7*2
17 = a1 + 14 Subtract 14
3 = a1
Sum 20 terms
The 20 term = a1 + 19*2
The 20 term = 3 + 38
= 41
Sum = (a1 + a20) * 20 / 2
Sum = (3 + 41)* 20/2
Sum = 44 * 10
Sum = 440
According to Okun's law, if the unemployment rate goes from 5% to 3%, what will be the effect on the GDP?
A. It will increase by 7%.
B. It will decrease by 7%.
C. It will decrease by 1%.
D. It will increase by 1%.
Answer:
D. It will increase by 1%.
Step-by-step explanation:
Given
[tex]u_1 = 5\%[/tex] --- initial rate
[tex]u_2 = 3\%[/tex] --- final rate
Required
The effect on the GDP
To calculate this, we make use of:
[tex]\frac{\triangle Y}{Y} = u_1 - 2\triangle u[/tex]
This gives:
[tex]\frac{\triangle Y}{Y} = 5\% - 2(5\% - 3\%)[/tex]
[tex]\frac{\triangle Y}{Y} = 5\% - 2(2\%)[/tex]
[tex]\frac{\triangle Y}{Y} = 5\% - 4\%[/tex]
[tex]\frac{\triangle Y}{Y} = 1\%[/tex]
This implies that the GDP will increase by 1%
Answer: A. It will increase by 7%.
Step-by-step explanation: I took this course!
Can someone help me out here please? I do not know how to solve this problem nor where to start?
Answer:
200 test tubes will fill the container
Step-by-step explanation:
Hi there!
We need to find out how many 5 milliliter tubes will fill a 1 liter container
First, let's convert everything to the same unit, as the tubes and the container are in different units.
Let's do milliliters, as those are smaller than liters and we will avoid having decimals.
there are 1,000 milliliters in a liter (the unit prefix "milli-" means "thousand")
Let's say the number of test tubes needed to fill the container is x
As each tube has 5 milliliters of water, 5x milliliters will equal 1,000 milliliters (1 liter)
as an equation, that's
5x=1,000
divide both sides by 5
x=200
So that means 200 test tubes will fill the container
Hope this helps! :)
Answer:
Here is how to start
Step-by-step explanation: 7 2 13 42
1 milliliter is one one thousands of a liter 1 milliliter = 0.001 liter
1000 milliliter is equal to 1 liter
How many 5 milliliter test tubes are in 1 liter?
1000 milliliter / 5 milliliter per test tube = ________ test tubes
Multiply the polynomial 4x(2x+3) (show work pls)
Answer:
8^2+12x
Step-by-step explanation:
4x(2x+3)
=4x times 2x+4x times 3
=4 times 2xx+4 times 3x
Answer:
8x^2 +12x
Step-by-step explanation:
Step 1) Multiply each term in the parentheses by 4x
4xx2x+4xx3
Step 2) Calcuate the product
8x^2 +12x
If f(x)=5x and g(x)=2x-1, what is the composition f(g(x))?
Answer:
10x-5
Step-by-step explanation:
f(x)=5x
g(x)=2x-1
To create a composite function, replace x in f(x) with g(x)
f(g(x)) = 5(g(x) = 5(2x-1) = 10x-5
What equation can I use to pick numbers 1-70 if they're picked randomly
9514 1404 393
Answer:
you cannot use an equation to pick random numbers
Step-by-step explanation:
"Picked randomly" and "using an equation" are mutually exclusive. A random number cannot be predicted, so an equation cannot be used to generate it.
That being said, many programming languages make use of a "linear congruential generator" for generating random numbers. Such a generator generates a next number (x') from a previous number (x) using the equation ...
x' = (a·x +c) mod m
Numbers generated in this way are called "pseudo-random numbers." The sequence of generated numbers will repeat at some point, and the statistics of generated numbers may or may not be suitable for any given application. (For example, sequential numbers may tend to be correlated.) The distribution of numbers is inherently uniform, so if you need other distribution, you need to perform some math on what you get from a linear congruential generator. Methods are available for approximating about any kind of distribution you might want.
