The average time gap between the first cyclist's time and each of the remaining cyclists' times (second through fifth) in the 1995 Volta a Catalunya cycle race is approximately 6 minutes and 7 seconds.
To calculate this, we need to subtract the time of the first cyclist from each of the remaining cyclists' times (second through fifth).The time for the first cyclist was 41:38:33.
The times for the remaining cyclists were as follows:
We can calculate the difference for each cyclist by subtracting the first cyclist's time from their own time:
Adding up all of the times and dividing by four, we get an average of 00:06:07.
See more about average at: https://brainly.com/question/20118982
#SPJ11
Write as an expression the difference of 7 and twice the product of a and b
The expression represents the difference of 7 and twice the product of a and b is 7 - 2ab
Let's break down the given problem step by step. First, we need to find the product of a and b, which is done by multiplying the two variables together using the multiplication symbol (*). Then, we need to multiply this result by 2, which is done by placing the entire product inside parentheses and then multiplying it by 2 using the multiplication symbol again.
Once we have found twice the product of a and b, we need to subtract it from 7. This can be done using the subtraction symbol (-), which we place between 7 and the expression we just found.
Putting it all together, the expression we get is:
7 - 2ab
where a and b are the two variables we were given.
To know more about expression here
https://brainly.com/question/14083225
#SPJ4
PLSSSS HELP IF YOU TURLY KNOW THISSS
Answer: x = 18
Step-by-step explanation:
x - 3 = 15
x = 15 + 3
x = 18
[tex]\huge{\color{pink}{\underline{\color{pink}{\underline{\color{cyan}{\textbf{\textsf{\colorbox{purple}{Answer ≈}}}}}}}}}[/tex]
x = 18Step-by-step explanation:
Given ,
≈> x – 3 = 15
•add 3 on both the sides
≈> x –3 + 3 = 15 + 3
≈> x = 18
Hope it helps you :)Elena and Jada were racing on their bikes. Elena started 15 meters ahead of Jada. Elena biked at a rate of 20 meters per second. Jada biked at a rate of 22 meters per second. Let x represent time in seconds and y represent distance in meters. After how many seconds will Jada pass Elena?
Jada overtakes Elena after 7.5 seconds.
The set of equations that best captures the scenario is =y=15+20x.
Let's establish a coordinate system with Elena's starting point as the origin. Elena's separation from the origin at time x is given by: y=15+20x
y1 = 15 + 20x
Jada's distance from the origin at time x is determined similarly by:
y2 = 22x
Finding the moment x at which Jada overtakes Elena and their distances from the origin are equal is our goal.
y1 = y2
With the formulas for y1 and y2 substituted, we obtain:
15 + 20x = 22x
When we simplify this equation, we obtain:
2x = 15
x = 7.5
Jada therefore overtakes Elena after 7.5 seconds.
To know more about set of equations, click the below link
https://brainly.com/question/90105
#SPJ4
A box contains some green and yellow counters. 7/9of the box is green counters. Are 24 yellow counters. There How many green counters are there?
If 7/9 of the box is green counters, and there are 24 yellow counters in the box, then there are 84 green counters .
Let's assume that the total number of counters in the box is x.
We are given that 7/9 of the box is filled with green counters, which means that the remaining 2/9 of the box must be filled with yellow counters. We are also given that there are 24 yellow counters in the box.
We can set up an equation to represent the relationship between the number of yellow counters and the total number of counters:
2/9 x = 24
To solve for x, we can multiply both sides of the equation by the reciprocal of 2/9, which is 9/2:
(2/9) x * (9/2) = 24 * (9/2)
x = 108
This means that there are a total of 108 counters in the box. To find out how many of these are green counters, we can use the fact that 7/9 of the box is filled with green counters:
(7/9) * 108 = 84
To learn more about counters click on,
https://brainly.com/question/30609303
#SPJ4
assume that 1 laborer produces 6 units of output, 2 laborers produce 15 units of output, 3 laborers produce 25 units of output, and 4 laborers produce 34 units of output. diminishing returns to labor set in when the firm hires the
The marginal product of labor initially increases from 6 to 9, but then starts to decrease as more labor is added. Therefore, the firm experiences diminishing returns to labor when it hires a third laborer.
