the two exploded pieces of the shell land at the same time. at the moment of landing, what is the distance xcm from the mortar to the center of mass of the exploded pieces?

Answers

Answer 1

The distance xcm from the mortar to the center of mass of the exploded pieces is xcm = 1.00d.

Therefore, the distance xcm from the mortar to the center of mass of the exploded pieces is found as follows:

When an object is thrown upward, it will move upward until the velocity reaches zero at its highest point. The acceleration of an object in free fall is -9.81 m/s². This acceleration is constant since it is only affected by gravity. Therefore, the distance traveled by an object in free fall is given by the formula

d = v₀₊ + 1/2gt²

Where v₀ is the initial velocity (in this case, ₀ since the objects are at rest at the moment of explosion), t is the time of flight, g is the acceleration due to gravity.

Since both pieces land at the same time, they have the same time of flight. We can set the distance traveled by the two pieces equal to each other and solve for xcm. That is

d₁ = d₂

v₀₊ + 1/2gt² = v₀₊ + 1/2gt²

Canceling v₀₊ and solving for t, we have

t = √(2d/g)

Substituting this value of t into the first equation above, we have

d₁ = 1/2gt²

d₂ = 1/2gt²

Substituting the given value of g = 9.81 m/s² and assuming that d₁ + d₂ = xcm, we have

xcm = 1/2gt²
       = 1/2(9.81)(2d/g)
       = 1.00d

Therefore, the distance xcm from the mortar to the center of mass of the exploded pieces is xcm = 1.00d.

Full task:

The two exploded pieces of the shell land at the same time. At the moment of landing, what is the distance xcm from the mortar to the center of mass of the exploded pieces?

Learn more about distance: https://brainly.com/question/28551043

#SPJ11


Related Questions

A particle of charge q is fixed at point P, and a second particle of mass m and the same charge q is initially held a distance r1 from P. The second particle is then released. Determine its speed when it is a distance r2 from P. Let q=3.1 μC,m=20 mg,r1=0.90 mm, and r2=2.5 mm.

Answers

The speed of the charge when the distance r₂ from P is 2.5 mm is about 3.80 × 10⁶ m/s. This is because the energy of the charge remains conserved.

What is the speed of charge?

The expression for the electric potential energy of two point charges separated by a distance r is given as:

U = k × q₁ × q₂/r

where, U = electric potential energy, k = Coulomb's constant (9 × 10⁹ Nm²/C²)

q₁ and q₂ are the charges

r = separation between the charges

In the given problem, a particle of charge q is fixed at point P, and a second particle of mass m and the same charge q is initially held a distance r₁ from P. The second particle is then released.

Therefore, the electric potential energy of the second particle, when it is held at a distance r₁ from P is given as:

U = k × q²/r₁

Mass of the second particle, m = 20 mg

Let the speed of the second particle when it is a distance r₂ from P be v. The initial energy of the second particle when it is held at a distance r₁ from P is all converted to kinetic energy when it reaches a distance r₂ from P.

Energy gained by the second particle is given by the difference in electric potential energy between the two distances, U = k × q²(1/r₁ - 1/r₂)

At a distance r₂ from P, the kinetic energy of the second particle is given as:

K.E = (1/2) × m × v²

According to the principle of conservation of energy, the total energy of the second particle remains constant.

U + K.E = constant

m × v²/2 + k × q²(1/r₁ - 1/r₂) = k × q²/r₁

v = sqrt(2 × k × q² /r₁ × (1/r₂ - 1/r₁) / m)

Substituting the given values in the above expression,

v = sqrt(2 × 9 × 10⁹ Nm²/C² × (3.1 μC)²/0.9 mm × (1/2.5 mm - 1/0.9 mm) / (20 × 10⁻⁶ kg)) = 3.80 × 10⁶ m/s

Therefore, the speed of the second particle when it is a distance r₂ from P is 3.80 × 10⁶ m/s.

Learn more about Speed here:

https://brainly.com/question/30256231

#SPJ11

a cliff diver drops from rest to the water below. how many seconds does it take for the driver to go from 0 mi/h to 60 mi/h? (for comparison, it takes about 3.5 s to 4.0 s for a powerful car to go from 0 to 60 mi/h.)

Answers

Assuming that the only force acting on the diver is gravity and neglecting air resistance, we can use the kinematic equations of motion to determine that it takes 2.7 s for the diver to reach a speed of 60 mi/h (or 88 ft/s).

Since the diver starts from rest, we can use the kinematic equation:

[tex]$$v_f = v_i + at$$[/tex]

where [tex]$v_i$[/tex] is the initial velocity (0 mi/h), [tex]$v_f$[/tex] is the final velocity (60 mi/h or 88 ft/s), [tex]$a$[/tex] is the acceleration due to gravity [tex](32.2 ft/s$^2$)[/tex], and [tex]$t$[/tex] is the time it takes to reach the final velocity.