This is not the only "equation" that can be used, and is certainly not the best.
__
A variety of different values of a, c, m are used in generators of this type. Some are better than others at producing what looks like randomness. Here's a set of numbers you can try: (no claim is made regarding suitability for your purpose)
a = 1140671485c = 12820163m = 2^24 = 16777216This will produce numbers in the range 0–16777215. To get numbers in the range of 1-70, you can map these to your range in any suitable fashion. For example, you could add 1 to the integer part of the result from division by 239675.
Below is a graph of the sorted output of 200 values in the range 1–70 from the generator described here. You can see the distribution is approximately linear, and that some values are missing while others show up more often than average. (You expect this with random numbers.) The seed for these numbers (first value of x) is 1337457.
__
There is a web site available that will produce random numbers to your specification, based on the background noise of the universe. They are truly random.
The variance of the scores on a skill evaluation test is 143,641 with a mean of 1517 points. If 343 tests are sampled, what is the probability that the mean of the sample would differ from the population mean by less than 36 points
Answer:
The probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216
Step-by-step explanation:
We are given that
The variance of the scores on a skill evaluation test=143,641
Mean=1517 points
n=343
We have to find the probability that the mean of the sample would differ from the population mean by less than 36 points.
Standard deviation,[tex]\sigma=\sqrt{143641}[/tex]
[tex]P(|x-\mu|<36)=P(|\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}|<\frac{36}{\frac{\sqrt{143641}}{\sqrt{343}}})[/tex]
[tex]=P(|Z|<\frac{36}{\sqrt{\frac{143641}{343}}})[/tex]
[tex]=P(|Z|<1.76)[/tex]
[tex]=0.9216[/tex]
Hence, the probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216
Two statements are logically equivalent when:
A. The two statements are true in virtue of their logical structure alone, i.e. the two statement are always true.
B. The first statement implies the second, i.e. if the first statement is true, so is the second.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
D. The two statements are false in virtue of their logical structure alone, i.e. the two statement are always false.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
Step-by-step explanation:For two statements to be logically equivalent, their truth values (true or false) must be the same for every variation of their constituent variables. In other words, if the truth tables of both statements are the same for every possible value of their variables, then they are logically equivalent.
For example;
The two statements P ∩ (Q U R) and (P ∩ Q) ∪ (P ∩ R) are logically equivalent.
If P, Q and R are all true, then;
P ∩ (Q U R) = true
(P ∩ Q) ∪ (P ∩ R) = true
If P, Q and R are all true, then;
P ∩ (Q U R) = false
(P ∩ Q) ∪ (P ∩ R) = false
If P = false, Q = true and R = true, then;
P ∩ (Q U R) = false
(P ∩ Q) ∪ (P ∩ R) = false
Checking for all other possible combinations of truth values of P, Q and R will always give the same results for the two statements, therefore, they are logically equivalent.
Which of the following are best described as lines that meet to form a right
angle?
Answer:
Two lines that intersect and form right angles are called perpendicular lines.
Answer:
perpendicular lines
Step-by-step explanation:
Definition of perpendicular lines:
Two lines that intersect forming a right angle are perpendicular lines.
Answer: perpendicular lines
Which one is the correct answer? help pls!!
Answer:
(2k, k)
Step-by-step explanation:
x + y = 3k
x - y = k
Add the equations.
2x = 4k
x = 2k
2k + y = 3k
y = k
Answer: (2k, k)
Put the equation y = x^2- 14x + 48 into the form y = (x-h)^2+k
please help me!
Answer:
Step-by-step explanation:
Answer:
[tex]y=(x-7)^2-1[/tex]
Step-by-step explanation:
We want to convert the equation:
[tex]\displaystyle y=x^2-14x+48[/tex]
Into vertex form, given by:
[tex]\displaystyle y=a(x-h)^2+k[/tex]
Where a is the leading coefficient and (h, k) is the vertex.