Diminishing returns to labor occur when the marginal product of labor (i.e., the additional output produced by adding one more unit of labor) decreases as more labor is added. We can calculate the marginal product of labor for each level of labor as follows:
1 laborer: 6 units of output (marginal product = 6)
2 laborers: 9 units of additional output (total output = 15, marginal product = 9)
3 laborers: 10 units of additional output (total output = 25, marginal product = 10)
4 laborers: 9 units of additional output (total output = 34, marginal product = 9)
The law of diminishing marginal returns is a concept from economics that explains how the marginal output of a production process starts to decrease as the input goes up. It is also used to refer to a point at which output increases at a diminishing rate as more units of labor are added to a production process. This can also be called the point of decreasing marginal productivity.
To know more about the "diminishing marginal returns": https://brainly.com/question/13767400
#SPJ11
Consider the set A = {2,3,5, 11, 12, 13} and the relation Va, b E A, a Rb + a = b mod 3. List all distinct equivalence classes of the relation Ron the set A in roster notation. Pick one element of A to represent each distinct equivalence class. You can use the Canvas math editor to create your equivalence class set rosters or you can present them in keyboard symbols. For example, I could answer equivalently in either of the following two ways (both are correct in form but incorrect in content): [2] = {2} or [2] = {2}
To solve the problem, we need to find all the classes of the relation Ron the set A in roster notation. And also, we need to pick one element of A to represent each distinct equivalence class. The relation Ron A is defined as:
aRb ⇔ a+b=3k, k ∈ ZLet A = {2, 3, 5, 11, 12, 13} be a set.
The distinct equivalence classes of A in roster notation are distinct equivalence[2] = {2, 5, 11},[3] = {3, 12},[13] = {13},[a], [5] = {5, 2, 11}Each equivalence class consists of elements in A that are related to each other by the given relation, i.e., by R. Therefore, aRb means that a and b are related in some way, and the equivalence class [a] is the set of all elements in A that are related to a by R.
Therefore, the distinct equivalence classes in roster notation are given as above, and we can pick any one element of A to represent each class. Thus, we have the following:A = {2, 3, 5, 11, 12, 13}[2] = {2, 5, 11} and can be represented by 2.[3] = {3, 12} and can be represented by 3.[13] = {13} and can be represented by 13.[5] = {5, 2, 11} and can be represented by 5.
for such more questions on distinct equivalence
https://brainly.com/question/31133354
#SPJ11
In the diagram, PQRS ~ TUVW. Find the value of x .
The value of x is 8
What is a trapezoid?A quadrilateral with one pair of parallel sides. It is a typical mathematical shape that is employed in numerous disciplines. The area of a trapezoid is computed by multiplying the height by half of the sum of the lengths of the two bases.
Given that trapezoid PQRS ~ TUVW are similar;
So, VW/RS = UT/QP
x/12 = 6/9
x = 8
Therefore, the value of x is 8
To know more about trapezoid, visit:
https://brainly.com/question/16725694
#SPJ1
Trapezoid A trapezoid is a four-sided shape with one pair of parallel sides According to the question The value of x is 8
What is a trapezoid?A trapezoid is a four-sided shape with one pair of parallel sides. It has two non-parallel sides, or legs, and two parallel sides, or bases. The bases are usually of different lengths, and the sides are typically not equal. The angles of a trapezoid are not necessarily all the same size, but the two opposite angles are always equal. Trapezoids can be found in everyday objects like the shape of a deck, a rectangular door frame, or a sloped roof. Trapezoids can also be found in geometry, where they are used to calculate the area and perimeter of the shape.
Given that trapezoid PQRS ~ TUVW are similar;
So, VW/RS = UT/QP
x/12 = 6/9
x = 8
Therefore, the value of x is 8
To know more about trapezoid, visit:
brainly.com/question/16725694
#SPJ1
PLEASE HELP FIRST CORRECT WILL GET BRAINLIEST
Answer: Felipe has walked 25.1 meters.
Step-by-step explanation:
Felipe walks the length of his living room, which is 9.1 meters. He then turns and walks the width of his living room, which is 3.5 meters. Finally, he walks back to the corner he started from, which is another 9.1 meters.