Converting the final velocity to feet per second, we get:

[tex]$$v_f = 60\ \text{mi/h} \times \frac{5280\ \text{ft/mi}}{3600\ \text{s/h}} = 88\ \text{ft/s}$$[/tex]

Substituting the given values, we get:

[tex]$$88\ \text{ft/s} = 0\ \text{ft/s} + (32.2\ \text{ft/s}^2)t$$[/tex]

Solving for [tex]$t$[/tex], we get:

[tex]t = \frac{88\ \text{ft/s}}{32.2\ \text{ft/s}^2}[/tex]

Therefore, it takes approximately 2.73 seconds for the diver to go from 0 mi/h to 60 mi/h.

Learn more about kinematic equations:

https://brainly.com/question/28712225

#SPJ11

a car of mass 772 kg is traveling 21.4 m/s when the driver applies the brakes, which lock the wheels. the car skids for 4.87 s in the positive x-direction before coming to rest.

Answers

A car of mass 772 kg is traveling at 21.4 m/s when the driver applies the brakes, which lock the wheels. The car skids for 4.87 s in the positive x-direction before coming to rest.

The required calculations can be performed using the following equations:

1. F = ma2. v = u + at3. s = ut + (1/2) at^2

Here, u = 21.4 m/s (initial velocity)

a = (-μg) = (-0.5 x 9.8) = -4.9 m/s^2 (deceleration due to the lock)

μ = 0.5 (frictional coefficient between road and tires)

g = 9.8 m/s^2 (acceleration due to gravity)

The normal force is given as:

N = mgN = 772 x 9.8N = 7580.6 N

Now, the force due to friction can be calculated:

F = μN = 0.5 x 7580.6F = 3790.3 N

Therefore, acceleration can be calculated as follows:

F = ma=> a = F/m=> a = 3790.3/772a = 4.91 m/s^2

Now, the final velocity can be calculated as:

v = u + at=> v = 21.4 + (-4.91 x 4.87)v = -0.384 m/s

A negative sign indicates that the car is moving in the negative x-direction.

In order to calculate the distance traveled, we will use the formula:s = ut + (1/2) at^2=> s = 21.4 x 4.87 + (1/2) x (-4.91) x (4.87)^2s = 52.79 mT

herefore, the car skids for 52.79 m in the negative x-direction before coming to rest.

Learn more about force at  brainly.com/question/13191643

#SPJ11

Sam, whose mass is 72 kg, takes off across level snow on his jet-powered skis. The skis have a thrust of 230 N and a coefficient of kinetic friction on snow of 0.1. Unfortunately, the skis run out of fuel after only 10 s. a) What is Sam's top speed? b) How far has Sam traveled when he finally stops?

Answers

a) To find Sam's top speed, we need to consider the forces acting on him. Since the coefficient of kinetic friction is 0.1, we can calculate the frictional force by multiplying the mass of Sam (72 kg) and gravitational acceleration (9.81 m/s2) by the coefficient of kinetic friction. This gives us a frictional force of 70.92 N. The force of thrust (230 N) is greater than the frictional force, so the net force acting on Sam is 230 - 70.92 = 159.08 N.

We can then use Newton's Second Law to calculate Sam's top speed. Force is equal to the mass of an object multiplied by its acceleration, so we can rearrange this equation to give us acceleration = Force / Mass. This means that Sam's acceleration is 159.08 / 72 = 2.2 m/s2. We can use the equation v2 = u2 + 2as to calculate Sam's top speed. u is initial velocity, which is 0, a is acceleration which is 2.2 m/s2, and s is the distance traveled. Sam's top speed is 7.4 m/s.

b) To calculate the distance Sam traveled, we can use the equation s = ut + 0.5at2. u is initial velocity (0) a is acceleration (2.2 m/s2) and t is time (10 s). This gives us a distance of 110 m.

Learn more about kinetic friction at  brainly.com/question/13754413

#SPJ11

Sam's top speed is 17.9 m/s. And Sam has traveled 179 m when he finally stops.

Sam's top speed can be found by solving the following equation:
F = ma = (72 kg) (a) = 230 N

a = 230/72 = 3.19 m/s2

Using the equation v2 = vo2 + 2ad, where vo is the initial velocity, a is the acceleration, and d is the distance traveled, we can find the final velocity, v, at the end of the 10 seconds:
v2 = 02 + 2(3.19 m/s2) (10 s)
v = 17.9 m/s

Therefore, Sam's top speed is 17.9 m/s.

Sam has traveled a distance of d = vt, where v is the final velocity and t is the time of 10 seconds, when the skis run out of fuel.

d = (17.9 m/s)(10 s) = 179 m

Therefore, Sam has traveled 179 m when he finally stops.

Learn more about coefficient of kinetic friction: brainly.com/question/20241845

#SPJ11

Star A is identical to Star B, but Star A is twice as far from us as Star B. Therefore, _______________.

Answers

Star A's light will take longer to reach us.

If your readings were made with an uncertainty of 1 mm, how much percent uncertainty would result for R
x
in the following three situations?
a.) x=10 cm
b.) x= 50 cm
c.) x=95 cm

Answers

The percent uncertainty which would result for Rx in the following situations including a. x = 10 cm, b. x = 50 cm, c. x = 95 cm are 0.5%, 0.1%, and 0.05%, respectively.

What is percent uncertainty?

