suppose that the ethylene molecule gains an dditional electron to give the c2h4 ion. does the bond order of the carbon carbon bond increase or decrease

Answers

Answer 1

The bond order of the carbon-carbon bond in ethylene (C₂H₄) increases when an additional electron is added to the molecule to form the C2H4 ion. This is because the extra electron is shared between the two carbon atoms, forming a triple bond, which increases the bond order from 2 to 3.


What is the effect on bond order?

When ethylene gains an additional electron to give the C₂H₄ ion, the bond order of the carbon-carbon bond will decrease. Alkene compounds are characterized by a double bond between two carbon atoms in their structure. The bond order of ethylene.

Ethylene's carbon-carbon bond is a double bond that includes a sigma bond and a pi bond. Sigma bonds are formed when two orbitals overlap, and pi bonds are formed when two p orbitals overlap.

The bond order of ethylene's carbon-carbon bond is two because it is a double bond. Bond order is defined as the number of bonding electron pairs shared between two atoms. The higher the bond order, the stronger the bond.

If an additional electron is added to ethylene, the bond order of the carbon-carbon bond will decrease because the additional electron will increase the repulsion between the carbon atoms, resulting in a weaker bond. Therefore, when the ethylene molecule gains an additional electron to give the C₂H₄ ion, the bond order of the carbon-carbon bond decreases.

Read more about ethane here:

https://brainly.com/question/1309871

#SPJ11


Related Questions

In 1828, Friedrich Wöhler produced urea
when he heated a solution of ammonium
cyanate. This reaction is represented by the
balanced equation below.
H 7+
H-N-H[C=N-O]
I
H
Ammonium
cyanate
H O
\/
N-CIN
H
Urea
Explain why this balanced equation represents a
conservation of atoms.
H
H

Answers

This balanced equation represents the principle of conservation of atoms, which is a fundamental principle of chemistry in the sense that the number and type of atoms are the same on both sides which means that no atoms were created or destroyed during the reaction, only rearranged to form new molecule.

What is a balanced equation?

A balanced equation is described as an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge are the same for both the reactants and the products.

Analyzing the diagram,

On the left-hand side we have :

1 nitrogen atom (N)

3 hydrogen atoms (H)

1 carbon atom (C)

2 oxygen atoms (O)

On the right-hand side:

1 nitrogen atom (N)

4 hydrogen atoms (H)

1 carbon atom (C)

2 oxygen atoms (O)

This can only mean that no atoms were created or destroyed during the reaction, only rearranged to form new molecules.

Learn more about balanced equation atr:

https://brainly.com/question/11904811

#SPJ1

consider an ideal gas of molecules, with n adsorbing sites. each site can be occupied or unoccupied by one or two of the ideal gas molecules. determine the average number of molcules adsorbed by the table

Answers

The average number of molecules adsorbed by the table is the number of different ways of placing a total of r particles on n adsorption sites when two particles can occupy each site given by (r + n-1) C (n-1).

This formula follows from the fact that each placement corresponds to choosing n-1 boundaries that divide the particles into n groups (each group may be empty) and then putting one group into each adsorption site. Thus the required number of ways is(r + n-1) C (n-1). The number of ways of placing r particles on n adsorption sites when one or two particles can occupy each site is the sum of the number of ways in which exactly one particle occupies a site and the number of ways in which two particles occupy a site. Each adsorption site can be either empty, occupied by one molecule, or occupied by two molecules. Therefore, there are three different states that each adsorption site can have. There are n adsorption sites, and therefore there are 3n different states that the table can have. Each state is characterized by the number of molecules adsorbed by the table. Therefore, the average number of molecules adsorbed by the table is given by the sum of the number of molecules adsorbed in each state, divided by the total number of states. The number of molecules adsorbed in each state is the sum of the number of molecules adsorbed by each adsorption site, overall adsorption sites. Therefore, the number of molecules adsorbed in each state is either 0, 1, or 2.

Learn more about  ideal gas   at brainly.com/question/28257995

#SPJ4

Arrange these species by their ability to act as an oxidizing agent. Best oxidizing agent Au3+ Fe2+ Ni2+ Na+ Poorest oxidizing agent Answer Bank

Answers

The correct order of species based on their ability to act as an oxidizing agent is Au3+ > Fe2+ > Ni2+ > Na+.

The ability to act as an oxidizing agent varies among different species. In the given set of species, the order of their ability to act as an oxidizing agent from the best to the poorest is as follows:

Au3+ > Fe2+ > Ni2+ > Na+

Au3+ is the best oxidizing agent as it has the maximum tendency to accept electrons and undergo reduction.

Fe2+ is a better oxidizing agent than Ni2+ and Na+ because it can accept two electrons easily and undergoes reduction. Ni2+ is a weaker oxidizing agent than Fe2+ and Na+ as it can only accept electrons and undergoes reduction. Na+ is the poorest oxidizing agent as it has the least tendency to accept electrons and undergo reduction. It is the best reducing agent as it readily donates an electron to become Na.

For more such questions on oxidizing agent, click on:

https://brainly.com/question/14041413

#SPJ11

Which organism provides energy to all other organisms in this ecosystem?



coyote


prarie grass


vulture


prarie dog

Answers

Answer:

The organism that provides energy to all other organisms in an ecosystem is usually a primary producer, which is an organism that produces its own food through photosynthesis or chemosynthesis. In this ecosystem, the primary producer is likely the prairie grass, as it converts sunlight into energy through photosynthesis and is the basis of the food chain. The other organisms listed (coyote, vulture, prairie dog) are consumers and obtain their energy by eating other organisms, either directly or indirectly.

(please could you kindly mark my answer as brainliest )

1) A 50.0 gram sample of water is heated from 20.5 oC to 27.1 oC. How many Joules of heat were added to this solution?2) A 17.27 gram sample of aluminum initially at 92 degrees is added to a container containing water. The final temperature of the metal is 25.1 oC. What is the total amount of energy in Joules added to the water? What was the energy lost by the metal?3) Mixing 25.0 mL of 1.2 M HCl and 25.0 mL of 1.1 M NaOH were mixed. The temperature of the initial solution was 22.4 oC. Assuming a Heat of Neutralization of -55.8 KJ/mol, what would the final temperature be if the specific heat for this solution is 4.03 J/g?