There are two methods of doing this. We can either: (1) use the vertex formulas or (2) complete the square.
Method 1) Vertex Formulas
Let's use the vertex formulas. First, note that the leading coefficient a of our equation is 1.
Recall that the vertex is given by:
[tex]\displaystyle \text{Vertex}=\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)[/tex]
In this case, a = 1, b = -14, and c = 48. Find the x-coordinate of the vertex:
[tex]\displaystyle x=-\frac{(-14)}{2(1)}=7[/tex]
To find the y-coordinate, substitute this value back into the equation. Hence:
[tex]y=(7)^2-14(7)+48=-1[/tex]
Therefore, our vertex (h, k) is (7, -1), where h = 7 and k = -1.
And since we already determined a = 1, our equation in vertex form is:
[tex]\displaystyle y=(x-7)^2-1[/tex]
Method 2) Completing the Square
We can also complete the square to acquire the vertex form. We have:
[tex]y=x^2-14x+48[/tex]
Factor out the leading coefficient from the first two terms. Since the leading coefficient is one in this case, we do not need to do anything significant:
[tex]y=(x^2-14x)+48[/tex]
Now, we half b and square it. The value of b in this case is -14. Half of -14 is -7 and its square is 49.
We will add this value inside the parentheses. Since we added 49 inside the parentheses, we will also subtract 49 outside to retain the equality of the equation. Hence:
[tex]y=(x^2-14x+49)+48-49[/tex]
Factor using the perfect square trinomial and simplify:
[tex]y=(x-7)^2-1[/tex]
We acquire the same solution as before, with the vertex being (7, -1).
You can afford a $950 per month mortgage payment. You've found a 30 year loan at 8% interest. a) How big of a loan can you afford? b) How much total money will you pay the loan company? c) How much of that money is interest?
Answer:
129469.3194
342000
212530.6806
Step-by-step explanation:
Going to assume that the 8% is a nominal, montly rate
which means the effective monthly rate is .08/12= .006667
using the annuity immediate formula...
a.)
[tex]950(\frac{1-(1+.006667)^{-30*12}}{.006667})=129469.3194[/tex]
b.) we would pay 950*30*12= 342000
c.) the amount in interest would be 342000-129469.3194=212530.6806
a) The loan one can afford is $1,29,460.2
b) The total amount of money paid to the loan company over the life of the loan is $342,000.
c) $212539.8 of the total amount paid is interest.
To determine the answers to these questions, we'll need to use the formula for calculating a fixed monthly mortgage payment:
[tex]M = \frac{P \times r \times (1 + r)^n}{((1 + r)^n - 1)}[/tex]
where:
M is the monthly payment,
P is the principal loan amount,
r is the monthly interest rate (annual interest rate divided by 12),
and n is the total number of payments (number of years multiplied by 12).
Given:
Monthly payment (M) = $950
Loan term = 30 years
Interest rate = 8% per year
a) How big of a loan can you afford?
Let's calculate the principal loan amount (P):
First, we need to convert the annual interest rate to a monthly interest rate:
r = 0.08 / 12
= 0.00667
n = 30 years × 12 months
n= 360
Using the formula and plugging in the values we have:
[tex]950 = \frac{P \times 0.00667 \times (1 + 0.00667)^{360}}{((1 + 0.00667)^{360} - 1)}[/tex]
[tex]950 = \frac{P \times 0.00667 \times 10.948}{10.948 - 1}[/tex]
[tex]950=\frac{P \times 0.07302316}{9.948}[/tex]
[tex]950\times9.948 = 0.0730P[/tex]
Divide by 0.073:
Now we can solve for P:
[tex]P=\frac{9450.6}{0.0730}[/tex]
[tex]P = 1,29,460.2[/tex]
Therefore, you can afford a loan amount of $1,29,460.2
b) The total amount paid to the loan company can be calculated by multiplying the monthly payment by the total number of payments:
Total amount = Monthly payment × Total number of payments
Total amount =[tex]$950 \times 360[/tex]
Total amount = [tex]342,000[/tex]
Therefore, the total amount of money paid to the loan company over the life of the loan is $342,000.
c) To find out how much of the total amount paid is interest, we can subtract the principal loan amount from the total amount:
Interest = Total amount - Principal loan amount
Interest = [tex]342,000 - 129460.2[/tex]
=$212539.8
Therefore, $212539.8 of the total amount paid is interest.