The readings were made with an uncertainty of 1 mm. Rx = 10 cm, 50 cm, 95 cm

Percent Uncertainty = (Absolute Uncertainty / Measured Value) × 100

Absolute Uncertainty = ± 0.5 mm = 0.05 cm

For a.) x = 10 cm

Percent Uncertainty = (Absolute Uncertainty / Measured Value) × 100 = (0.05 / 10) × 100 = 0.5 %

For b.) x = 50 cm

Percent Uncertainty = (Absolute Uncertainty / Measured Value) × 100 = (0.05 / 50) × 100 = 0.1 %

For c.) x = 95 cm

Percent Uncertainty = (Absolute Uncertainty / Measured Value) × 100 = (0.05 / 95) × 100 = 0.05 %

Hence, the percentage of uncertainties for a.) x = 10 cm, b.) x = 50 cm, c.) x = 95 cm are 0.5%, 0.1%, and 0.05%, respectively.

Learn more about Percent uncertainty here:

https://brainly.com/question/30298257

#SPJ11

Which of the following correctly compares the Sun's energy generation process to the energy generation process in human-built nuclear power plants?
Both processes involve nuclear fusion, but the Sun fuses hydrogen while nuclear power plants fuse uranium.
The Sun generates energy by fusing small nuclei into larger ones, while our power plants generate energy by the fission (splitting) of large nuclei.
The Sun generates energy through nuclear reactions while nuclear power plants generate energy through chemical reactions.
The Sun generates energy through fission while nuclear power plants generate energy through fusion.

Answers

The correct comparison of the energy generation processes is "The Sun generates energy by fusing small nuclei into larger ones, while our power plants generate energy by the fission (splitting) of large nuclei". Thus, the correct options are A and B.

What is Nuclear power?

Nuclear reactions involve the alteration of an atom's nucleus in both cases. Nuclear power plants and the sun both use energy generated by these nuclear reactions to produce electricity. The difference is in the type of nuclear reaction that takes place.

In the Sun, nuclear fusion is the process by which atomic nuclei of low atomic number fuse to form a heavier nucleus with the release of energy. The energy produced in this way is what makes the Sun so hot and bright. In a nuclear power plant, nuclear fission is the process by which the nucleus of an atom is split into two smaller nuclei.

The energy that is released in the process is used to heat water, creating steam that drives a turbine, which in turn drives a generator to produce electricity.

Therefore, the correct options are A and B.

Learn more about Nuclear power here:

https://brainly.com/question/18769119

#SPJ11

Question 15 (3. 33 points) Solve: What work is done when 3. 0 C is moved through an electric potential difference of 1. 5 V?

A)
0. 5 J

B)
2. 0 J

C)
4. 0 J

D)
4. 5 J

Answers

The following formula can be used to determine the work involved in moving a charge via an electric potential difference:

W = qΔV

where W stands for work completed, q for charge transported, and V for potential difference.

Inputting the values provided yields:

W = (3.0 C) x (1.5 V) = 4.5 J

As a result, 3.0 C moving across a 1.5 V electric potential differential requires 4.5 J of labour.

Response: D) 4.5 J

learn more about electric potential here:

https://brainly.com/question/12645463

#SPJ4

calculate the magnitude and direction of the electric field which would be needed to balance the weight of (a) an electron, (b) a proton, (c) an oil drop

Answers

The magnitude and direction of the electric field which would be needed to balance the weight of an electron, proton, and oil drop can be calculated using the following equation: Electric field (E) = (Force of gravity (Fg)) / (Charge (q)) is 1.59 × 10⁵ N/C.

What is the magnitude and direction of the electric field?

For an electron, q = -1.6 × 10⁻¹⁹ C and Fg = 9.81 N. Therefore, the magnitude of the electric field needed to balance the weight of an electron is:

E = (9.81 N) / (-1.6 × 10⁻¹⁹ C) = 6.13 × 10¹⁸ N/C. For a proton, q = +1.6 × 10⁻¹⁹ C and Fg = 9.81 N.

Therefore, the magnitude of the electric field needed to balance the weight of a proton is:

E = (9.81 N) / (1.6 × 10⁻¹⁹ C) = 6.13 × 10¹⁸ N/C

For an oil drop, q = +6.2 × 10⁻¹⁴ C and Fg = 9.81 N.

Therefore, the magnitude of the electric field needed to balance the weight of an oil drop is:

E = (9.81 N) / (6.2 × 10⁻¹⁴ C) = 1.59 × 10⁵ N/C

The direction of the electric field for all three objects is the same, upward. The direction of the electric field is upward or downward depending on the charge of the oil drop. If the oil drop is negatively charged, then the electric field will be upward, and if the oil drop is positively charged, then the electric field will be downward.

Read more about gravity here:

https://brainly.com/question/940770

#SPJ11

greenhouse gases in the atmosphere selectively absorb radiation at what wavelength?

Answers

Answer:

They absorb radiation in the ultraviolet area - somewhat less than 4000 Angstroms or 400 mμ.

The reduction of the ozone layer in the upper atmosphere causes more of the shorter wavelengths to reach the surface  of the earth and then to be reradiated at longer wavelengths causing global warming.

p1. an airplane is flying at an altitude of 20,000 ft. what is the local atmospheric pressure at this altitude? what pressure differential would be required to to keep the passengers comfortable? what discomfort might the passengers feel if the cabin pressure drops below this? explain your answer.