Answers

The equation Q = mCT, where m is the mass of the water, C is its specific heat capacity, and T is the temperature change, We obtain Q as follows by substituting the values: (50.0 g) (4.18 J/goC) (27.1 oC - 20.5 oC) = 1393 J.

The equation Q = mCT, where m is the mass of the water, C is its specific heat capacity, and T is the temperature change, can be used to compute the energy gained by the water. Q = (17.27 g) (0.902 J/goC) (25.1 oC - 92 oC) = -2644 J, where the negative sign denotes energy loss by the metal, is obtained by substituting the numbers. According to the given reaction's heat of neutralisation, 55.8 kJ of heat are emitted for every mole of reacting HCl and NaOH. The formula n = C V, where C is the concentration and V is the volume, can be used to determine the number of moles of HCl and NaOH. With the numbers substituted, we obtain n(HCl) = (1.2n(NaOH) = (1.1 mol/L) (0.025 L) = 0.0275 mol and n(NaOH) = (1.1 mol/L) (0.025 L) = 0.03 mol, respectively. NaOH is limiting, therefore when 0.0275 mol of HCl and 0.0275 mol of NaOH combine, 55.8 kJ of heat are produced. The formula Q = n H, where n is the number of moles of the limiting reactant and H is the heat of reaction, can be used to determine the overall amount of heat emitted. We obtain Q = (0.0275 mol) (-55.8 kJ/mol) = -1.5365 kJ by substituting the variables. Q = mCT, where m is the mass of the solution, C is its specific heat capacity, and T is the change in temperature, can be used to determine how much heat the solution absorbs. When the values are substituted, we obtain Q = (50.0 g) (4.03).

learn more about mass here:

https://brainly.com/question/18064917

#SPJ4

a scientist dilutes 50.0 ml of a ph 5.85 solution of hcl to 1.00 l. what is the ph of the diluted solution (kw

Answers

A scientist dilutes 50.0 ml of a pH 5.85 solution of HCl to 1.00 L. The pH of the diluted solution (Kw = 1.0 × 10-14) is approximately 1.85.

PH is the negative logarithm of the hydrogen ion (H+) concentration in a solution. A decrease in the pH of a solution means that the H+ concentration has increased.

The following formula can be used to calculate the pH of a solution:

pH = -log[H+]

The number of hydrogen ions per liter of solution is referred to as the hydrogen ion concentration [H+]. In addition, the hydroxide ion (OH-) concentration may be calculated using the following formula:

[H+] [OH-] = 1.0 × 10-14

The pH of the solution can be calculated using the equation given below:

5.85 = -log[H+]5.85 = -log[H+]H+ = 1.38 x 10-6

The number of moles of HCl in 50 mL of a 5.85 pH solution is 0.00138 mol. The number of moles of HCl after dilution to 1.00 L can be determined using the equation below:

n1V1 = n2V2

0.00138 mol x 50 ml = n2 x 1.00 LN2 = 0.0000276 mol

After dilution, the HCl concentration is 0.0000276 moles/liter. The hydroxide ion concentration [OH-] in the solution can be determined using the formula given below:

[H+] [OH-] = 1.0 × 10-140.0000276 [OH-] = 1.0 × 10-14[OH-] = 3.6 x 10-10 mol/L

The pH of the solution can be calculated using the equation given below:

pH = -log[H+]pH = -log(3.6 × 10-10)pH = 9.44

The pH of the diluted solution (Kw = 1.0 × 10-14) is approximately 1.85.

Learn more about the pH of a solution at brainly.com/question/30934747

#SPJ11

How many milliliters of 1.58 M HCl are needed to react completely with 23.2 g of NaHCO3 (= 84.02 g/mol)?
HCl(aq) + NaHCO3(s) ? NaCl(s) + H2O(l) + CO2(g)
a. 175 mL
b. 536 mL
c. 276 mL
d. 572 mL
e. 638 mL

Answers

c. 276 mL of 1.58 M HCl.

To answer this question, we need to use the mole ratio between the two reactants: 1 mole of HCl for every 1 mole of NaHCO3.

In this case, we need 23.2 g of NaHCO3, which is equal to 0.273 moles (23.2 g / 84.02 g/mol).

Since we need 1 mole of HCl for every 1 mole of NaHCO3, we can calculate the number of moles of HCl needed with the following equation: 0.273 moles of NaHCO3 x 1 mole HCl/1 mole NaHCO3 = 0.273 moles of HCl.

Now we can use the molarity of HCl (1.58 M) to calculate the volume of HCl needed. 1.58 M HCl x 0.273 moles HCl/1 L HCl = 0.433 L HCl, or 433 mL of HCl. Therefore, the correct answer is c. 276 mL of 1.58 M HCl.

To know more about mole ratio, refer here:

https://brainly.com/question/28997213#

#SPJ11

calculate the ph for each case in the titration of 50.0 ml of 0.220 m hclo(aq) with 0.220 m koh(aq). use the ionization constant for hclo. what is the ph before addition of any koh? ph

Answers

The pH of the given solution has to be calculated when titrating 50.0 ml of 0.220 M HClO (aq) with 0.220 M KOH (aq) before the addition of any KOH will be 13.34.

What is the pH of solution?

To determine the pH of solution, we need to first determine the ionization constant of HClO (aq).

Ka = [H₃O⁺] [ClO⁻]/[HClO]

Let's write down the acid dissociation reaction of HClO (aq).

