Step-by-step explanation:
The ratio is 2 to 5 or 2:5 or 2/5. All these describe the ratio in different forms of fractions. The ratio can consequently be expressed as fractions or as a decimal.
A ratio of 2 : 5 states a comparison between two quantities.
What are ratio and proportion?A ratio is a comparison between two similar quantities in simplest form.
Proportions are of two types one is the direct proportion in which if one quantity is increased by a constant k the other quantity will also be increased by the same constant k and vice versa.
In the case of inverse proportion if one quantity is increased by a constant k the quantity will decrease by the same constant k and vice versa.
Given, a ratio 2 : 5.
Suppose it is a ratio of no. of pens to no. of pencils.
So, a ratio 2 : 5 states for every 2 pens there are 5 pencils out of 7 pen and pencils.
We can also write no. of pens = 2/(2+ 5) = 2/7 and for pencils it is 5(2+5)
= 5/7.
Generally, ratios are in simplest form we can have more pens and pencils here but it must be in the multiple of 7.
learn more about ratios here :
https://brainly.com/question/13419413
#SPJ2
Heeelp please!!! Picture included
Answer:
2nd choice
Step-by-step explanation:
Prove that: (secA-cosec A) (1+cot A +tan A) =( sec^2A/cosecA)-(Cosec^2A/secA)
Step-by-step explanation:
[tex](\sec A - \csc A)(1 + \cot A + \tan A)[/tex]
[tex]=(\sec A - \csc A)\left(1 + \dfrac{\cos A}{\sin A} + \dfrac{\sin A}{\cos A} \right)[/tex]
[tex]=(\sec A - \csc A)\left(1 + \dfrac{\cos^2 A + \sin^2 A}{\sin A\cos A} \right)[/tex]
[tex]=(\sec A - \csc A)\left(\dfrac{1 + \sin A \cos A}{\sin A \cos A} \right)[/tex]
[tex]=\left(\dfrac{\frac{1}{\cos A} - \frac{1}{\sin A}+\sin A - \cos A}{\sin A\cos A}\right)[/tex]
[tex]=\dfrac{\sin A - \sin A \cos^2A - \cos A + \cos A\sin^2A}{(\sin A\cos A)^2}[/tex]
[tex]=\dfrac{\sin A(1 - \cos^2A) - \cos A (1 - \sin^2 A)}{(\sin A\cos A)^2}[/tex]
[tex]=\dfrac{\sin^3A - \cos^3A}{\sin^2A\cos^2A}[/tex]
[tex]=\dfrac{\sin A}{\cos^2A} - \dfrac{\cos A}{\sin^2A}[/tex]
[tex]=\left(\dfrac{1}{\cos A}\right)\left(\dfrac{\sin A}{1}\right) - \left(\dfrac{1}{\sin^2A}\right) \left(\dfrac{\cos A}{1}\right)[/tex]
[tex]=\sec^2A\csc A - \csc^2A\sec A[/tex]
Determine the mean and variance of the random variable with the following probability mass function. f(x)=(216/43)(1/6)x, x=1,2,3 Round your answers to three decimal places (e.g. 98.765).
Mean:
E[X] = ∑ x f(x) = 1 × f (1) + 2 × f (2) + 3 × f (3) = 51/43 ≈ 1.186
Variance:
Recall that for a random variable X, its variance is defined as
Var[X] = E[(X - E[X])²] = E[X ²] - E[X]²
Now,
E[X ²] = ∑ x ² f(x) = 1² × f (1) + 2² × f (2) + 3² × f (3) = 69/43
Then
Var[X] = 69/43 - (51/43)² = 366/1849 ≈ 0.198
(each sum is taken over x in the set {1, 2, 3})
I need help with this
Answer:
156 degrees
Step-by-step explanation:
Bisects meand to cut into two equal halves.
That means 4x-2=3x+18.
Subtracting 3x on both sides gives x-2=18
Adding 2 on both sides gives x=20
If x=20, then 4x-2 equals 4(20)-2=78.
The other half is also 78 since the two angles were comgruent.
The whole angle is 78+78=156.
Find the measure of XY
Answer:
70
Step-by-step explanation:
the answer is 35*2=70
Answer:
70
yhsdhjbfjdfjdfhdfh
4x-1,9x-1,7x-3 find the perimeter
20x-5
Answer:
Solution given;
perimeter=sum of all sides
=4x-1+9x-1+7x-3=20x-5
The perimeter of the line segments 4x - 1, 9x - 1, and 7x - 3 is 20x - 5.
