Answer:
By using a pair of compasses and a ruler you can draw all angles
The annual demand for a product is 16,400 units. The weekly demand is 315 units with a standard deviation of 90 units. The cost to place an order is $31.00, and the time from ordering to receipt is four weeks. The annual inventory carrying cost is $0.20 per unit.
a. Find the reorder point necessary to provide a 95 percent service probability.
b. Suppose the production manager is asked to reduce the safety stock of this item by 55 percent. If she does so, what will the new service probability be?
Answer:
a) The reorder point necessary to provide a 95 percent service probability is 1557 units.
b) The Z value of 0.74 corresponds to 77% service probability.
Step-by-step explanation:
Average weekly demand (d) = 315 units
The standard deviation of weekly demand (\sigmad) = 90 units
Lead time (L) = 4 weeks
At 95% service level value of Z = 1.65
Reorder point = d x L + safety stock
[tex]= d \times L + (Z \times \sigma d \times \sqrt L)\\\\= 315 x 4 + (1.65 x 90 x \sqrt 4)\\\\= 1260 +(1.65 x 90 x 2)\\\\= 1260 + 297\\\\= 1557 units[/tex]
b) Earlier the safety stock was 297 units(calculated in part a)
Now the safety stock is reduced to 55%.so,55% of 297 = 163.35 units
So the new safety stock = 297 - 163.35 = 133.65
[tex]Safety stock = Z \times \sigma d \times \sqrt L\\133.65 = Z x 90 x 2\\133.65 = 180Z\\ Z = 133.65/180\\Z = 0.74[/tex]
The Z value of 0.74 corresponds to 77% service probability.
Perpendicular lines
What is the segment
Find the point P along the directed line segment from point A(–9, 5) to point B(11, –2) that divides the segment in the ratio 4 to 1.
Answer:
[tex]P = (7, -\frac{3}{5})[/tex]
Step-by-step explanation:
Given
[tex]A = (-9,5)[/tex]
[tex]B = (11,-2)[/tex]
[tex]m : n = 4 : 1[/tex]
Required
Point P
This is calculated as:
[tex]P = (\frac{m * x_2 + n * x_1}{m + n}, \frac{m * y_2 + n * y_1}{m + n})[/tex]
So, we have:
[tex]P = (\frac{4 * 11 + 1 * -9}{4 + 1}, \frac{4 * -2 + 1 * 5}{4+1})[/tex]
[tex]P = (\frac{35}{5}, \frac{-3}{5})[/tex]
[tex]P = (7, -\frac{3}{5})[/tex]
A lift in a building starts with 7 passengers and stops at 10 floors.if each passenger is equally likely to get off at any floor and all passengers leave independently.what is the probability that atleast two passengers will get off at the same floor?
Answer:
Correct option is
C
10
5
10P
5
Total ways in which one passenger can stop =10
Total ways in which 5 passengers can stop =10∗10∗10∗10∗10
=10
5
We will select 5 floors from 10 floors and assign each individual to each floor to keep everyone isolated from each other
No. of ways in which no two persons stop at the same floor =10C
5
∗5!
=10P
5
⇒P(E)=10P
5
/10
5
A university found that 25% of its students withdraw without completing the introductory statistics course. Assume that 30 students registered for the course.Use Microsoft Excel whenever necessary and answer the following questions:Compute the probability that 2 or fewer will withdraw
Answer:
0.0106 = 1.06% probability that 2 or fewer will withdraw
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they withdraw, or they do not. The probability of an student withdrawing is independent of any other student, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
25% of its students withdraw without completing the introductory statistics course.
This means that [tex]p = 0.25[/tex]
Assume that 30 students registered for the course.