Answers

When an airplane is flying at an altitude of 20,000 ft, the local atmospheric pressure is 3.3 psi.

What is the local atmospheric pressure?

The pressure differential that would be required to keep the passengers comfortable is 0.5 to 0.7 psi. If the cabin pressure drops below this, the passengers might feel discomfort, such as ear pain, shortness of breath, or headache.

Atmospheric pressure decreases as altitude increases. At sea level, atmospheric pressure is approximately 14.7 psi. At an altitude of 20,000 ft, atmospheric pressure is 3.3 psi. Therefore, an airplane flying at an altitude of 20,000 ft is experiencing a significantly lower atmospheric pressure than it would be on the ground.

To maintain passenger comfort and prevent discomfort, the airplane's cabin pressure must be maintained at a level closer to that of the ground. The pressure differential that would be required to keep the passengers comfortable is 0.5 to 0.7 psi.

Learn more about Atmospheric pressure here:

https://brainly.com/question/28310375

#SPJ11

this is a less well-known paradox than the pole and barn paradox, and has a more subtle resolution. consider a submarine that has a neutral buoyancy with respect to water it is in when it is at rest. for simplicity, we take the sea it is in to have zero viscosity and constant density. then consider the submarine moving through the fluid at some relativistic speed and as always, consider from two frames of reference. here is the paradox: from the fluid's reference frame, where the fluid is at rest, the density of the fluid is the same as when the submarine is at rest. however, due to length contraction, the submarine is shorter, the volume is smaller, and the mass density of the submarine is now greater. thus, the submarine sinks in this frame of reference. from the submarine's frame of reference, the density of the submarine is the same but the water is length contracted and thus the density of the water is greater. in this case the submarine floats up! these are mutually exclusive results and cannot both be true. is relativity wrong? how do you resolve this? some caveats: first, this problem involves gravity and thus should properly be treated by general relativity. however, we don't know enough yet about gr to resolve this, we will use special relativity only. to help see the resolution, place this submarine in a sea that has a flat floor and sea surface in the water's frame. [hint: think of the sea floor and do spacetime physics l-10 (and maybe l-11,12 as well).]

Answers

The paradox arises because we are assuming that density is an absolute quantity, whereas it is relative to the observer's frame of reference. The submarine will find an equilibrium point where its density is equal to the density of the water, and it will neither sink nor float up.

What is Density?

The density of a substance indicates how dense it is in a particular area. Mass per unit space is the definition of a material's density. Density is basically a measurement of how tightly matter is packed together.


The paradox arises because the density of the fluid in the frame of reference of the submarine is different from the density of the fluid in the frame of reference of the fluid itself. This is because the length contraction of the fluid in the submarine's frame of reference means that the volume of the fluid decreases, and so the mass density of the fluid increases. This means that in the submarine's frame of reference, the submarine is more dense than the water and so floats upwards.

Meanwhile, in the frame of reference of the fluid, the submarine is not length contracted, so the mass density of the submarine remains the same, and the density of the water increases due to the length contraction of the fluid. This means that in this frame of reference, the submarine is less dense than the water and so sinks downwards.

The resolution of this paradox is found by considering the effect of gravity on the fluid and the submarine. In both frames of reference, the gravity acts upon the fluid and the submarine. In the frame of reference of the submarine, the gravity acts on the water, increasing the pressure of the water and thereby reducing its density. This reduces the buoyancy of the submarine, causing it to sink. In the frame of reference of the fluid, the gravity acts on the submarine, increasing its pressure and thereby reducing its density. This reduces the buoyancy of the submarine, causing it to sink.

Thus, the effects of gravity balance out the effects of length contraction, leading to the same result in both frames of reference: the submarine will sink. This resolution can be understood more clearly by considering the sea floor and the spacetime diagrams of L-10, L-11, and L-12.

Learn more about density on https://brainly.com/question/1354972

#SPJ11

3 blocks with masses m to 2m and 3m are connected by Strings as shown in the figure after an upward force f is applied on block and the masses move upward at constant speed V what is the net force on the block of mass 2 m

Answers

The net force on the block of mass 2 m moving upward at constant speed V is B, 2 mg.

How to calculate net force?

Since the masses are moving upward at constant speed, the net force on each of the blocks must be zero.

Considering the block of mass 2m, the net force acting on it is the tension T₁ in the string pulling it upward minus the force of gravity pulling it downward.

Thus:

T₁ - (2m)g = 0, where g is the acceleration due to gravity.

T₁ = (2m)g

Now, considering the block of mass 3m, the net force acting on it is the tension T₂ in the string pulling it upward minus the force of gravity pulling it downward.

Thus:

T₂ - (3m)g = 0

T₂ = (3m)g

Finally, considering the block of mass m, the net force acting on it is the force of gravity pulling it downward minus the tension T₁  in the string pulling it upward.

Thus:

(m)g - T₁  = 0

Substituting T₁  = (2m)g:

(m)g - (2m)g = -mg

Therefore, the net force on the block of mass 2m is mg downward.

Learn more on net force here: https://brainly.com/question/14361879

#SPJ1

The complete question is:

3 blocks with masses m to 2m and 3m are connected by Strings as shown in the figure after an upward force f is applied on block and the masses move upward at constant speed V what is the net force on the block of mass 2 m.