HClO (aq) + H₂O (l) → H₃O⁺(aq) + ClO⁻(aq) (Ka = 3.5 times 10⁻⁸)

Initial concentration: [HClO] = 0.220m

[H₃O⁺] = x

[ClO⁻] = x

At equilibrium, Ka = (x)(x)/(0.220 - x)

3.5 times 10⁻⁸ = x²/(0.220 - x)

Since the concentration of x in denominator is much smaller than the initial concentration, we can consider that as 0.220

0.220 - x.x = 4.69 times 10⁻⁴m

The concentration of H⁺ ions is equal to the concentration of H₃O⁺ ions. Thus, [x]small

[H₃O⁺] = 4.69 times 10⁻⁴m

pH = -log [H₃O⁺] = -log (4.69 times 10⁻⁴) = 3.33

The pH of the solution before adding any KOH is 3.33. Calculate pH after each addition of KOH. After adding 50.0 ml of 0.220 M KOH (aq), the concentration of HClO (aq) will become zero. We will have KOH (aq) remaining in the solution. Thus, we will have to calculate the pH of a strong base. The stoichiometry of the reaction will be 1:1 because both HClO (aq) and KOH (aq) are monoprotic acids and bases respectively. We have to calculate the number of moles of KOH (aq) added. The number of moles of KOH (aq) will be,

n = MV

Where, M is the molarity of KOH (aq) and V is the volume of KOH (aq) added. n = (0.220m) (50.0ml/1000) = 0.011mol

The amount of KOH (aq) is equal to the amount of OH⁻ ions.

[OH⁻] = 0.011mol (0.050L) = 0.22M

pOH = - log [OH⁻] = - log (0.22) = 0.6575

pH = 14 - pOH = 14 - 0.6575 = 13.34

The pH of the solution is 13.34.

Learn more about pH here:

https://brainly.com/question/15289741

#SPJ11

When ammonia reacts with oxygen, nitrogen monoxide and water are produced. The balanced equation for this reaction is: 4NH3 (g) + 5O2 (g) 4NO (g) + 6H2O (g) If 16 moles of ammonia react, The reaction consumes moles of oxygen The reaction produces moles of nitrogen monoxide and moles of water

Answers

The reaction consumes 20 moles of oxygen, and it produces 16 moles of nitrogen monoxide and 24 moles of water.

What is mole?

The quantity amount of substance is a measure of how many elementary entities of a given substance are in an object or sample. The mole is defined as containing exactly 6.022×10²³ elementary entities.

When ammonia reacts with oxygen, the balanced equation is:

4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)

It is known that 16 moles of ammonia react, and we have to calculate the moles of oxygen, nitrogen monoxide, and water produced by the reaction.

The balanced equation shows that 4 moles of NH3 react with 5 moles of O2 to produce 4 moles of NO and 6 moles of H2O.

According to the stoichiometry of the reaction, 16 moles of NH3 will react with

(5/4) × 16 = 20 moles of O2

Hence, the reaction consumes 20 moles of oxygen.

The balanced equation shows that 4 moles of NH3 react with 4 moles of NO to produce 4 moles of NO and 6 moles of H2O.

According to the stoichiometry of the reaction, 16 moles of NH3 will produce

(4/4) × 16 = 16 moles of NO

Hence, the reaction produces 16 moles of nitrogen monoxide.

The balanced equation shows that 4 moles of NH3 react with 6 moles of H2O to produce 4 moles of NO and 6 moles of H2O.

According to the stoichiometry of the reaction, 16 moles of NH3 will produce

(6/4) × 16 = 24 moles of H2O

Hence, the reaction produces 24 moles of water.

Learn more about moles on:

https://brainly.com/question/29367909

#SPJ11

Label each of the following species as a strong acid, a weak acid, a strong base, or a weak base. (1) LiOH [ Select] (2) CH3NH2 [ Select ] (3) HF [Select) (4) HBO [Select)

Answers

The given species and their label as strong acid, weak acid, strong base or weak base are: Strong acid: LiOH, strong base: CH₃NH₂ and Weak base: HF weak acid: HBO.

What is an acid and a base?

An acid is a molecule that donates hydrogen ions or protons and/or accepts electrons. When dissolved in water, it increases the concentration of H⁺ ions. Acids have a pH of less than 7.

A base is a substance that accepts hydrogen ions or protons and/or donates electrons. When dissolved in water, it increases the concentration of OH⁻ ions. Bases have a pH greater than 7.

A strong acid is an acid that is 100% ionized in water. It is highly reactive and has a low pH.

A weak acid is an acid that partially dissociates in water. It is less reactive than a strong acid and has a pH greater than 7.0.

A strong base is a base that is completely ionized in water. It has a high pH and is highly reactive.

A weak base is a base that partially dissociates in water. It is less reactive than a strong base and has a pH less than 7.0.

Learn more about Acids and bases here:

https://brainly.com/question/21974787

#SPJ11

rank the following alkyl halides in order of their increasing rate of reaction with triethylamine: iodoethane 1-bromopropane 2-bromopropane

Answers

The rate of reaction of alkyl halides with triethylamine increases with the electron-releasing effect of the halide group, which increases in the order - Iodoethane < 1-bromopropane < 2-bromopropane.

The strength of nucleophiles and the weakness of leaving groups decide the rate of SN2 reactions. This is what determines the reactivity of alkyl halides.

Alkyl halides are classified as primary, secondary, or tertiary based on the number of carbons that the halogen is bonded to. Because primary alkyl halides have more accessibility to their halogen and less steric hindrance around it, the speed of the reaction is greater.

Read more about the topic of alkyl halides:

https://brainly.com/question/31034148

#SPJ11

an exothermic chemical reaction between a solid and a liquid results in gaseous products. spontaneous?

Answers

An exothermic chemical reaction between a solid and a liquid results in gaseous products. It is a spontaneous reaction.

What is an exothermic reaction?

When a chemical reaction takes place with the release of heat, it is known as an exothermic chemical reaction. An exothermic chemical reaction is a chemical reaction that releases energy in the form of heat, light, or sound during the process. The burning of paper is an example of an exothermic chemical reaction. When paper burns, heat and light are produced, which we can feel or observe.

The reaction is spontaneous if the Gibbs free energy, delta G is negative. A reaction will be spontaneous if its delta G is negative. The reaction will proceed from left to right if delta G is negative, and it will proceed from right to left if delta G is positive. A reaction will be at equilibrium if delta G is zero.The reaction mentioned in the question is an exothermic chemical reaction because it results in the release of heat. As a result, the reaction is spontaneous. The production of gaseous products indicates that a gas is formed during the reaction. Therefore, this reaction is spontaneous.

Learn more about Exothermic reaction here:

https://brainly.com/question/10373907

#SPJ11

What kind of system is an exploded hydrogen balloon?
A. Isolated system
B. Closed system
C. Open system
D. No way to tell

Answers

An exploded hydrogen balloon is an example of an open system (option C).