The total distance that Felipe has walked is the sum of the distances he covered in each of these three parts of his walk. So, we need to add up 9.1 meters, 3.5 meters, and 9.1 meters to get the total distance.
9.1 m + 3.5 m + 9.1 m = 21.7 m
Therefore, Felipe has walked 21.7 meters so far. However, he still needs to walk back to the corner he started from. This distance is equal to the diagonal of the rectangle formed by his living room.
We can use the Pythagorean theorem to find the length of this diagonal. The length and width of the rectangle are 9.1 meters and 3.5 meters, respectively. Let d be the length of the diagonal, then:
d² = 9.1² + 3.5²
d² = 83.06
d ≈ 9.11 meters
Therefore, the total distance that Felipe has walked is approximately:
21.7 m + 9.11 m ≈ 25.1 m
So, Felipe has walked about 25.1 meters.
Answer:
Felipe has walked 25.2 meters in total.
Step-by-step explanation:
To find out how far Felipe has walked, we need to calculate the perimeter of his living room. The perimeter is the distance around the outside of a shape.
The formula for the perimeter of a rectangle is:
perimeter = 2(length + width)
Given that the length of Felipe's living room is 9.1 meters and the width is 3.5 meters, we can substitute these values into the formula and get:
perimeter = 2(9.1 + 3.5)
perimeter = 2(12.6)
perimeter = 25.2 meters
Math 4th 11-4 I need answers for 11-4 can you please help?
To make the table of 7, using the table of 4 and 3, we add the value of both table consecutively.
We have to make the table of 7, using table of 4 and 3.
As we know the table of 3 is:
3 6 9 12 15 18 21 24 27 30
As we know the table of 4 is:
4 8 12 16 20 24 28 32 36 40
To from the table of 7 using the table of 4 and 3 we add the consecutive value of both table respectively.
3 + 4 6 + 8 9 + 12 12 + 16 15 + 20 18 + 24 21 + 28 24 + 32 27 + 36 30+40
Now simplify
7 14 21 28 35 42 49 56 63 70
To learn more about addition link is here
brainly.com/question/29560851
#SPJ4
The complete question is:
Math 4th 11-4: Help bunty to make the table of 7, using table of 4 and 3.
Approximately 17.7% of vehicles traveling on a certain stretch of expressway exceed 110 kilometers per hour. If a state trooper randomly selects 154 vehicles and captures their speeds with a radar gun, what is the probability that at least 35 of the selected vehicles exceed 110 kilometers per hour?Use Excel to find the probability, rounding your answer to four decimal places.
Using Excel, the probability that at least 35 of the 154 randomly selected vehicles exceed 110 kilometers per hour when 17.7% of vehicles exceed this speed on the expressway is approximately 0.0027, rounded to four decimal places.
To solve this problem in Excel, we can use the binomial distribution function. In this case, the probability of success (a vehicle exceeding 110 kilometers per hour) is p = 0.177, and the number of trials (vehicles selected) is n = 154.
We want to find the probability of at least 35 successes (vehicles exceeding 110 kilometers per hour), which can be calculated using the formula:
=1-BINOM.DIST(34,154,0.177,TRUE)
This formula gives a probability of 0.0027, which is the probability that at least 35 of the selected vehicles exceed 110 kilometers per hour. Therefore, the answer is 0.0027, rounded to four decimal places.
For more questions like Probability click the link below:
https://brainly.com/question/30034780
#SPJ11
A fruit basket holds x2 x2 – 3 x x + 12 apples. Maha takes out 4 x− x− 6 of them. How many apples are left in the basket?
p.s Please explain how you solve this question!
The answer of the given question based on the given equation that fruit basket holds x2 x2 – 3 x x + 12 apples and Maha takes out 4 x− x− 6 of them the answer is , there are x² - 6x + 18 apples left in the basket after Maha takes out 4x - x - 6 of them.
What is Expression?In mathematics, expression is combination of numbers, variables, and mathematical operations that can be evaluated to produce value. An expression can be as simple as single number or variable, or it can be complex, involving many different operations and variables.
Expressions can be used to represent many different mathematical ideas, like equations, inequalities, functions, and more. They can be used to model real-world situations, make predictions, and solve problems in wide variety of fields, like physics, economics, engineering, and more.