A Zero

B 2 mg

C 3 mg

D 6 mg

determine the force p required to maintain equilibrium of the 186.7 lb container. report the force p in units of pounds to one decimal point.

Answers

The force p required to maintain the equilibrium of the 186.7 lb container is: 116.7 lb

The problem statement requires us to determine the force P required to maintain the equilibrium of the 186.7 lb container. The force P can be determined using the principle of static equilibrium.

Principle of Static Equilibrium

The principle of static equilibrium states that for an object to be in static equilibrium, the net force acting on the object must be zero and the net torque acting on the object must also be zero. This principle is based on Newton's laws of motion which state that the sum of forces acting on an object is equal to the mass of the object multiplied by its acceleration.

In other words, F = ma

Where F is the force acting on the object, m is the mass of the object, and a is the acceleration of the object. If the object is in static equilibrium, then a = 0.

Therefore, the net force acting on the object is zero. For the container to be in static equilibrium, we can apply the principle of static equilibrium to determine the force P required to maintain equilibrium. To do this, we need to find the forces acting on the container and the torques acting on the container.

Forces acting on the container: Weight of the container = 186.7 lb

Reaction force (upward force exerted by the ground on the container) = WReaction force (upward force exerted by the cable on the container) = P. For the container to be in static equilibrium, the net force acting on the container must be zero.

Therefore, W + W + P = 0P = -2W/3

Where W is the weight of the container.

Torques acting on the container: Torque due to the weight of the container = W*d

The torque due to the reaction force exerted by the cable on the container = P*L

Where d is the distance between the weight and the pivot point, L is the distance between the cable and the pivot point, and P is the force exerted by the cable on the container.

For the container to be in static equilibrium, the net torque acting on the container must be zero. Therefore,

[tex]W*d - P*L = 0P = W*d/L[/tex]

Where W is the weight of the container, d is the distance between the weight and the pivot point, and L is the distance between the cable and the pivot point.

Substituting the value of W in the above equation, we get

P = 186.7 lb * 5 ft / 8 ftP = 116.7 lb (approximately)

Therefore, the force P required to maintain the equilibrium of the 186.7 lb container is 116.7 lb (approximately).

To know more about force refer here:

https://brainly.com/question/13191643#

#SPJ11

an earth satellite is in an elliptical orbit. the satellite travels fastest when it is farthest from the earth. nearest the earth. it travels at constant speed everywhere in orbit.

Answers

An earth satellite is in an elliptical orbit. The satellite travels fastest when it is nearest to the earth.

A satellite is an object which revolves around a planet, and an elliptical orbit is one where the distance from the central body varies from time to time.

The satellite covers the maximum distance from the central body at the endpoints of the major axis and it covers the minimum distance at the endpoints of the minor axis.

When an earth satellite is in an elliptical orbit, the gravitational force varies with distance from the earth's surface. Therefore, the speed of the satellite varies with distance.

Therefore, the option "nearest to the earth" is correct.

Learn more about elliptical orbit here:

https://brainly.com/question/29681138

#SPJ11

2.1 [2] As more resistors are added in series, the equivalent resistance of the circuit approaches infinity. In contrast, as more resistors are added in parallel, the equivalent resistance a. approaches infinity b. approaches zero c. becomes zero d. approaches 1 Ω
2.2 [2] Kirchhoff's loop rule is equivalent to which of the following principles? a. conservation of charge b. conservation of energy c. conservation of mass d. conservation of force

Answers

2.1 As more resistors are added in parallel, the equivalent resistance approaches zero

2.2 Kirchhoff's loop rule is equivalent to the conservation of energy principle.

As more resistors are added in series, the equivalent resistance of the circuit approaches infinity. In contrast, as more resistors are added in parallel, the equivalent resistance approaches zero. This statement is TRUE. The equivalent resistance, Req, of a parallel combination of resistors is less than any of the resistors in the combination, while for a series combination it is equal to the sum of the resistances.

Kirchhoff's loop rule is equivalent to the conservation of energy principle. Kirchhoff's loop rule or Kirchhoff's voltage law (KVL) is a result of the conservation of energy principle. The principle of conservation of energy states that energy can neither be created nor destroyed, it can only be transformed from one form to another. In a closed loop, the total energy gained is equal to the total energy lost, according to the principle of conservation of energy.

Learn more about Kirchhoff's loop rule and equivalent resistance at : https://brainly.com/question/30580929

#SPJ11

Suppose the current in a conductor decreases exponentially with time according to the equation I(t) = I0e-t/τ, where I0 is the initial current (at t = 0), and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor. (Use the following as necessary: I0 and τ)
(a) How much charge passes this point between t = 0 and t = τ? (If applicable, round any coefficients to 3 decimal places.)
Q(τ) =
(b) How much charge passes this point between t = 0 and t = 10τ? (If applicable, round any coefficients to 5 decimal places.)
Q(10τ) =
(c) How much charge passes this point between t = 0 and t = [infinity]? (If applicable, round any coefficients to 3 decimal places.)
Q([infinity]) =

Answers

The charge on the point as it passes is 10τ, the charge on this point is 10τ(1-e-10), and the charge that passes this point is 10τ.