To find the perimeter of the given line segments, you need to add up the lengths of all the line segments.
The lengths of the line segments are:
4x - 1,
9x - 1,
7x - 3.
To find the perimeter, add these lengths together:
Perimeter = (4x - 1) + (9x - 1) + (7x - 3)
= 4x + 9x + 7x - 1 - 1 - 3
= 20x - 5.
Therefore, the perimeter of the line segments 4x - 1, 9x - 1, and 7x - 3 is 20x - 5.
To learn more on Perimeter click:
https://brainly.com/question/7486523
#SPJ6
anyone please lol ?
Answer:
The circumference and diameter of a circle
Step-by-step explanation:
Proportional relationships can be written as [tex]y=kx[/tex], where [tex]k[/tex] is some constant of proportionality. The formula for a circumference of a circle can be written as [tex]C=d\pi[/tex], where [tex]d[/tex] is the diameter of the circle. Therefore, the constant of proportionality is [tex]\pi[/tex] and the circumference and diameter of a circle are in a proportional relationship.
PLSSSSSSSSSSSSS HELp VERY URGENT The graph of F(x), shown below, resembles the graph of G(x) = x^2, but it has been stretched somewhat and shifted. Which of the following could be the equation of F(x)?
Answer:
Option B
Step-by-step explanation:
Function 'g' is,
g(x) = x²
Since, leading coefficient of this function is positive, parabola is opening upwards.
From the graph attached,
Function 'f' is opening upwards leading coefficient of the function will be positive.
Since, the graph of function 'f' is vertically stretched, equation will be in the form of f(x) = kx²
Here, k > 1
Since, function 'f' is formed by shifting the graph of function 'g' by 1 unit upwards,
f(x) = g(x) + 1
Combining all these properties, equation of the function 'f' should be,
f(x) = 4x² + 1
Option B will be the correct option.
is perpendicular to line segment
. If the length of is a units, then the length of is
units.
Answer:
AB is perpendicular to [GH] and GH is [A]
Step-by-step explanation:
Which equation has a graph that passes through the origin and has a slope of -10?
F(x) = x/2*8 what is f(x), when x=10
Answer
13
Step-by-step explanation:
We are essentially being asked to find f(10), so let's evaluate this function at 10 by plugging this in for x.
f(10)=10/2+8=5+8=13
Answer:
f(x) = 40
Step-by-step explanation:
f(x) = x / 2 * 8
x = 10
f(x) = (10 / 2) * 8
= 5 * 8
= 40
In a pool of water filled to a depth of 10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectangular plate if it rests vertically on its 4 ft edge at the bottom of the pool. Remember that water weighs 62.4 lb/ft3
9514 1404 393
Answer:
6,364.8 lb
Step-by-step explanation:
The centroid of the plate is its center, so is 1.5 ft above the bottom of the pool, or 8.5 ft below the surface. The area of the plate is (3 ft)(4 ft) = 12 ft². Then the fluid force is ...
(62.4 lb/ft³)(8.5 ft)(12 ft²) = 6,364.8 lb
The weight gain of beef steers were measured over a 140 day test period. the average daily gains (lb/day) of 10 steers on the same diet were as follows. The tenth steer had a weight gain of 4.02 lb/day.
3.89 3.51 3.97 3.31 3.21 3.36 3.67 3.24 3.27
determine the mean and median.
Answer:
[tex]\bar x = 3.545[/tex]
[tex]Median = 3.435[/tex]
Step-by-step explanation:
Given
[tex]x:3.89, 3.51, 3.97, 3.31, 3.21, 3.36, 3.67, 3.24, 3.27[/tex]
[tex]10th: 4.02[/tex]
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{3.89 +3.51 +3.97 +3.31 +3.21 +3.36 +3.67 +3.24 +3.27+4.02}{10}[/tex]
[tex]\bar x = \frac{35.45}{10}[/tex]
[tex]\bar x = 3.545[/tex]
Solving (b): The median
First, we sort the data; as follows:
[tex]3.21, 3.24, 3.27, 3.31, 3.36, 3.51, 3.67, 3.89, 3.97, 4.02[/tex]
[tex]n = 10[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}th[/tex]
[tex]Median = \frac{10 + 1}{2}th[/tex]
[tex]Median = \frac{11}{2}th[/tex]
[tex]Median = 5.5th[/tex]
This means that the median is the average of the 5th and 6th item
[tex]Median = \frac{3.36 + 3.51}{2}[/tex]
[tex]Median = \frac{6.87}{2}[/tex]
[tex]Median = 3.435[/tex]
convert 65 kg into gram .