The fruit basket initially holds x² - 3x + 12 apples. If Maha takes out 4x - x - 6 of them, then we can subtract this expression from the initial number of apples to find how many are left in the basket.
So, the expression for the number of apples left in the basket is:
x² - 3x + 12 - (4x - x - 6)
We can simplify this by combining like terms:
x² - 3x + 12 - 4x + x + 6
Simplifying further:
x² - 6x + 18
Therefore, there are x² - 6x + 18 apples left in the basket after Maha takes out 4x - x - 6 of them.
It's important to note that we cannot simplify 4x - x - 6 to 3x - 6 in this case because the two terms have different coefficients. Instead, we need to distribute the negative sign to both terms inside the parentheses to get 4x - x - 6 = 4x - 1x + (-6) = 3x - 6, which we can then use in the expression for the number of apples left in the basket.
To know more about Variable visit:
https://brainly.com/question/2466865
#SPJ1
Kate is x years old. Lethna is 3 times as old as Kate. Mike is 4 years older than Lethna. write down an expression, in terms of x for Mike's age
Answer: Mike is ( 3x + 4 ) years old
Step-by-step explanation:
K -> x y/o
L -> 3x y/o
M -> (3x + 4) y/o
Use the traditional square of opposition to determine whether the following immediate inferences are valid or invalid. Name any fallacies that are committed.
All advocates of school prayer are individuals who insist on imposing their views on others.
Therefore, some advocates of school prayer are individuals who insist on imposing their views on others
No fallacy is committed in the given immediate inference, as it follows the rules of the square of opposition.
The immediate inference presented in the statement is valid and can be categorized as a particular affirmative proposition (I-type) of the square of opposition.According to the square of opposition, a particular affirmative proposition can be inferred from a universal affirmative proposition (A-type) when the subject is distributed.
In the given statement, the universal affirmative proposition is "All advocates of school prayer are individuals who insist on imposing their views on others," which distributes the subject "advocates of school prayer."
Therefore, the particular affirmative proposition "Some advocates of school prayer are individuals who insist on imposing their views on others" can be inferred from the universal affirmative proposition.
No fallacy is committed in the given immediate inference, as it follows the rules of the square of opposition. However, it should be noted that the validity of the inference does not necessarily imply the truthfulness of the statement, as it is possible for some advocates of school prayer to not insist on imposing their views on others.
For more questions like Fallacy click the link below:
https://brainly.com/question/14669739
#SPJ11
Below is a list of all possible outcomes in the experiment of rolling two die. 1.2 1,3 14 15 1,6 21 22 23 24 25 2,6 34B2 33 3,4 3 5 3.6 41 4 2 43 4,4 4 5 4,6 5 52 33 5 4 5,5 56 6,1 6,2 6.3 6 4 6,5 6.6 Determine the following probabilities. Write your answers as reduced fractions_ P(sum is odd) P(sum is 5) P(sum is 7) = P(sum is 7 and at least one of the die is a 1) = 18 P(sum is 7 or at least one of the die is 1) = 36
Thus, the following outcomes satisfy the condition:1, 61, 11, 12, 21, 13, 31, 14, 41, 15, 52, 25, 34, and 43Therefore, the probability of the sum being 7 or at least one die being 1 is:P(sum is 7 or at least one die is 1) = 15/36 = 5/12
Hence, P(sum is odd) = 7/36, P(sum is 5) = 1/9, P(sum is 7) = 1/6, P(sum is 7 and at least one die is 1) = 5/18, and P(sum is 7 or at least one die is 1) = 5/12.
In the given experiment of rolling two dice, the following probabilities are to be determined:
P(sum is odd), P(sum is 5), P(sum is 7), P(sum is 7 and at least one of the die is 1), and P(sum is 7 or at least one of the die is 1).The sum of two dice is odd if one die has an odd number and the other has an even number. The possibilities of odd numbers are 1, 3, and 5, while the possibilities of even numbers are 2, 4, and 6. Therefore, the following outcomes satisfy the condition:
1, 22, 24, 36, 42, 44, and 66Thus, the probability of the sum being odd is: P(sum is odd) = 7/36The sum of two dice is 5 if one die has 1 and the other has 4, or one die has 2 and the other has 3. Thus, the following outcomes satisfy the condition:1, 42, 3Therefore, the probability of the sum being 5 is: P(sum is 5) = 4/36 = 1/9The sum of two dice is 7 if the dice show 1 and 6, 2 and 5, 3 and 4, 4 and 3, 5 and 2, or 6 and 1.