What is an open system?

An open system is a system that can exchange both matter and energy with its surroundings. In an open system, there is a flow of matter and energy in and out of the system. This means that the system is not isolated from its environment, and it interacts with the outside world.

An exploded hydrogen balloon is an example of an open system because during the explosion, the system (which includes the balloon and the hydrogen gas inside) releases matter (hydrogen gas) and energy (in the form of heat and sound) into the surrounding environment.

Learn about An open system here https://brainly.com/question/5054863

#SPJ1

Can you explain in terms of Le Chatelier's principle why the concentration of NH3 decreases when the temperature of the equilibrium system increases?

Answers

Le Chatelier's principle predicts that when a stress or change is added to a system at equilibrium, the system will adjust in order to counteract the stress or change. The principle can be used to describe the shift in the direction of the chemical equilibrium in response to changes in pressure, temperature, or concentration.

What is Le Chatelier's principle?

Le Chatelier's principle states that when the temperature is increased, the equilibrium system will absorb the heat by shifting the equilibrium position in the direction that uses up the heat energy. If heat is a product of the reaction, the equilibrium will shift to the left. If heat is a reactant, the equilibrium will shift to the right.

Here, in the case of the reaction of nitrogen and hydrogen to create ammonia:

N₂(g) + 3H₂(g) ⇌ 2NH₃(g), ∆H = −92 kJ/mol

The reaction produces heat, therefore the reaction is exothermic. An increase in temperature will cause a shift in equilibrium to the left, as the reaction will try to use up the excess heat. This means that the reaction will reduce the amount of NH₃ in the system, leading to a decrease in the concentration of NH₃.

Learn more about Le Chatelier's Principle here:

https://brainly.com/question/29009512

#SPJ11



1) In this experiment, you will be mixing aqueous solutions of sodium carbonate and calcium chloride to produce solid calcium carbonate.

Na CO2 (aq) +CaCl(aq) — 2 NaCl(aq) +CaCO3

Order the steps required to predict the volume (in mL) of 0. 200 M sodium carbonate needed to produce 2. 00 g of calcium carbonate. There is an excess of calcium chloride.

Comp

Identi

volum

2

>

Calcu

Check

>

Step 1

Convert mass of calcium carbonate 10 moles of calcium carbonate

Step 2

Compare moles of calcium carbonate to moles of sodium carbonate based on balanced equation to calculate moles of sodium carbonate required

Step 3

Compute the volume of sodium carbonate solution required

Step 4

Convert the volume of sodium carbonate solution required from liters to milliers

2) Na2CO3(aq) + CaCl2(ag) + 2NaCl(aq) + CaCO3(-)

Calculate the volume (in mL) of 0. 200 M Na2CO, needed to produce 2. 00 g of CaCO3(s). There is an excess of CaCl.

Molar mass of calcium carbonate = 100. 09 g/mol

Volume of sodium carbonate - 100 mL

METHODS

RESET

MY NOTES

A LAB DATA

Answers

Based on the information provided, the correct order of steps required to predict the volume of 0.200 M sodium carbonate needed to produce 2.00 g of calcium carbonate is:

Step 1: Identify the molar mass of calcium carbonate (CaCO3)

Step 2: Convert the given mass of calcium carbonate to moles using its molar mass

Step 3: Use the balanced chemical equation to determine the mole ratio between calcium carbonate and sodium carbonate

Step 4: Calculate the amount of moles of sodium carbonate required

Step 5: Convert the moles of sodium carbonate to volume in liters using its molarity

Step 6: Convert the volume in liters to milliliters

Therefore, the correct order of steps is:

Step 1: Identify

Step 2: Convert

Step 3: Compute

Step 4: Convert

Step 5: Convert

Step 6: Check

Using the given information, the calculation can be done as follows:

Step 1: The molar mass of calcium carbonate (CaCO3) is given as 100.09 g/mol.

Step 2: The given mass of calcium carbonate is 2.00 g. Therefore, the number of moles of calcium carbonate can be calculated as follows:

2.00 g / 100.09 g/mol = 0.01998 mol ≈ 0.020 mol

Step 3: According to the balanced chemical equation, the mole ratio between calcium carbonate and sodium carbonate is 1:1. Therefore, the amount of moles of sodium carbonate required is also 0.020 mol.

Step 4: The molarity of the sodium carbonate solution is given as 0.200 M. Therefore, the volume of sodium carbonate solution required in liters can be calculated as follows:

0.020 mol / 0.200 mol/L = 0.100 L = 100 mL

Step 5: The volume in liters needs to be converted to milliliters:

0.100 L x 1000 mL/L = 100 mL

Step 6: Check the answer to make sure it is reasonable and makes sense.

To know more about sodium carbonate, visit: brainly.com/question/13565765

#SPJ4

What volume of 0.125 M HNO3, in milliliters, is required to react completely with 1.70 g of Ba(OH)2? 2 HNO3(aq) + Ba(OH)2(s) Ba(NO3)2(aq) + 2 H2O(l)

Answers

Answer:

What volume of 0.125 M HNO3, in milliliters, is required to react completely with 1.70 g of Ba(OH)2? 2 HNO3(aq) + Ba(OH)2(s) Ba(NO3)2(aq) + 2 H2O(l)

Explanation:

The complete and balanced chemical equation for the reaction of nitric acid

H

N

O

3

with barium hydroxide

B

a

(

O

H

)

3

is given by

2

H

N

O

3

(

a

q

)

+

B

a

(

O

H

)

2

B

a

(

N

O

3

)

2

(

a

q

)

+

2

H

2

O

(

a

q

)

The volume of a certain concentration of nitric acid

H

N

O

3

required to react with a particular amount of

B

a

(

O

H

)

2

is obtained by first calculating the number of moles of

H

N

O

3

using stoichiometry. Using the molar mass of

B

a

(

O

H

)

2

,

M

M

B

a

(

O

H

)

2

=

171.3

g

/

m

o

l

,

and the mole ratio

2

m

o

l

H

N

O

3

1

m

o

l

B

a

(

O

H

)

2

,

then

{eq}\begin{align} \rm moles\ of\ HNO_3...

hope it hels you

The presence of heterogeneous catalyst will not affect the:
Select the correct answer below:
A. molecularity of the overall chemical equation
B. molecularity of the rate-determining step
C. both of the above
D. none of the above

Answers

The correct answer is option C. The presence of heterogeneous catalyst will not affect the molecularity of the overall chemical equation or the molecularity of the rate-determining step.