To learn more on Simple Interest click:
https://brainly.com/question/30964674
#SPJ4
ANSWER ASAP IM BEING TIMED
IF I GET AN A ON THIS I WILL DO ANOTHER POINT FREE DROP, PLEASE SHOW YOUR WORK
The lengths of three sides of a quadrilateral are shown below:
Side 1: 1y2 + 3y − 6
Side 2: 4y − 7 + 2y2
Side 3: 3y2 − 8 + 5y
The perimeter of the quadrilateral is 8y3 − 2y2 + 4y − 26.
Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points)
Part B: What is the length of the fourth side of the quadrilateral? (4 points)
Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. (2 points)
Answer:
Part A
(1y^2+3y-6)+(4y-7+2y^2)+(3y^2-8+5y)
6y^2+12y-21
For which equation is (4, 3) a solution?
Answer:
4 over 3
because is in side the bracket is part of inequalities
For two consecutive numbers, five times the number that is less is 3 more than 4 times the greater number, What are the numbers
This is due on 7/1/2021 at 8AM PST. Someone please help?
What is the most specific name for a quadrilateral with one pair of parallel sides?
A. trapezoid
B. rectangle
C. parallelogram
D. quadrilateral
help me pls
Answer:
C: parallelogram
Step-by-step explanation:
Give an example of a function with both a removable and a non-removable discontinuity.
Answer:
(x+5)(x-3) / (x+5)(x+1)
Step-by-step explanation:
A removeable discontinuity is always found in the denominator of a rational function and is one that can be reduced away with an identical term in the numerator. It is still, however, a problem because it causes the denominator to equal 0 if filled in with the necessary value of x. In my function above, the terms (x + 5) in the numerator and denominator can cancel each other out, leaving a hole in your graph at -5 since x doesn't exist at -5, but the x + 1 doesn't have anything to cancel out with, so this will present as a vertical asymptote in your graph at x = -1, a nonremoveable discontinuity.
An airplane can travel 350 mph in still air. If it travels 1995 miles with the wind
in the same length of time it travels 1505 miles against the wind, what is the speed of the wind?
Answer:
49 mph
Step-by-step explanation:
RT=D
T = D/R
[tex]\frac{1995}{(350 + x) } =\frac{1505}{350-x}[/tex]
1995(350-x) = 1505(350+x)
x=49
Identify the transformation that occurs to create the graph of m(x)
m(x)=f(5x)
Answer:
m(x) is a dilation of scale factor K = 1/5 of f(x).
Step-by-step explanation:
The transformation is a horizontal dilation
The general transformation is defined as:
For a given function f(x), a dilation of scale factor K is written as:
g(x) = f(x/K)
If K > 1, then we have a dilation (the graph contracts)
if 0 < K < 1, then we have a contraction (the graph stretches)
Here we have m(x) = f(5*x)
Then we have a scale factor:
K = 1/5
So this is a contraction.
Then the transformation is:
m(x) is a dilation of scale factor K = 1/5 of f(x).
Draw a line representing the "rise" and a line representing the "run" of the line. State the slope of the line in simplest form.
Answer:
Slope = 2
Step-by-step explanation:
To find the slope of the line, you need to plot two points
My own two points will be: [tex](1,2)[/tex] and [tex](2,4)[/tex]
Now use the Slope-Formula to identify the slope of the line
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{4-2}{2-1}[/tex]
[tex]m=\frac{2}{1}[/tex]
[tex]m=2[/tex]
so the slope of the line in simplest form will be 2.
WILL GIVE BRAINLIEST!!!