This means that [tex]n = 30[/tex]
Compute the probability that 2 or fewer will withdraw:
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{30,0}.(0.25)^{0}.(0.75)^{30} = 0.0002[/tex]
[tex]P(X = 1) = C_{30,1}.(0.25)^{1}.(0.75)^{29} = 0.0018[/tex]
[tex]P(X = 2) = C_{30,2}.(0.25)^{2}.(0.75)^{28} = 0.0086[/tex]
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0002 + 0.0018 + 0.0086 = 0.0106[/tex]
0.0106 = 1.06% probability that 2 or fewer will withdraw
which ordered pairs are in the solution set of the system of linear inequalities?
y > -1/3x+2
-
y <2x+3
A. (2,2), (3,1) (4,2)
B. (2,2) (3,-1) (4,1)
C. (2,2) (1,-2) (0,2)
D. (2,2) (1,2) (2,0)
==========================================================
Explanation:
The graph of [tex]y \ge -\frac{1}{3}x+2[/tex] has the boundary y = (-1/3)x+2 which is a solid line. This line goes through (0,2) and (3,1). We shade above the boundary because of the "greater than" sign.
The graph of y < 2x+3 has a dashed boundary line of y = 2x+3, and we shade below the boundary because of the "less than" sign.
The two regions overlap in the upper right corner where it's shaded in the darkest color. The points (2,2), (3,1) and (4,2) are in this upper right corner region. If we plug the coordinates of each point into each inequality, then we'll get true statements.
For instance, let's try (x,y) = (2,2) into the first inequality
[tex]y \ge -\frac{1}{3}x+2\\\\2 \ge -\frac{1}{3}(2)+2\\\\2 \ge -\frac{2}{3}+2\\\\2 \ge -\frac{2}{3}+\frac{6}{3}\\\\2 \ge \frac{-2+6}{3}\\\\2 \ge \frac{4}{3}\\\\2 \ge 1.33\\\\[/tex]
Which is true since 2 is indeed larger than 1.33, so that confirms (2,2) is in the shaded region for [tex]y \ge -\frac{1}{3}x+2\\\\[/tex]
Let's check the other inequality as well
[tex]y < 2x+3\\\\2 < 2(2)+3\\\\2 < 4+3\\\\2 < 7\\\\[/tex]
That works too. So (2,2) is in BOTH shaded regions at the same time; hence, it's a solution to the system. You should find that (3,1) and (4,2) work for both inequalities also. This will confirm choice A is the answer.
--------------------------------
Extra info (optional section)
A point like (3,-1) does not work for the first inequality as shown below
[tex]y \ge -\frac{1}{3}x+2\\\\-1 \ge -\frac{1}{3}(3)+2\\\\-1 \ge -1+2\\\\-1 \ge 1\\\\[/tex]
Since -1 is neither equal to 1, nor is -1 larger than 1 either. The false statement at the end indicates (3,-1) is not a solution to that inequality.
Based on the graph, the point (3,-1) is not above the blue solid boundary line. All of this means we can rule out choice B.
You should find that (1,-2) is a similar story, so we can rule out choice C. Choice D can be ruled out because (2,0) is not a solution to the first inequality.
8. Discount: An auto dealer paid $8730 for a
large order of special parts. This was not the
original price. The amount paid reflects a 3%
discount off the original price because the
dealer paid cash. What was the original price
of the parts?
Answer: 5,987
Step-by-step explanation:
Kobe is a basketball player. He is able to make a free throw 70% of the time. What is the probability that Kobe makes his 10th free throw on his 14th shot
Answer:
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
Step-by-step explanation:
For each free throw, there are only two possible outcomes. Either he makes it, or he misses. The probability of making a free throw is independent of any other free throw, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He is able to make a free throw 70% of the time.
This means that [tex]p = 0.7[/tex]
What is the probability that Kobe makes his 10th free throw on his 14th shot?
9 of his first 13(P(X = 9) when n = 13), and then the 10th with 0.7 probability.
Thus
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{13,9}.(0.7)^{9}.(0.3)^{3} = 0.2337[/tex]
0.7*0.2337 = 0.1636
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
When f(x) = 4 , what is the value of ?
A. 0
B. 2
C. 3
D. 4
What is the standard form equation of the quadratic function shown in this graph?
Answer:
A is the equation in standard form
Step-by-step explanation:
X⁴-6x²-7-8x-x² what is the answers
Answer:
X⁴-7x²-8x-7
Step-by-step explanation:
convert the fraction 3/8 to a decimal WITHOUT the use of a calculator. Show your method clearly. SHOW ALL STEPS!
here you go it's too easy
Step-by-step explanation:
Explanation is in the attachment .