Thus, the following outcomes satisfy the condition:1, 63, 54, 45, 36, and 2Therefore, the probability of the sum being 7 is: P(sum is 7) = 6/36 = 1/6The sum of two dice is 7 and at least one die is 1 if the dice show 1 and 6, 6 and 1, 1 and 1, 1 and 2, 2 and 1, 1 and 3, 3 and 1, 1 and 4, 4 and 1, or 1 and 5. Thus, the following outcomes satisfy the condition:1, 61, 11, 12, 21, 13, 31, 14, 41, and 15
Therefore, the probability of the sum being 7 and at least one die being 1 is:P(sum is 7 and at least one die is 1) = 10/36 = 5/18The sum of two dice is 7 or at least one die is 1 if the dice show 1 and 6, 6 and 1, 1 and 1, 1 and 2, 2 and 1, 1 and 3, 3 and 1, 1 and 4, 4 and 1, 1 and 5, 2 and 5, 5 and 2, 3 and 4, or 4 and 3.
for such more questions on probabilities
https://brainly.com/question/13604758
#SPJ11
assume a corporation has cumulative voting and there are two directors up for election. what is the maximum number of votes a shareholder who owns 100 shares can cast for candidate jones if there are a total of 5 candidates?
Assuming that a corporation has cumulative voting and two directors are up for election. The maximum number of votes a shareholder who owns 100 shares can cast for candidate Jones is 40.
What is cumulative voting?Cumulative voting is a voting method used by shareholders in a company to elect a board of directors.
In this type of voting, each shareholder is given the number of votes equal to the number of shares they own, multiplied by the number of candidates. This means that if there are two candidates and a shareholder has 100 shares, then they can cast up to 200 votes for each candidate.
How to calculate the maximum number of votes for candidate Jones?In this case, there are 5 candidates, and two directors are to be elected. Therefore, the total number of votes will be the sum of the votes required for each director, which will be 100.
The maximum number of votes that a shareholder with 100 shares can cast for each candidate will be equal to the total number of votes multiplied by the percentage of the vote that each candidate is allocated.
For example, if candidate Jones is allocated 20% of the votes, then the maximum number of votes that a shareholder with 100 shares can cast for candidate Jones will be:
Total number of votes = 2 x 100 = 200
Percentage of votes allocated to candidate Jones = 20%
Maximum number of votes for candidate Jones = 200 x 20/100 = 40.
Learn more about cumulative voting at
https://brainly.com/question/17438311
#SPJ11
The ratio of water and flour for samosas sheets or samosa sheets or leave
The ratio of water and flour for samosas sheets is typically 1:2, meaning one part water to two parts flour.
A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, macaroni, noodles, or minced meat. It is popular in the Indian subcontinent, Southeast Asia, and the Middle East. The samosa is usually triangular or tetrahedral in shape, but can also be round or even cone-shaped.
It is typically served with chutney, such as mint, coriander, or tamarind. It is usually filled with potatoes, onions, peas, and other vegetables, as well as spices such as cumin, coriander, chili powder, and garam masala. Samosas can also be filled with meat, such as chicken, beef, or lamb. They are typically deep-fried in ghee or vegetable oil, but can also be baked.
To learn more about ratio link is here
brainly.com/question/13419413
#SPJ4
Gail averages 153 points per bowling game with a standard deviation of 14.5 points. Suppose Gail's points per bowling game are normally distributed. Let X= the number of points per bowling game. Then X∼N(153,14.5). If necessary, round to three decimal places.
Suppose Gail scores 108 points in the game on Thursday. The z-score when x = 108 is __
. The mean is __
Gail scores 153 points on average every bowling game, with a 14.5 point standard deviation. Assume Gail's bowling game points are evenly divided. With x = 108, the mean is 153, and the z-score is -3.103.
The z-score when Gail scores 108 points in a game is calculated as:
z = (x - μ) / σ
where x = 108 is the observed score, μ = 153 is the mean, and σ = 14.5 is the standard deviation.