What is the charge on the point?

The charge that passes this point between t = 0 and t = τ can be calculated using the following equation:

Q(τ) = I0τ

Therefore, Q(τ) = I0τ = I0 × τ.

The charge that passes this point between t = 0 and t = 10τ can be calculated using the following equation:

Q(10τ) = I0τ(1-e-10)

Therefore, Q(10τ) = I0τ(1-e-10) = I0 × τ × (1-e-10).

The charge that passes this point between t = 0 and t = [infinity] can be calculated using the following equation: Q([infinity]) = I0τ

Therefore, Q([infinity]) = I0τ = I0 × τ.

Learn more about Charge here:

https://brainly.com/question/11944606

#SPJ11

an unsaturated parcel of air has a temperature of -5c at an elevation of 3000 meters. the parcel, remaining unsaturated, sinks all the way to the surface. what is the temperature of the parcel when it reaches the surface?

Answers

The temperature of the unsaturated parcel of air when it reaches the surface will be higher than -5°C. As the parcel descends, it will expand, which increases the air's internal energy and causes the temperature to rise. The amount of temperature rise depends on the rate of descent, which is determined by the parcel's buoyancy and surrounding air density.


In general, the temperature increase of an unsaturated parcel of air is approximately 0.65°C per 100 m of descent. For a parcel descending from 3000 m elevation to the surface, the temperature increase will be approximately 19.5°C (0.65°C/100 m * 3000 m). Therefore, the temperature of the unsaturated parcel of air when it reaches the surface will be approximately 14.5°C (19.5°C + -5°C).


The temperature of the unsaturated parcel of air when it reaches the surface after descending from an elevation of 3000 meters is +11°C.

What is the unsaturated parcel of air?

In meteorology, an unsaturated parcel of air refers to a parcel of air that has a relative humidity that is less than 100 percent. If the temperature of the unsaturated parcel of air is lower than the dew point temperature, the relative humidity of the parcel of air is decreased as the temperature of the air rises. In this case, since the parcel is unsaturated, we can make the assumption that the lapse rate is dry and equal to 10°C/km or 1°C/100 meters. Calculating the temperature of the unsaturated parcel when it reaches the surface can use the dry adiabatic lapse rate to determine the temperature of the unsaturated parcel of air when it reaches the surface. Since the lapse rate is dry and the parcel is unsaturated, the dry adiabatic lapse rate is used in the calculation. The formula used in this calculation is: T = T_0 + (dry adiabatic lapse rate × altitude)where T = temperature, T_0 = initial temperature, and altitude = elevation temperature of the unsaturated parcel of air at an elevation of 3000 meters is -5°C. Using the dry adiabatic lapse rate of 1°C/100 meters, we get: Altitude = 3000 meters Dry adiabatic lapse rate = 1°C/100 metersInitial temperature (T_0) = -5°CT = -5°C + (1°C/100 meters × 3000 meters)T = -5°C + 30°CT = 25°CAfter descending to the surface, the temperature of the unsaturated parcel of air is +11°C, according to the above calculation.

For more information follow the link: https://brainly.com/question/11464844

#SPJ11

two forces are applied to a 12 kg cart on a frictionless surface as shown. at a certain instant, force a is 77 n to the right, and force b is 15 n to the left. what is the acceleration of the cart at this instant, in m/s2?

Answers

The acceleration of the cart at the instant where force a is 77 N to the right and force b is 15 N to the left in m/s² is 5.17 m/s².

A force is an action or influence that can alter the movement of an object. A force can cause an object to accelerate, slow down, or change direction. Friction is the force that opposes motion when two surfaces come into touch with one another. In general, friction opposes movement in the opposite direction to that of the movement.

The forces applied on the cart in the diagram are given as force A = 77 N towards the right direction and force B = 15 N towards the left direction, and the mass of the cart is given as 12 kg, so the equation of motion for the cart is,

F = m × a ……(1)where,F = Net force acting on the cart,m = Mass of the cart,a = Acceleration of the cart

From the given forces, we have the net force F as: F = Fa - Fb where, Fa = 77 N towards the right direction and Fb = 15 N towards the left direction.F = 77 N - 15 N = 62 N. Substitute the values of F and m in equation (1), 62 N = 12 kg × a.Therefore, acceleration of the cart, a = 62/12= 5.17 m/s².Therefore, the acceleration of the cart at this instant, in m/s² is 5.17 m/s² (approx).

More on force acceleration: https://brainly.com/question/30464752

#SPJ11

An experiment is done to compare the initial speed of bullets fired from different handguns: a 9 and a. 44 caliber. The guns are fired into a 10-pendulum bob of length. Assume that the 9 bullet has a mass of 6 and the. 44 caliber bullet has a mass of 12. If the 9 bullet causes the pendulum to swing to a maximum angular displacement of 4. 3, and the. 44-caliber bullet causes a displacement of 10. 1, find the ratio of the initial speed of the 9 bullet to the speed of the. 44 caliber bullet. Express the answer numerically

Answers

The required ratio of initial speeds of the bullet to the caliber bullet is calculated as 0.62.

The mass of the pendulum is given as M = 10

The mass of the bullet is m₁ = 6.

The mass of the caliber bullet is m₂ = 12.