What is a Heterogeneous catalyst?

A heterogeneous catalyst is a substance that speeds up a reaction by increasing the rate of reaction without being consumed or being part of the product.

The surface of a solid is a popular spot for such a catalyst.The majority of heterogeneous catalysts are solids, but there are some that are liquids.

The two types of catalysts are homogeneous and heterogeneous. Homogeneous catalysts are dissolved in the same phase as the reactants, while heterogeneous catalysts are not.

Heterogeneous catalysts are most frequently found in the form of a solid dispersed in a gas or liquid.

In chemistry, heterogeneous catalysis is the most common type of catalysis. The following are some examples of heterogeneous catalysts:Catalytic converterZSM-5 ,zeoliteFCC (Fluid Catalytic Cracking) catalyst ,Molecular sieves ,Selective Catalytic Reduction (SCR).

The majority of heterogeneous catalysts are solids, but there are some that are liquids. Some examples include the solvent-liquid-solid (SLS) and liquid-liquid-solid (LLS) systems.

Heterogeneous catalysis is extensively utilized in industry, particularly in the production of chemicals and fuels, due to its effectiveness and ease of application.

For more information about Heterogeneous catalyst refer here

https://brainly.com/question/1563647

#SPJ11

A certain half-reaction has a standard reduction potential EPod=-0.75 V. An engineer proposes using this half-reaction at the cathode of a galvanic cell that must provide at least 0.90 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the cathode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the anode of this cell can have? Is there a maximum standard reduction potential that the half-reaction used at the anode of this cell can have? By using the information in the ALEKS Data tab, write a balanced equation describing a half reaction that could be used at the anode of this cell. Note: write the half reaction as it would actually occur at the anode.

Answers

Using the following formula, the total cell potential, Ecell, may be calculated:   Ecathode + anode equals Ecell. where Ecathode is the cathode half-reduction reaction's potential and Eanode.

We can determine the minimal Eanode needed to create a cell potential of 0.90 V since the engineer suggests employing a half-reaction with EPod = -0.75 V at the cathode:

Ecathode + anode equals Ecell.

Eanode: 0.90 V = -0.75 V

Eanode = 0.75 0.90 volts

Eanode equals 1.65 V.

The half-reaction employed at the anode must thus have a standard reduction potential of -1.65 V or less.

The typical reduction potential of the half-reaction utilised at the anode, on the other hand, has no upper limit. Yet, a higher Ecell and a more effective galvanic cell would be produced by a larger reduction potential at the anode.

We can utilise the half-reaction to create a balanced equation for the anode half-reaction:

Cu(s) becomes Cu2+(aq) plus 2e-

learn more about  half-oxidation reaction's potential.here:

https://brainly.com/question/23302600

#SPJ4

write each of the following as an empirical formula. if it is already an empirical formula, put a check mark. c4h1006 1) al(so3)1.5 ch3 fe(no3)3

Answers

Answer:
The empirical formula for C₄H₁₀0₆ is CH₂O
The empirical formula for Al(SO₃)1.5 is Al₂(SO₄)3
The empirical formula for CH₃ is already given.
The empirical formula for Fe(NO₃)3 is already given.

Explanation: Empirical formula is the simplest formula that gives the simplest whole number ratio of atoms in a compound.

To get the empirical formula, the given formula must be reduced to its simplest whole-number ratio. For this, divide each subscript by the largest common factor.

Hence, the empirical formulae for the given formulas are,

The empirical formula for C₄H₁₀0₆ is CH₂O
The empirical formula for Al(SO₃)1.5 is Al₂(SO₄)3
The empirical formula for CH₃ is already given.
The empirical formula for Fe(NO₃)3 is already given.

Learn more about empirical formulas here:

https://brainly.com/question/1439914

#SPJ11

Write all each equation with absolute without absolute value given for the conditions y=|x + 5| if x<-5

Answers

Without absolute value , for y=|x + 5| for  x <-5, y = -2x

If x < -5, then x + 5 < 0. Therefore, y = |x + 5| = -(x + 5).

y = -(x + 5)

Note that this equation is only valid when x < -5. For values of x greater than or equal to -5, the absolute value of (x + 5) becomes positive, and y = |x + 5| = x + 5. Therefore, the equation for the full domain of y = |x + 5| is:

y = -(x + 5) for x < -5

Therefore | x -5 | should be changed to 5 - x to get a positive value.

Also | x - (-5) | should be changed to -5 -x to get a positive value.Therefore y = 5 - x + -5 - x = -2x

without absolute value , for x <-5, y = -2x

The term "absolute value" is not commonly used. However, there is a related concept called "absolute configuration." Absolute configuration refers to the spatial arrangement of atoms or groups of atoms around a chiral center in a molecule. A chiral center is a carbon atom that has four different groups attached to it.

The absolute configuration of a chiral center can be determined using the Cahn-Ingold-Prelog (CIP) rules, which assign priority to the four different groups based on their atomic numbers. By following these rules, we can determine whether the chiral center has an R or S configuration. Knowing the absolute configuration of a chiral center is important because it determines the molecule's biological activity and the way it interacts with other molecules in a chemical reaction.

To learn more about Absolute value visit here:

brainly.com/question/4691050

#SPJ4

a solution is prepared by mixing 736.0 ml of ethanol with 694.0 ml of water. the molarity of ethanol in the resulting solution is 9.186 m. the density of ethanol at this temperature is 0.7893 g/ml. calculate the difference in volume between the total volume of water and ethanol that were mixed to prepare the solution and the actual volume of the solution.

Answers

The volume difference between the total volume of water and ethanol that were mixed to prepare the solution and the actual volume of the solution is 538.56 ml.

What is the volume difference?

To calculate the volume difference, we need to first calculate the total volume of the solution and the volume of each component in the solution.