Plugging in the values, we get:
z = (108 - 153) / 14.5 ≈ -3.103
Rounding to three decimal places, the z-score when Gail scores 108 points in a game is approximately -3.103.
The mean is μ = 153, which is given in the problem statement.
To learn more about z-score, refer:-
https://brainly.com/question/15016913
#SPJ1
8.2 / m = tan(17).
What is m?
Answer:
26.82 (2 d.p.)
Step-by-step explanation:
tan(17)*m=8.2
8.2/tan(17) = m
= 26.82
An equilateral triangle as a side of 35 cm what is the distance around the triangle
Answer:
Step-by-step explanation:
To find the perimeter of an equilateral triangle is equalled to 3s.
35 x 3
105
What is the sum of the two amounts of money shown?
Answer:
$21.39
Step-by-step explanation:
The way we notate money is by putting dollars first, and then cents at the end of the decimal.
For the first amount of money, we have 15 dollars in cash. We have 3 quarters, and each quarter is 25 cents. If we add 25 cents 3 times, we get 75 cents. We are then given 2 nickels, which are 5 cents. We add 10 to 75, and we get 85 cents.
[tex]15.85[/tex]
We are then give a singular 5 dollar bill. We also have two quarters, which are again 50 cents. Add 4 to this, and we get 54.
[tex]5.54[/tex]
Now we add the two together!
[tex]15.85+5.54=21.39\\[/tex]
Find the value of y
for the given value of x
.
y=3x+2;x=0.5
Answer:
3.5
Step-by-step explanation:
y = 3x+2
= 3(0.5) + 2
= 1.5+2
= 3.5
Assume {X, Y} is the primary key for relation schema R(X, Y, Z). Which of the following statements is NOT correct?{X, Y} is a superkey key for RX is a candidate key for RX may not have a NULL valueFunctional dependencies {X, Y} → Z must hold on R
For the given relation the statement that is not correct is "X is a candidate key for R".
Given that the primary key for relation schema R(X, Y, Z) is {X, Y}, we need to determine which of the given statements is NOT correct. The possible options are:
{X, Y} is a superkey for R.
X is a candidate key for R.
Y may not have a NULL value for R.
Functional dependencies {X, Y} → Z must hold on R.
The statement that is NOT correct is: X is a candidate key for R.
A superkey is a set of attributes that, taken together, can uniquely identify a tuple in a relation schema. As per the given relation schema, {X, Y} is a superkey, because no two tuples in R can have the same value for {X, Y}.
A candidate key is a minimal superkey, meaning that it is a superkey, but removing any attribute from it would no longer make it a superkey.
In this case, {X, Y} is the only candidate key, because removing either attribute from it would make it no longer a superkey.
A NULL value is a missing or unknown data value in a tuple. As per the schema R(X, Y, Z), Y may not have a NULL value, which means that it is a non-nullable attribute, and all tuples in R must have a value for Y.
Functional dependency is a constraint between two sets of attributes in a relation schema, where one set of attributes determines the values of another set of attributes. For R(X, Y, Z), the functional dependency {X, Y} → Z must hold, which means that, for every pair of tuples in R with the same value for {X, Y}, the value for Z must also be the same.
To know more about relation: https://brainly.com/question/26098895
#SPJ11
If an object is dropped from the top of a building, its position in feet above the ground is given by s(t)=−8t^2+288, where t is the time in seconds since it was dropped. What is the velocity when it hits the ground? a) Increasing 96 feet per second b)decreasing 16 feet per second c) 0 feet per second d)decreasing 96 feet per second
The velocity when the object hits the ground is 4.025 ft/s. The answer is: C) 0 feet per second.
If an object is dropped from the top of a building, its position in feet above the ground is given by s(t)=−8t^2+288, where t is the time in seconds since it was dropped. Given that an object is dropped from the top of a building,
then its initial velocity, u = 0 (since it was dropped and not thrown). We want to find the velocity when the object hits the ground, i.e., the time it takes the object to reach the ground. We know that the position of the object when it reaches the ground is s(t) = 0.