The maximum angular displacement due to bullet is θ₁ = 4.3

The maximum angular displacement due to caliber displacement θ₂ = 10.1

Speed of the bullet is calculated from the relation v₀ = (1 + M/m) √2 g l(1 - cosθ)

where,

l is the length of the pendulum

v₀₁ = (1 + M/m₁) √2 g l(1 - cosθ₁)

⇒ (1 + 10/6) √2 g l(1 - cos 4.3) ---(1)

Speed of the caliber bullet is calculated as,

v₀₂ = (1 + M/m₂) √2 g l(1 - cosθ₂)

⇒ (1 + 10/12) √2 g l(1 - cos 10.1) ---(2)

Dividing (1) and (2), we have,

v₀₁/v₀₂ = [(1 + 10/6) √2 g l(1 - cos 4.3)]/[(1 + 10/12) √2 g l(1 - cos 10.1)] = (2.67 × 0.053)/(1.84 ×0.124) = 0.62

Thus, the required ratio of initial speeds of the bullet to the caliber bullet is calculated as 0.62.

To know more about speed:

https://brainly.com/question/14278734

#SPJ4

according to his physician, ryan has iron-deficiency anemia. the doctor recommended he eat iron-fortified cereal daily. which of the following foods or beverages would be the best accompaniment for an iron-fortified cereal and why?

Answers

According to Ryan's physician, Ryan has iron-deficiency anemia. The physician recommended he eats iron-fortified cereal daily. Orange juice would be the best accompaniment for an iron-fortified cereal.

Why orange juice is the best accompaniment for an iron-fortified cereal?

Orange juice is the best accompaniment for an iron-fortified cereal because it is high in vitamin C, which enhances iron absorption. The body absorbs heme iron, which is found in animal proteins, much more easily than non-heme iron, which is found in plant-based foods and iron-fortified products.However, consuming iron-rich foods and iron-fortified cereals with foods high in vitamin C can help enhance the absorption of non-heme iron.

Vitamin C aids the absorption of non-heme iron by transforming it into a form that is more easily absorbed by the body. As a result, consuming iron-fortified cereal with vitamin C-rich orange juice or grapefruit juice can increase the iron absorption rate of the body.

Learn more about anemia on

https://brainly.com/question/8197071

#SPJ11

What happens to the conductive properties of wood when it gets very hot?
A. It will change from being a good insulator to becoming a good conductor.
B. It will continue to remain a good conductor.
C. It will continue to remain a good insulator.
D. It will change from being a good conductor to becoming a good insulator.

Answers

Wood will still be an effective insulator. when the temperature of the wood reaches an extreme level.

Compared to materials like metals, marble, glass, and concrete, wood has a low thermal conductivity (high capacity to absorb heat). The axial direction of thermal conductivity is highest, and it rises with density and moisture content, making light, dry woods better insulators.

Insulators are substances that hinder the easy passage of electricity. Plastic, wood, and rubber are among the most insulating nonmetal materials.

Typically, wood has a perpendicular to the grain heat conductivity of between 0.1 and 0.2 W/mK.

It begins to pyrolyze when the temperature rises. Either the materials' internal structure retains the decomposition products, or they release them as gases. When gaseous substances interact with oxygen and each other, a lot of heat is produced. This additional heat promotes pyrolysis and combustion reactions.

Learn more about Insulator here:

https://brainly.com/question/2619275

#SPJ4

What is the approximate diffraction limit, in arc second, of a 84 meter diameter radio telescope observing 24 cm radiation?

Answers

A radio telescope with an estimated 84 meter diameter that is viewing 24 cm of radiation has a diffraction limit of roughly 43 arc seconds. The Rayleigh criteria, which asserts that the angular resolution .

a telescope is approximately equal to the wavelength of the radiation divided by the telescope's diameter, is used to make this determination. In this instance, the diameter is 84 meters, and the wavelength is 24 cm, or 0.24 meters. The result of dividing the wavelength by the diameter is around 0.002857 radians, or roughly 163 arc seconds.  The Rayleigh criteria, which asserts that the angular resolution . Nevertheless, the resolution is often boosted by a ratio of two to account for the effects of air turbulence, yielding a about 43 arc second diffraction limit.

learn more about  telescope here:

https://brainly.com/question/556195

#SPJ4

given what you learned from the figure, rank these types of light in order of increasing energy. 1. radio 2. infrared 3. orange 4. green 5. ultraviolet

Answers

Answer:

✓ 1. radio 2. infrared 3. orange 4. green 5. ultraviolet

Explanation:

Two asteroids, drifting at constant velocity, collide. The masses and velocities of the asteroids before the collision are indicated in the figure. During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitude of the force of asteroid B on asteroid A?

Answers

Answer:a) The momentum of asteroid A is  and the momentum of asteroid B is  .b) At the time of collision, the magnitude of force of asteroid A on asteroid B is greater than the magnitude of force of asteroid B on asteroid A.c) The total momentum of the two asteroids at the time of collision is 

Explanation:

Assume that a drop of mercury is an isolated sphere. What is the capacitance in picofarads of a drop that results when two drops each of radius R = 5.61 mm merge?