Answer:
65000
Step-by-step explanation:
65x 1000
1000 because 1kg= 1000
Winning the jackpot in a particular lottery requires that you select the correct two numbers between 1 and 65 and, in a separate drawing, you must also select the correct single number between 1 and 60. Find the probability of winning the jackpot.
Answer: 1/ 233856 chance changed to 233856 x 2 = 467712
= 1 / 467712 chance as there are 2 drawings
Workings;
1 and 65 = 64
1 and 65 - 1 ball drawn = 63
1 and 60 -1 = 58
1/64 x 1/63 x 1/58 = 233856
1/4032 x 1/58 and to make these the same we 4038/58 = 69.62
then convert properly = 1/4032 x 69.62/4032 4032 x 4032 = 69.62/16257024 then 16257024/69.62 =233510.83
= 233511 chance if rounding before
1/ (233511 x 2) = 1/467022
Then one part is our actual probability
P) = 1/233856
But as they specified a special drawing
you need to repeat this as 64 x 63 x 58 x 2 as the last one cannot be in 1 drawing it has to be in 2nd drawing
233856 x 2 = 467712
= 1 / 467712 chance not rounding down before hand.
Midsegments geometry acellus pls helppfpfpff
Answer:
BC = 28
Step-by-step explanation:
The midsegment DF is half the measure of the third side BC , then
BC = 2 × DF = 2 × 14 = 28
what is 3 squared ÷ 48 - 6
Answer:
[tex] {3}^{2} \div 48 - 6 \\ 9 \div 48 - 6 \\ = - 5.8125[/tex]
The figure below is a rhombus.
w = [? ]°
Answer:
Step-by-step explanation:
FREE
Circle O has a circumference of approximately 250 ft.
What is the approximate length of the diameter, d?
O 40 ft
O 80 ft
O 125 ft
O 250 ft
Save and Exit
Next
Submit
Mark this and return
Answer:
Step-by-step explanation:
circumference = πd ≅ 250 ft
d ≅ 250/π ≅80 ft
Annual earnings, including bonuses, for Financial Analysts and Personal Financial Advisors, are currently following a skewed to the right distribution with a mean of $66,500 and a standard deviation of $10,500. According to the 68-95-99.7 rule, it is correct to say that (select ALL that apply):______.
a. the middle 95% of all Financial Analysts and Personal Financial Advisors make between $45.500 and $77,000 annually.
b. only 2.5% of all Financial Analysts and Personal Financial Advisors make less than $45,500 annually.
c. both of the above statements are false
Answer:
c. both of the above statements are false
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
Distribution skewed to the right
This means that the Empirical Rule is not applicable, and the two statements are false, and thus, the correct answer is given by option c.
The first would be false nonetheless, but the second would be true if the distribution was normal.
To teach computer programming to employees, many firms use on the job training. A human resources administrator wishes to review the performance of trainees on the final test of the training. The mean of the test scores is 72 with a standard deviation of 5. The distribution of test scores is approximately normal. Find the z-score for a trainee, given a score of 82.
Answer:
The z-score for the trainee is of 2.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean of the test scores is 72 with a standard deviation of 5.
This means that [tex]\mu = 72, \sigma = 5[/tex]
Find the z-score for a trainee, given a score of 82.
This is Z when X = 82. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{82 - 72}{5}[/tex]
[tex]Z = 2[/tex]
The z-score for the trainee is of 2.
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]f(x) = 1
g(x) = x - 4
Can you evaluate (g•f)(0)? Explain why or why not?
Answer:
This is a multiplication of functions g and f, and these functions have no restrictions(such as a even root or a fraction), and thus [tex](g \mult f)(0) = g(0)f(0) = -4(1) = -4[/tex]
Step-by-step explanation:
We are given the following functions:
[tex]f(x) = 1[/tex]
[tex]g(x) = x - 4[/tex]
Can you evaluate (g•f)(0)?