Hope it is helpful to you ❣️☪️❇️
A meteorologist preparing a talk about global warming compiled a list of weekly low temperatures (in degrees Fahrenheit) he observed at his southern Florida home last year. The coldest temperature for any week was 36°F, but he inadvertently recorded the Celsius value of 2°. Assuming that he correctly listed all the other temperatures, explain how this error will affect these summary statistics:a) measures of center: mean and median.b) measures of spread: range, $IQR,$ and standard deviation.
Answer:
nr.herkyrsfdlufshfsyfs
Step-by-step explanation:
dsfsyfksutryrysyrslufzmfyzydzufmzmhfzl
hdhfuthfzhkrskyrsgj
2 (m+n) +m=9
3m-3n = 24
Answer:
m=5
n=-3
Step-by-step explanation:
3m+2m=9
3m-3n=24
3(5)+2(-3)=9
15-6=9 correct
Sam takes a job with a starting salary of $50,000 for the first year. He earns a 4% increase each year. Which expression gives the partial sum, S3, (in thousands)?
HELP PLSSSS I will GIVE BRAINLYEST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A decorative wall in a garden is to be built using bricks that are 5 1/2 inches thick and mortar joints are 1/4 inch thick. What is the height of the wall?
Step-by-step explanation:
SAVE
HOME HACKS & ANSWERSBUILDING & REMODELINGWALLS
How to Calculate How Many Bricks to Build a Wall
By KELVIN O'DONAHUE
Hunker may earn compensation through affiliate links in this story.
...
To estimate the number of bricks needed to build a wall, first measure a single brick.
A wall built from brick not only adds security and strength to your property, it also provides a pleasing geometric backdrop for the landscaping. Because of the bricks' size and weight, homeowners generally arrange to have the amount needed for a large project delivered by the masonry company or lumberyard. Doing so requires that you estimate the number of bricks needed before placing the order.
Step 1
Measure the length and thickness of one of the bricks that will be used in the wall. A standard brick is 2-1/4 inches wide and 7-1/2 to 8 inches long. Add 1/2 inch to both the length and thickness to account for the mortar joint between adjacent bricks. For example, a brick that is 2-1/4 inches by 7-1/2 inches, plus mortar joints, will occupy 2 3/4 inches by 8 inches.
Step 2
Measure the length of the space for the wall and convert the number to inches. Divide the length in inches by the length of a brick plus mortar joint. For example, a wall 36 feet, 8 inches long is 440 inches long (36 X 12 = 432 + 8 = 440). Each course (single layer) of bricks will need 440 / 8 = 55 bricks.
SAVE
HOME HACKS & ANSWERSBUILDING & REMODELINGWALLS
How to Calculate How Many Bricks to Build a Wall
By KELVIN O'DONAHUE
Hunker may earn compensation through affiliate links in this story.
...
To estimate the number of bricks needed to build a wall, first measure a single brick.
A wall built from brick not only adds security and strength to your property, it also provides a pleasing geometric backdrop for the landscaping. Because of the bricks' size and weight, homeowners generally arrange to have the amount needed for a large project delivered by the masonry company or lumberyard. Doing so requires that you estimate the number of bricks needed before placing the orderStep 3
Determine the desired height of the wall in inches, and divide the height by the thickness of a brick and mortar joint. For example, a wall 72 inches tall requires 26.18 courses of 2-3/4-inch-wide bricks; rounded up to 27 courses.
Step 4
Multiply the number of bricks per course (55) by the number of courses (27) to obtain the number of bricks in a single-thickness wall or veneer. For our example, the number is 1,485 bricks. Double that number for a double-thickness wall. Bricklayers generally add 5 percent to the estimate to cover broken or wasted bricks, for about 1,560 bricks in this case
Wade has a test score of 77% on his first test and 65% on his second test. What must he score on a third test to have an average of 80% overall?
93%
98%
89%
None of these choices are correct.
Answer: 98%
Step-by-step explanation:
The third test score = x[tex]\frac{77+65+x}{3} =80\\\frac{142+x}{3} =80\\142+x=80*3\\x=240-142=98[/tex]
The chance of winning the race of the horse A is 1/15 and that of horse B is 1/6. What is
the probability that the race will be won by A or B.