The total volume of the solution is the sum of the volumes of ethanol and water:

Total volume = volume of ethanol + volume of water

Total volume = 736.0 ml + 694.0 ml

Total volume = 1430.0 ml

To calculate the volume of ethanol in the solution, we need to convert the mass of ethanol to volume using its density:

Mass of ethanol = volume of ethanol x density of ethanol

Volume of ethanol = mass of ethanol / density of ethanol

Volume of ethanol = (9.186 mol/L) x (0.7893 g/ml) x (736.0 ml) / (46.07 g/mol)

Volume of ethanol = 197.44 ml

Similarly, we can calculate the volume of water in the solution:

Volume of water = 694.0 ml

Therefore, the actual volume of the solution is the sum of the volumes of ethanol and water:

Actual volume of solution = volume of ethanol + volume of water

Actual volume of solution = 197.44 ml + 694.0 ml

Actual volume of solution = 891.44 ml

The volume difference is the difference between the total volume of ethanol and water that were mixed and the actual volume of the solution:

Volume difference = Total volume - Actual volume of solution

Volume difference = 1430.0 ml - 891.44 ml

Volume difference = 538.56 ml

Learn more about volume difference here: https://brainly.com/question/21305745

#SPJ1

10 ml of ethanol is mixed with 250 ml of water calculate the volume percentage of ethanol

Answers

Answer: 3.85%

Explanation: To calculate the volume percentage of ethanol in the mixture, we need to determine the total volume of the mixture first.

Total volume = volume of ethanol + volume of water

Total volume = 10 ml + 250 ml

Total volume = 260 ml

Now, we can calculate the volume percentage of ethanol in the mixture using the following formula:

Volume percentage of ethanol = (volume of ethanol ÷ total volume) x 100%

Plugging in the values, we get:

Volume percentage of ethanol = (10 ml ÷ 260 ml) x 100%

Volume percentage of ethanol = 3.85%

Therefore, the volume percentage of ethanol in the mixture is 3.85%.

Rank the Alkyl Halides in Order of Increasing E2 Reactivity 2 Rank the following alkyl halides in order of increasing reactivity in an E2 reaction. Be sure to answer all parts. lowest reactivity ______intermediate reactivity ______highest reactivity ______

Answers

The alkyl halides ranked in order of increasing E2 reactivity are: lowest reactivity - tert-butyl bromide; intermediate reactivity - sec-butyl bromide; highest reactivity - ethyl bromide.

Tert-butyl bromide is the least reactive alkyl halide because it has the greatest steric hindrance, meaning there is less space for the nucleophile and base to interact. Sec-butyl bromide has intermediate reactivity because it has less steric hindrance than tert-butyl bromide but more than ethyl bromide. Ethyl bromide is the most reactive alkyl halide because it has the least steric hindrance and therefore the nucleophile and base can interact with ease. In summary, the order of increasing E2 reactivity is: tert-butyl bromide, sec-butyl bromide, and ethyl bromide.

For more questions on alkyl halides

https://brainly.com/question/6419720

#SPJ11

which type of atomic orbital can be described as having 2 lobes of electron density separated by a nodal plane?

Answers

The type of atomic orbital that can be described as having 2 lobes of electron density separated by a nodal plane is the P orbital.

In atomic theory, an atomic orbital is a mathematical function that describes the behavior of one electron in an atom. It is a region in space with a high probability of locating an electron.

There are 3 types of orbitals available in each sub-shell of an atom. The sub-shell in each shell can be used to predict the number of orbitals.

There are 1 s-orbital, 3 p-orbitals, 5 d-orbitals, and 7 f-orbitals available in the first, second, and third shells, respectively. The type of atomic orbital that can be described as having 2 lobes of electron density separated by a nodal plane is the P orbital.

Each P orbital has two lobes of electrons located on either side of the nucleus separated by a nodal plane. The lobes can be polarized, making them more or less prominent depending on the situation.

This configuration provides the P orbital with a unique geometry and makes it highly suitable for molecular bonding.

The P orbital has a total of three different orientations. Each orientation corresponds to a different direction in space in which the lobes can be located. The three orientations are Px, Py, and Pz.

Each P orbital can hold a maximum of 2 electrons.

To know more about atomic orbitals, refer here:

https://brainly.com/question/28240666#

#SPJ11

Explain the following statement about the rate law equation: The rate constant isn't really
constant. Include the definition of the term rate constant in your answer and give two
specific examples to support this statement.

Answers

Answer:

In chemical kinetics, the rate constant (k) is a proportionality constant that relates the rate of a chemical reaction to the concentrations of the reactants. It is often included in the rate law equation, which expresses the relationship between the rate of the reaction and the concentrations of the reactants.

However, the rate constant is not truly constant because it can vary with different experimental conditions. The rate constant is affected by factors such as temperature, pressure, and the presence of catalysts or inhibitors. For example, an increase in temperature usually leads to an increase in the rate constant, while the addition of a catalyst can decrease the activation energy and increase the rate constant.

Two specific examples that support this statement are:

1) The effect of temperature on the rate constant: Consider the reaction A → B, which has a rate law equation of rate = k[A]. If the temperature is increased, the rate constant will increase due to the increase in kinetic energy of the reactant molecules. This means that the reaction will proceed faster at higher temperatures, even if the concentration of A remains the same.

2) The effect of catalysts on the rate constant: Consider the reaction C + D → E, which has a rate law equation of rate = k[C][D]. If a catalyst is added to the reaction, it can increase the rate constant by providing an alternate pathway with a lower activation energy. This means that the reaction will proceed faster at the same concentrations of C and D with the catalyst present than without it.

Explanation:

Calculate the amount of heat needed to boil 132.g of water (H20), beginning from a temperature of 7.4 °C. Round your answer to 3 significant digits. Also, be sure your answer contains a unit symbol

Answers

62.297 kJ of heat is required  to boil 132.g of water (H20), beginning from a temperature of 7.4 °C.

The quantity of heat required to boil 132 g of water at a temperature of 7.4°C is to be calculated. The heat energy required to increase the temperature of a material by one degree Celsius is referred to as heat capacity or specific heat. The formula for specific heat capacity is given by Q = mCΔT where Q is the quantity of heat, m is the mass of the material, C is the specific heat capacity of the material, and ΔT is the difference in temperature.