This is a multiplication of functions g and f, and these functions have no restrictions(such as a even root or a fraction), and thus [tex](g \mult f)(0) = g(0)f(0) = -4(1) = -4[/tex]
Answer:
To evaluate the composition, you need to find the value of function f first. But, f(0) is 1 over 0, and division by 0 is undefined. Therefore, you cannot find the value of the composition.
You must evaluate the function f first.
Division by 0 is undefined.
The composition cannot be evaluated.
insert a digit in a place of each "..." to make numbers that are divisible by 6 if it is possible: 4...6
Answer:
1 There is no number that make it divisible by 6 with no decimals
2 1,4,7
Step-by-step explanation:
2 23718/6= 3953
23748/6= 3958
23778/6= 3963
Tammy makes 8 dollars for each hour of work. Write an equation to represent her total pay p after working h hours.
Answer:
P=8(h)
Step-by-step explanation:
P is her total pay. You find that by multiplying what she makes an hour (8) by the total number of hours she has worked (h).
Answer:
p=8h
Step-by-step explanation:
Pay equals $8 per the number of hours
what is the circumference of a circle whose radius squared is 113
Answer:
[tex] C = 2 \pi \sqrt{113} [/tex]
[tex] C \approx 66.79 [/tex]
Step-by-step explanation:
[tex] C = 2 \pi r [/tex]
[tex] r^2 = 113 [/tex]
[tex] r = \sqrt{113}} [/tex]
[tex] C = 2 \pi \sqrt{113} [/tex]
[tex] C \approx 66.79 [/tex]
from an observer o, the angles of elevation of the bottom and the top of a flagpole are 40° and 45° respectively.find the height of the flagpole?
Answer:
Take a look of the image below, we can think on this problem as a problem of two triangle rectangles.
We can see that both triangles share the adjacent cathetus, then the height of the flagpole is just the difference between the opposite cathetus.
Remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
So, if we define H as the height of the cliff
X as the distance between the observer and the cliff
and h as the height of the flagopole
we can write:
tan(40°) = H/X
tan(45°) = (H + h)/X
Notice that we have two equations and 3 variables (we should have the same number of equations than variables) then here is missing information, and we can't get an exact solution for the height of the flagpole.
But we can write it in terms of the height of the cliff H, or in terms of the distance between the observer and the cliff.
We want to find the value of h.
If we take the quotient between both equations, we get:
Tan(45°)/Tan(40°) = (H + h)/H
1.192 = (H + h)/H
1.192*H = H + h
1.192*H - H = h
0.192*H = h
So the height of the flagpole is 0.192 times the height of the cliff.
A fashion designer wants to know how many new dresses women buy each year. A sample of 650 women was taken to study their purchasing habits. Construct the 95% confidence interval for the mean number of dresses purchased each year if the sample mean was found to be 5.6. Assume that the population standard deviation is 1.3.
Dada la función f(x)=1+6Sen(2x+π/3) . Halle: Período, amplitud y desfase (1.5 puntos) Dominio y rango de la función (1.5 puntos) Grafique la función trigonométrica (2 puntos)
Dada una ecuación de la forma
y = A sin(B(x + C)) + DTenemos que:
la amplitud es Ael periodo es 2π/Bel desfase es C (a la izquierda es positivo)el desplazamiento vertical es DSabemos que:
f(x)=1+6Sen(2x+π/3)
Y podemos reescribirla como:
f(x)=6Sen(2(x+π/6))+1
Siendo:
A = 6 → AmplitudT = 2π/B = 2π/2 = π → PeríodoC = π/6 → DesfaseEl dominio de un a función trigonométrica es todo el conjunto de los números reales (x ∈ R ).La imagen de una función trigonométrica de esta forma es:
y ∈ [-A+D,A+D]
y ∈ [-6+1, 6+1]
y ∈ [-5,7]
La gráfica se adjunta.
The sample mean, x , is a statistic.
True or False
Answer:
True
Step-by-step explanation:
The statistic is a numerical value which describes the characteristic of a particular sample data. The sample is a set of data which represents a smaller subset randomly selected from the population or a larger dataset.
The sample mean, refers to the mean or average value of a sample data, therefore, a sample mean is a numerical characteristic of the sample dataset and it is therefore a statistic. On the other hand, numerical characteristics of a population data is called the parameter.