Answer:
7/30
Step-by-step explanation:
P = 1/15 + 1/6 = (2+5)/30 = 7/30
the first term of an arithmetic sequence is -5, and the tenth term is 13. find the common difference
Answer:
2
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
Equivalent question: Find the slope of line going through points (1,-5) and (10,13).
Line points up vertically and subtract. Then put 2nd difference on top of first difference.
(1,-5)
(10,13)
---------'subtracting
-9, -18
So the slope of the line gong through point's (1,-5) and (10,13) is -18/-9=2.
The common difference of an arithmetic sequence whose first term is -5 and whose tenth term is 13 is 2.
Find the circumference of a circle with a diameter of 50 centimeters. Round your answer to the nearest
centimeter.
Given :-
Diameter of circle = 50 cm .To Find :-
The circumference of the Circle.Solution :-
We know that the circumference of the Circle with radius r is given by ,
=> C = 2πr .
Here r is 50cm .=> C = 2 × 3.14 × 50 cm
=> C = 314 cm .
Hence the required answer is 314 cm .
Answer:
Step-by-step explanation:
b 75
Assume one individual from the group is randomly selected. Find the probability of getting someone who tests negative, given that he or she had the disease. the probability is approximately?
Answer:
[tex]P(Negative | Yes) = 0.0486[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{ccc}{} & {Yes} & {No} & {Positive} & {137} & {24} & {Negative} & {7} & {132} \ \end{array}[/tex]
Required
[tex]P(Negative | Yes)[/tex]
This is calculated as:
[tex]P(Negative | Yes) = \frac{n(Negative\ n\ Yes)}{n(Yes)}[/tex]
So, we have:
[tex]P(Negative | Yes) = \frac{7}{137+7}[/tex]
[tex]P(Negative | Yes) = \frac{7}{144}[/tex]
[tex]P(Negative | Yes) = 0.0486[/tex]
PLS HELP please give an explanation if you don’t have one pls still give answer
Find the median in the following numbers:21,19,17,18,15,19,45
Write the following equation in slope-intercept form.
3x-2y= 5
Answer:
y= (3/2)x - (5/2)
Step-by-step explanation:
Slope-intercept form is y=mx+b. So, 3x-2y=5 can be rearranged to slope-intercept form.
We need to isolate the y and get it by itself, so let's subtract the 3x from both sides.
-> -2y = 5 - 3x
Now we need to get rid of the -2 so that the y will be completely alone. So, divide the -2 from both sides of the equation.
-> y = (5/-2) (-3x/-2)
Now rearrange, and the negatives from the 3x and 2 cancel each other out and we are left with:
-> y = 3/2 x - 5/2
math help plz
how to solve literal equations, how to understand and step by step with an example provided please
9514 1404 393
Explanation:
Your question covers a good bit of the material in an algebra course. The short answer is, "the same way you solve a numerical equation." The point of algebra is that literals can stand for numbers, and so be manipulated the same way numbers are.
Expressions are evaluated according to the Order of Operations. For equations involving a single variable, the equation specifies what operations are being performed on that variable. To find the vale of the variable (solve for that literal), you need to "undo" the operations that are performed on it. As with many problems that have layers, you work down through the layers from the outside in. Generally, that means working through the list of operations "backwards," undoing the last one first.
Simple example
y = mx + b . . . . . . solve for x
In this equation, the operations performed on x are ...
multiplication by maddition of b to the productIn accordance with the above, the first thing we do is "undo" the addition of b. (Note that this could be a number or literal--or even a complicated expression--and the process would be exactly the same.) To "undo" addition, we add the opposite.
y -b = mx +b -b ⇒ y -b = mx
Next, we "undo" the multiplication by m. That is, we divide by m, or multiply by the reciprocal of m. Either is the same as the other.
(y -b)(1/m) = (mx)(1/m) ⇒ (y -b)/m = x
Now, we have solved this literal equation for x.
_____
Throughout this process you must adhere strictly to the properties of equality. That is, anything you do to one side of the equation must also be done to the other side.