Therefore:−8t^2+288 = 0Solving for t, we get:−8t^2 = −288t^2 = 36t = sqrt(36) = ±6 sSince time cannot be negative, t = 6 s. Then the final velocity at impact, v, can be calculated as follows:v = u + at + s/v = 0 + (-32.2)(6) + (-8(6)² + 288)/v = -193.2 + (-288 + 288)/v = -193.2 + 0/v = -193.2/v = -193.2/-48v = 4.025 (rounded to three decimal places)
Learn more about Velocity
brainly.com/question/17127206
#SPJ11
The number of paintings owned by an art museum was 200. Since this time, the collection of paintings has grown by 2% each month. Which expressions represent the number c
paintings owned by the art museum 2 years later if it continues to grow at this rate?
A 200-(1+0.02¹2) 24
B 200-(1.02)²
C 200- 1+0.02)¹²) ²
D 200• (1.02)^24
E 200• (0.02) ^24
Therefore , the solution of the given problem of expressions comes out to be choice D is the correct response: 200 • (1.02)24.
What is an expression ?It is preferable to use moving numbers, which can be growing decreasing, or variable, rather than generating estimates at random. They could only assist one another by exchanging resources, knowledge, or answers to problems. A truth statement may contain strategies, components, and notations against mathematical processes such as additional denial, synthesis, and mixture.
Here,
The number of paintings in the library is increasing by 2% each month, so the growth rate for one month is 2/100 = 0.02.
Therefore, multiplying the starting number of paintings (200) by the growth factor
=> (1 + 0.02)24,
where 24 is the number of months in 2 years, will give the number of paintings the art museum will own after two years (24 months).
Thus, the expression that denotes the number of paintings the art institution owns after two years is as follows:
=> D) 200 • (1.02)^24
Therefore, choice D is the correct response: 200 • (1.02)24.
To know more about expressions visit :-
brainly.com/question/14083225
#SPJ1
Use the following circle to find the indicated measure.
MK
is a diameter.
Find m ∠
LKM
The answer of the given question based on finding the m∠LKM from the given circle the answer is the measure of ∠LKM is 140° degrees.
What is Diameter?In geometry, diameter of circle is line segment that passes through center of circle and has both endpoints on circle. The diameter is the longest chord (line segment connecting two points on circumference) of circle. The length of diameter is twice the length of radius, which is distance from the center of circle to any point on circumference.
The diameter i important property of a circle and is used to calculate other properties, like the circumference and area of the circle
Since MK is a diameter of the circle, it passes through the center of the circle, which we can label as point O. Therefore, ∠LKM is an inscribed angle that intercepts arc LM.
By the Inscribed Angle Theorem, we know that the measure of an inscribed angle is equal to half the measure of the arc that it intercepts. Therefore, to find the measure of ∠LKM, we need to find the measure of arc LM.
We are given that the measure of arc LK is 100° degrees. Since arc LM is the sum of arcs LK and KM, and MK is a diameter (so arc KM is also a semicircle with a measure of 180 degrees), we can write:
m(arc LM) = m(arc LK) + m(arc KM) = 100 + 180 = 280° degrees
Therefore, the measure of ∠LKM is:
m∠LKM = 1/2 * m(arc LM) = 1/2 * 280 = 140° degrees
So the measure of ∠LKM is 140° degrees.
To know more about Inscribed Angle Theorem visit:
https://brainly.com/question/5436956
#SPJ1
Find the missing side. Round your
answer to the nearest tenth.
15 m
32°
X
Answer:
x=9.4
using soh cah toa:
x=opposite side
15=adjacent side
using tan(toa)
[tex]tan32=\frac{x}{15}[/tex]
[tex]x=15tan32[/tex]
[tex]x=9.4[/tex]
Can anyone please solve this math problem? Thanks!
Therefore , the solution of the given problem of surface area comes out to be 9664 mm².
What precisely is a surface area?Its total size can be determined by figuring out how much room would be required to completely cover the outside. When choosing comparable substance with a rectangular shape, the surroundings are taken into account. Something's total dimensions are determined by its surface area. The volume of water that a cuboid can contain depends on the number of edges that are present in the region between its four trapezoidal angles.
Here,
We are aware that this total area is equivalent to the white cross's area times four.
Therefore:
Total flag area minus the crimson background area equals the area of the white cross.