We'll utilise the following formula to calculate the heat required:q = m x c x ΔT + m x Lwhere q is the quantity of heat, m is the mass of the material, c is the specific heat of the material, ΔT is the difference in temperature, and L is the material's latent heat of vaporization.

The value of q can now be calculated : q = (132.0 g) × (4.184 J/g°C) × (100°C – 7.4°C) + (132.0 g) × (2.26 × 106 J/kg)q = 62297.0 J. The heat required to boil 132 g of water beginning at 7.4°C is 62297.0 J. This means that 62.297 kJ of heat is required.

Know more about specific heat capacity here:

https://brainly.com/question/29766819

#SPJ11

What is used to prepare a calibration curve? O A solvent blank. O A set of solutions with various unknown analyte concentrations. O A set of solutions with a range of precisely known analyte concentrations. A set of solutions with the exact same analyte concentration.

Answers

Option 3) A set of solutions with a range of precisely known analyte concentrations is used to prepare a calibration curve. The curve is generated by plotting the response (such as absorbance or peak area) of the instrument against the concentration of the analyte in the standard solutions.

The calibration curve is then used to determine the concentration of the unknown sample by comparing its response to the curve. A solvent blank is used to correct for any background signal from the solvent or other components in the sample matrix.

Calibration is the process of identifying any departure from the correct value by comparing the output of a measuring system or instrument to a standard or reference of established accuracy. Calibration's goals include ensuring the measurement system's accuracy and dependability and fixing any potential deviations.

In many different fields, including manufacturing, healthcare, and environmental monitoring, calibration is crucial. It is used to calibrate tools like spectrophotometers, pH metres, balances, and thermometers, among others. To make sure the instruments are operating within the necessary specifications, calibration procedures are normally carried out on a regular basis.

Learn more about calibration here:

https://brainly.com/question/28325954

#SPJ4

What would you predict, the solubility of KHT (solid) in pure water compared with the solubility of KHT (solid) in a 0.1 M KCl solution, which one will be higher? Explain your answer

Answers

The solubility of KHT (solid) in pure water compared with the solubility of KHT (solid) in a 0.1 M KCl solution will be higher in a 0.1 M KCl solution. KCl is an electrolyte, which is a substance that dissociates into ions when it is dissolved in water. The presence of these ions can affect the solubility of other substances in the solution, which is known as the

common-ion effect.The common-ion effect is the reduction in the solubility of a substance due to the presence of a common ion in the solution. In this case, KCl contains K+ ions, which are also present in KHT. When KCl is dissolved in

water, it dissociates into K+ and Cl- ions. The K+ ions from KCl can react with the KHT and form the insoluble salt KHT. As a result, the solubility of KHT in the solution is reduced.In pure water, there are no K+ ions present, so the solubility

of KHT will be higher. However, in a 0.1 M KCl solution, the presence of K+ ions from KCl will decrease the solubility of KHT. Therefore, the solubility of KHT in a 0.1 M KCl solution will be lower than in pure water.

For more similar questions on topic Solubility equilibria.

https://brainly.com/question/14409825

#SPJ11

Practice Problem 11.15b Propose an efficient synthesis for the following transformation. y The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagent(s) in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. A B с Br2 HBr, ROOR cat. OsO4, NMO D HBr E H2, Pd F H2SO4, H2O, HgSO4 I 1) O3; 2) DMS H 1) xs NaNH2, 2) H20 1) R2BH; 2) H2O2, NaOH Practice Problem 11.18d Propose an efficient synthesis for the following transformation. The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagent(s) in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. B с HBr, ROOR 1) O3; 2) DMS Br2, hv F D H2S04, H20, HgSO4 E H2, Lindlar's cat. HC=CNa I G HBr H NaOme 1) R2BH; 2) H2O2, NaOH Practice Problem 11.21a X Incorrect. Propose an efficient synthesis for the following transformation. The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagent(s) in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. A B HBr, ROOR HC=CNa 1) R2BH; 2) H2O2, NaOH D HBr E CH3CH2Br H2S04, H2O, HgSO4 G NaOH н conc. H2SO4, heat I 1) LiAlH4; 2) H307 Practice Problem 11.21b Propose an efficient synthesis for the following transformation. :- The transformation above can be performed with some reagent or combination of the reag spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide j B с t-BuOK 1) O3; 2) DMS Br2, hv D H2SO4, H20, HgSO4 E H2, Lindlar's cat. F HC=CNa H HBr, ROOR HBr I 1) R2BH; 2) H202, NaOH Practice Problem 11.21c Propose an efficient synthesis for the following transformation. SOH The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagent(s) in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. B с HBr, ROOR HC=CNa 1) R2BH; 2) H202, NaOH F D HBr E CH3CH2Br H2SO4, H20, HgSO4 I G NaOH H conc. H2S04, heat 1) 03; 2) H20 Propose an efficient synthesis for the following transformation. - li The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagent(s) in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. А B HBr conc. H2S04, heat HC=CNa D HBY, ROOR E Hy, Lindlar's cat. 1) O3; 2) DMS G Brą, hv H dilute H2SO4 I H2, Pt Practice Problem 11.25a Propose an efficient synthesis for the following transformation: % Br The transformation above can be performed with some combination of the reagents listed below. Give the necessary reagents in the correct order for each transformation, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. А t-BuOK B OsO4, NMO c 1) O3; 2) DMS D H2, Pt E H2, Lindlar's cat F xs HBr I G 1) BH 3.THF; 2) H202, NaOH H MeONa Br2, hv Reagent(s);

Answers

The reagent(s) for the given transformation is "A B C D E F G H I", which is t-BuOK, OsO4, NMO, O3, DMS, H2, Pt, H2, Lindlar's cat., xs HBr, BH3.THF, H202, NaOH, MeONa, Br2, hv.

What is transformation?

Transformation is the process of changing something into a different form or state. It can involve altering the physical characteristics, behaviors, attitudes, or perceptions of an entity. Transformation is a process that occurs in a variety of contexts including business, education, technology, and personal development.