The reason you study inverses and identity elements is so you understand that addition of an additive inverse produces the additive identity element:
x + (-x) = 0
Similarly, multiplication by the multiplicative inverse (reciprocal) produces the multiplicative identity element.
x · (1/x) = 1
When other operations are involved, such as raising to a power, trig functions, roots, logs, exponentiation, each of these has an associated inverse function that produces an identity:
(x^a)^(1/a) = x^1 = x
arcsin(sin(x)) = x
(√x)^2 = x
10^(log(x)) = x or log(10^x) = x
Some of these inverse functions have restricted domains, so care must be used when solving equations involving them.
When a variable of interest appears on both sides of the equal sign, then you must figure a way to rearrange the equation so the terms with the variable can be combined.
Example:
ax + b = cx +d . . . . . solve for x
ax -cx = d -b . . . . . . subtract (cx+b). (Of course, this is subtracted from both sides of the equation.)
x(a -c) = d -b . . . . . combine x-terms
x = (d -b)/(a -c) . . . . divide by the coefficient of x
Note that we had to divide the entire right-side expression by the x-coefficient, so had to enclose it in parentheses.
More Complicated Example:
A recent Brainly problem asked for the solution to ...
T = 2π√(L/g) . . . . solve for L
Here, L is divided by g, a root taken, and that multiplied by 2π. Undoing these in reverse order, we first divide by 2π, square both sides to undo the root, then multiply by g to undo the division:
[tex]T=2\pi\sqrt{\dfrac{L}{g}}\\\\\dfrac{T}{2\pi}=\sqrt{\dfrac{L}{g}}\\\\\left(\dfrac{T}{2\pi}\right)^2=\dfrac{L}{g}\\\\\boxed{L=g\left(\dfrac{T}{2\pi}\right)^2}[/tex]
The problem posted on Brainly had numbers where some of these variables are. That does not affect the solution method, except that sometimes numerical values can be combined where literal values cannot.
_____
Key Points
The equal sign is sacred, and its truth must be preserved at every step.Literal equations are solved the same way numerical equations are solved.Inverse operations and functions are used to "undo" operations and functions.The Order of Operations can be helpful when considering what to do first.Simplify this math problem plz show your work
9514 1404 393
Answer:
(8a -a²)/(a +2)
Step-by-step explanation:
Cancel common factors from numerator and denominator.
[tex]\dfrac{-56+15a-a^2}{a^2+2a}\div\dfrac{a-7}{a^2}=-\dfrac{(a-7)(a-8)(a^2)}{a(a+2)(a-7)}\\\\=-\dfrac{a(a-8)}{a+2}=\boxed{\dfrac{8a-a^2}{a+2}}[/tex]
Find the slope of the line that passes through the two points 2,-4 & 4,-1
Answer:
Step-by-step explanation:
I have this saved on my computer in notepad b/c this type of question get asked sooo often :/
point P1 (-4,-2) in the form (x1,y1)
point P2(3,1) in the form (x2,y2)
slope = m
m = (y2-y1) / (x2-x1)
My suggestion is copy that above and save it on your computer for questions like this
now use it
Point 1 , P1 = (2,-4) in the form (x1,y1)
Point 2 , P2 = (4,-1) in the form (x2,y2)
m = [ -1-(-4) ] / [ 4-2]
m = (-1+4) / 2
m = 3 / 2
so now we know the slope is 3/2 :)
Mackenzie earns 4% commission as a salesperson. She sold a digital camera that cost $767. How much commission did Mackenzie earn?
Answer:
like about $500 and because of the ca!erlsn
Identify the transformation that occurs to create the graph of k(x).
k(x)=9f(x)
Answer:
To create the graph of k(x) , the graph of f(x) undergoes a vertical stretching by a factor of 9.
Step-by-step explanation:
We are given that
[tex]k(x)=9f(x)[/tex]
We have to Identify the transformation that occurs to create the graph of k(x).
To create the graph of k(x) we will multiply the function f(x) value by 9.
Let f(x) be any function
[tex]g(x)=a f(x)[/tex]
Where a>1
It means to obtain the graph of g(x) the graph f(x) has undergone a vertical stretching by a factor of a.
We have k=9>1
Therefore, to create the graph of k(x) , the graph of f(x) undergoes a vertical stretching by a factor of 9.