=> 13,348 - 4x equals area of white cross
When we use this expression in the preceding equation as the area of the white cross, we obtain:
=> 4x + (13,348 - 4x) = 13,348
When we simplify and find x, we obtain:
=> x = 836
As a result, the size of the white cross is: 836 mm2, the size of each parallelogram containing the fleur-de-lis is:
=> Area of white cross = Total area of flag - Area of red background
=> 13,348 - 4x
=> 13,348 - 4(836)
=> 9664 mm²
To know more about surface area visit:
brainly.com/question/2835293
#SPJ1
a runner wants to run 11.7 km . she knows that her running pace is 6.7 mi/h .how many minutes must she run
The number of minutes she must run to reach her goal is 65.1 minutes.
The time she must run for is found by dividing the distance by the speed:
Time = Distance / Speed
We need to convert the distance from kilometers to miles before substituting values into the formula.
11.7 km = 11.7 / 1.609344 = 7.270043 miles
The formula now becomes:
Time = 7.270043 miles / 6.7 mi/h
Time = 1.085081 h
To get the time in minutes, we need to convert the time in hours to minutes. There are 60 minutes in an hour, so there are
Time = 1.085081 h x (60 minutes/1 hour)
Time = 65.104863 minutes = 65.1 minutes
Learn more about speed here: https://brainly.com/question/13943409
#SPJ11
Put these areas in size order starting with the smallest. 5.4 m² 45,000 cm² 5 x 106 mm²
So, in order of size, from smallest to largest: 45,000 cm² < 5.4 m² = 5.4 x[tex]10^{6}[/tex] mm².
Given by the question.
To compare the areas 5.4 m², 45,000 cm², and 5 x [tex]10^{6}[/tex] mm², we need to convert them into the same unit of measurement.
1 meter (m) = 100 centimeters (cm)
1 meter (m) = 1,000 millimeters (mm)
Therefore, we can convert the given areas as follows:
5.4 m² = 5.4 x 100 x 100 = 54000 cm² (multiply by 100 twice to convert from m² to cm²)
5.4 m² = 5.4 x 1000 x 1000 = 5.4 x [tex]10^{6}[/tex] mm² (multiply by 1000 twice to convert from m² to mm²)
Now that we have converted all the areas to mm², we can compare them directly.
5.4 m² = 5.4 x 10^6 mm²
45,000 cm² = 450 x 100 = 45000 mm²
5 x [tex]10^{6}[/tex] mm² = 5 x [tex]10^{6}[/tex] mm².
To learn more about millimeters:
https://brainly.com/question/29778058
#SPJ1
Which of the following equations is equivalent to 2 x + 6 = 30 - x - 3 2 x + 6 = 10 - x - 3 2 x + 6 = 30 - x + 3
The equation that is equivalent to 2x + 6 = 30 - x - 3 is option (a): 2x + 6 = 30 - x - 3.
What is equation?
In mathematics, an equation is a statement that two expressions are equal, usually written with an equal sign (=) between them. Equations can contain variables, which are symbols that represent unknown or unspecified values.
We can simplify and solve the equation 2x + 6 = 30 - x - 3 as follows:
2x + 6 = 30 - x - 3
Adding x and adding 3 to both sides, we get:
3x + 9 = 30
Subtracting 9 from both sides, we get:
3x = 21
Dividing both sides by 3, we get:
x = 7
So the given equation simplifies to x = 7.
We can now substitute this value of x into each of the answer choices to see which one is equivalent to the given equation:
a) 2x + 6 = 30 - x - 3
Substituting x = 7, we get:
2(7) + 6 = 30 - 7 - 3
14 + 6 = 20
20 = 20
b) 2x + 6 = 10 - x - 3
Substituting x = 7, we get:
2(7) + 6 = 10 - 7 - 3
14 + 6 = 0
20 ≠ 0
Therefore, this equation is not equivalent to the given equation.
c) 2x + 6 = 30 - x + 3
Substituting x = 7, we get:
2(7) + 6 = 30 - 7 + 3
14 + 6 = 26
20 ≠ 26
Therefore, this equation is not equivalent to the given equation.
Therefore, the equation that is equivalent to 2x + 6 = 30 - x - 3 is option (a): 2x + 6 = 30 - x - 3.
To learn more about equation visit:
https://brainly.com/question/2972832
#SPJ1