Write as a polynomial: 14b + 1 - 6(2 - 11b)
Answer:
80b-11
Step-by-step explanation:
14b + 1 - 6(2 - 11b)
Distribute
14b+1-12+66b
Combine like terms
80b-11
Answer:
80b - 11
Step-by-step explanation:
what is the problem ?
just multiply it out and combine terms.
14b + 1 - 6(2 - 11b) = 14b + 1 - 12 + 66b = 80b - 11
the graph function f(x) is illustrated in figure below (-2,1) ,(-1,2) ,(1,2) ,(2,3) .Use the transformation techniques to graph the following functions
a) y=f(x)-2
b) y=f(-x)
Answer:
a) y = f(x) - 2 (x, y) ⇒ (x, y - 2)b) y = f(-x) (x, y) ⇒ (-x, y)a) y=f(x)-2
(-2, 1) → (-2, 1 - 2) = (-2, -1)(-1, 2) → (-1, 2 - 2) = (-1, 0)(1, 2) → (1, 2 - 2) = (1, 0)(2, 3) → (2, 3 - 2) = (2, 1)b) y=f(-x)
(-2, 1) → (-(-2), 1) = (2, 1)(-1, 2) → (-(-1), 2) = (1, 2)(1, 2) → (-1, 2)(2, 3) → (-2, 3)The breaking strengths of cables produced by a certain manufacturer have a mean, , of pounds, and a standard deviation of pounds. It is claimed that an improvement in the manufacturing process has increased the mean breaking strength. To evaluate this claim, newly manufactured cables are randomly chosen and tested, and their mean breaking strength is found to be pounds. Assume that the population is normally distributed. Can we support, at the level of significance, the claim that the mean breaking strength has increased
The question is incomplete. The complete question is :
The breaking strengths of cables produced by a certain manufacturer have a mean of 1900 pounds, and a standard deviation of 65 pounds. It is claimed that an improvement in the manufacturing process has increased the mean breaking strength. To evaluate this claim, 150 newly manufactured cables are randomly chosen and tested, and their mean breaking strength is found to be 1902 pounds. Assume that the population is normally distributed. Can we support, at the 0.01 level of significance, the claim that the mean breaking strength has increased?
Solution :
Given data :
Mean, μ = 1900
Standard deviation, σ = 65
Sample size, n = 150
Sample mean, [tex]$\overline x$[/tex] = 1902
Level of significance = 0.01
The hypothesis are :
[tex]$H_0 : \mu = 1900$[/tex]
[tex]$H_1 : \mu > 1900$[/tex]
Test statics :
We use the z test as the sample size is large and we know the population standard deviation.
[tex]$z=\frac{\overline x - \mu}{\sigma / \sqrt{n}}$[/tex]
[tex]$z=\frac{1902-1900}{65 / \sqrt{150}}$[/tex]
[tex]$z=\frac{2}{5.30723}$[/tex]
[tex]$z=0.38$[/tex]
Finding the p-value:
P-value = P(Z > z)
= P(Z > 0.38)
= 1 - P(Z < 0.38)
From the z table. we get
P(Z < 0.38) = 0.6480
Therefore,
P-value = 1 - P(Z < 0.38)
= 1 - 0.6480
= 0.3520
Decision :
If the p value is less than 0.01, then we reject the [tex]H_0[/tex], otherwise we fail to reject [tex]H_0[/tex].
Since the value of p = 0.3520 > 0.01, the level of significance, then we fail to reject [tex]H_0[/tex].
Conclusion :
At a significance level of 0.01, we have no sufficient evidence to support that the mean breaking strength has increased.
what can you infer about angles x and y based on the information in the other triangles?
Translate the sentence into an inequality.
The sum of 5 and c is greater than – 22.
what da hell the answer ?
Answer:
5 + c > -22
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
InequalitiesStep-by-step explanation:
Step 1: Define
Sum of 5 and c is greater than -22
↓ Identify
Sum = addition
5 + cIs greater than = inequality
>Add them all together:
5 + c > -22