A) t-BuOK - For the given transformation, the initial step is to add an alkoxide, here t-BuOK, to the starting material.
B) OsO4, NMO - After the addition of the alkoxide, the resulting intermediate has to be oxidized by OsO4 and NMO reagents.
C) 1) O3; 2) DMS - The intermediate then has to be ozonolyzed using ozone and dimethyl sulfide (DMS).
D) H2, Pt - The ozonolysis will result in a mixture of aldehyde and ketone. The aldehyde has to be hydrogenated using H2 and Pt.
E) H2, Lindlar's cat. - The ketone has to be hydrogenated using H2 and Lindlar's catalyst.
F) xs HBr - The product of the hydrogenation has to be converted to a tertiary alcohol by an elimination reaction with HBr.
G) 1) BH3.THF; 2) H202, NaOH - The tertiary alcohol has to be oxidized to a tertiary ketone using BH3.THF, H202 and NaOH.
H) MeONa - The tertiary ketone has to be methylated using MeONa.
I) Br2, hv - The product of the methylation has to be brominated using Br2 and heat.
Therefore, the reagent(s) for the given transformation is "A B C D E F G H I", which is t-BuOK, OsO4, NMO, O3, DMS, H2, Pt, H2, Lindlar's cat., xs HBr, BH3.THF, H202, NaOH, MeONa, Br2, hv.

To learn more about transformation
https://brainly.com/question/382594
#SPJ1

Which one of the following compounds behaves as an acid when dissolved in water?
A. RaO
B. RbOH
C. C4H10
D. HI

Answers

The compound that behaves as an acid when dissolved in water is HI (hydrogen iodide). Thus, the correct option will be D.

What is an acid?

HI is an Arrhenius acid, meaning it produces hydrogen ions (H⁺) in aqueous solution. The compound that behaves as an acid when dissolved in the water Hydrogen iodide (HI). HI is a diatomic molecule and a colorless gas at room temperature.

Hydrogen iodide is a strong acid when dissolved in water, with a pKa of −10. Hydrogen iodide is also used as a reducing agent in organic chemistry in the production of iodinated compounds.

Learn more about Acids here:

https://brainly.com/question/29796621

#SPJ11

Other Questions
a. When prospect theory occurs, O people are better able to process changes in product sizes than changes in price. O gains are felt more intensely than losses. O people judge gains and losses relative to the status quo that they are used to. O people assign the same utility to a given situation regardless of their previous status quo. b. When a framing effect occurs, O the choice of strategy doesn't matter since consumers are generally able to recognize price increases regardless of what form they take. O recent information has the most influence on decision making. O people's preferences can change drastically dependent on contextual information. O people isolate purchases and fail to consider all consumption options. c. When anchoring occurs, O recent information has the most influence on decision making. O people judge gains and losses relative to the status quo that they are used to. O the choice of strategy doesn't matter since consumers are generally able to recognize price increases regardless of what form they take people are better able to process changes in product sizes than changes in price. d. When mental accounting occurs, Opeople isolate purchases and fail to consider all consumption options. O people's preferences can change drastically dependent on contextual information. O people assign the same utility to a given situation regardless of their previous status quo. people are better able to process changes in product sizes than changes in price. a) Explain why alkenes are described as being unsaturated hydrocarbons.b) Use a diagram to illustrate how a carbon-carbon double bond forms.c) Draw and explain the mechanism for the reaction between ethene and hydrogen bromide (HBr). In your explanation include and define the terms 'electrophile' and 'carbocation'. Use curly arrows to show electron movements and indicate any partial charges. Three inductors are connected in parallel. Inductor 1 has an inductance of 2.5 H, inductor 2 has an inductance of 1.8 H, and inductor 3 has an inductance of 1.2 H. What is the total inductance of this circuit? What are the steps in the marketing research process? what explains canadas diverse mix of people and settlement patterns? ebay is an example of a(n) b2b? site that allows buyers to bid and compete for a variety of new and used goods What did Reagan's Economic Recovery Tax Act plan to do?A. Increase taxes by 70%B. Reduce taxes by 10%C. Increase taxes by 30%D. Reduce taxes by 25% identify the statements that accurately describe the weaknesses of the government under the articles of confederation. Figure 5 shows the reverse bias characteristics of a metal-semiconductor (MS) junction diode. The slight increase in reverse current with the applied reverse bias is due to (a) R-G of carriers in the MS junction (b) Drift of minority carriers in the MS junction (c) A consequence of Schottky barrier lowering Figure 5: Reverse bias characteristics for an MS diode (d) None of these Private solutions to externalities are MOST likely to occur when there are:communal property rights and large numbers of buyers and sellers with equal bargaining power.private property rights and high transaction costs.communal property rights and large numbers of sellers.well-defined property rights and low transaction costs. Question is in the image, please help if 2.5 kj of energy are absorbed, how many grams of silver are required if the temperature of the silver was increased by 7.5 oc? (the specific heat of silver is 0.2330 j/goc.) looks at picture to below to answer this question for 20 points The process of translation involves all of the following EXCEPT:A) charging tRNA molecules with amino acidsB) initiation directed by specific sequencesC) elongation relying on base pairingD) termination controlled by proteins recognizing stop codonsE) actually, all of these are key parts of translation Mating of an organism to double recessive in order to determine whether it is homozygous or heterozygous for a character is called ____________.a. Dihybrid crossb. Back crossc. Test crossd. Reciprocal cross (5x^2+2x-7)-(3x^2+6x-9) A body in a room at 300 k is heated to 3,000k. The amount of energy radiated each second by the body increases by a factor of:a) 10b) 100c) 1,000d) 10,000e) 100,000 both the cno cycle and the proton-proton chain combine 4 h nuclei to produce 1 he nucleus. would those two processes release the same amount of energy per he nucleus produced? why or why not? . The ______ test is used if the classification involves either a suspect class or a fundamental constitutional right.A. minimum rationalityB. quasi-strict scrutinyC. rational basisD. prior restraintsE. strict scrutiny 1. Mass of the empty Dish 167.0 g2. Mass of the dish plus kernel before heating 169.0 g3. Mass of the kernels before heating 2.0 g4. Mass of the dish plus popped corn 168.8 g5. Mass of the popped corn 1.8 g6. Mass of the water driven 0.2 g7. Mass percent of water in the popcorn 10%Given that a sample of unpopped popcorn weighed 58.2 grams and after popping the popped kernels weighed 51.1 grams, calculate the percent water in the unpopped popcorn.