Answers

The formula C=4R, where is the permittivity of open space, may be used to determine the capacitance of a merged mercury drop, assuming it is an isolated sphere. The capacitance is around 1.68 pF with R = 5.61 mm.

The formula C=4R, where R is the drop's radius and is the permittivity of free space, may be used to determine the capacitance of a merged mercury drop. As the capacitance of an isolated sphere is exactly proportional to its radius, the capacitance produced by the merger of two drops with similar radii is equal to the total of the capacitances of the individual drops. Given that the radius of the combined drop in this instance is R = 5.61 mm, the capacitance can be estimated using the formula C = 4(8.85 x 10-12 F/m) (5.61 x 10-3 m)2, yielding a capacitance of around 1.68 pF.

learn more about capacitance here:

https://brainly.com/question/28445252

#SPJ4

the third harmonic frequency of a standing wave is 864 hz on a string of length 94 cm that is bound at the two ends and is under tension. what is the speed of traveling waves on this string?

Answers

The speed of traveling waves on the string is 48.6 m/s.

The fundamental frequency of a string that is bound at both ends and is under tension is calculated as follows:

f = v/2L

Where v is the velocity of waves on the string and L is the length of the string.

The third harmonic frequency of the standing wave can be expressed as f₃ = 3f₁. Therefore,864 = 3f₁.

Simplifying the above expression, we obtain f₁ = 864/3 = 288

Using the formula above, we can calculate the velocity v of the string as follows:

v = 2Lf₁

Substituting the values, we get:

v = 2(0.94 m)(288 Hz)

Evaluating the above expression gives us the velocity of the string as v = 48.6 m/s. Thus, the speed of traveling waves on the string is 48.6 m/s.

Learn more about fundamental frequency here: https://brainly.com/question/1967686.

#SPJ11

Experiment 1: Exploring Charge with Scotch® Tape

In this experiment, you will observe the behavior of charged objects using pieces of Scotch® tape.

Materials

Scotch® Tape

Ruler

*Pen

*Flat Work Surface

Procedure

Part 1

1. Use the ruler to measure a piece of tape that is 10 cm long.

2. Tear the tape to remove the 10 cm piece from the roll.

3. Create a "handle" on one side of the piece of tape by folding down the piece of tape 1 cm from the end, leaving a 9 cm sticky piece with a 1 cm handle.

4. Stick the entire sticky surface of the tape to a table top, counter top, or another flat surface.

5. Repeat Steps 1 – 4 with a second 10 cm piece of tape. Stick the second piece of tape at least 15 cm away from the first piece on the same surface.

6. Quickly pull off both strips of tape from the surface and ensure that the pieces do not touch.

7. Carefully bring the non-sticky sides of the tape together and record observations about the behavior of the pieces in Table 1.

8. Discard the tape.

Part 2

1. Use the ruler to measure a piece of tape that is 10 cm long.

2. Tear the tape to remove the 10 cm piece from the roll.

3. Create a "handle" on one side of the piece of tape by folding down 1 cm of tape from one end.

4. Stick the entire sticky surface of the tape to a table top, counter top, or another flat surface.

5. Use a pen and write "B1" on the tape. "B" stands for bottom.

6. Repeat Steps 1 – 4 with a second 10 cm piece of tape. This time, press the second strip of tape on top of the one labeled "B1".

7. Use the pen to label the top piece with a "T1". "T" stands for top.

8. Create a second pair of pieces of tape by repeating Steps 1 – 7. This time, label the bottom piece "B2" and the top piece "T2".

9. Use the T1 handle to quickly pull off T1 strip of tape from the flat surface.

10. Use the B1 handle to peel off the bottom strip from the flat surface. Keep both B1 and T1 pieces away from each other.

11. Bring the non-sticky sides of B1 and T1 together and record observations about the behavior of the pieces in Table 1.

12. Set the pieces of tape, non-sticky side down, on the table approximately 15 cm away from each other. Do not stick them back on the table!

13. Repeat Steps 9 - 12 for B2 and T2.

14. Carefully bring the non-sticky sides of piece "T1" and "B2". Record observations about the behavior of the pieces in Table 1.

15. Set them back down, non-sticky side down.

16. Repeat Steps 14 - 15 for "T1" and "T2". Record your observations in Table 1.

17. Repeat Steps 14 - 15 for "B1" and "B2". Record your observations in Table 1.

18. Repeat Steps 14 and 15 for "T1" and the hair on your leg or arm. Record your observations in Table 1.

19. Repeat Steps 14 and 15 for "B1" and the hair on your leg or arm. Record your observations in Table 1.

Table 1: Electric Charge Observations

procedure

interacting pieces observation

Part 1 Two pieces on table Part 2 T1 / B1 T2 / B2 T1 / B2 T2 / B1 B1 / B2 T1 / Arm Hair B1 / Arm Hair ***The observation is filled.

Post-Lab Questions

1. Describe the interaction between the top and bottom strips as they relate to electric charge. Did the behavior of the pieces change when the tape was from different sets?

2. Describe the interaction between two top and two bottom pieces of tape as they relate to electric charge. Is this consistent with the existence of only two types of charge? Use your results to support your answer.

3. Did the top tape attract your arm hair? Did the bottom tape attract your arm hair? Usually arm hair is neutral; it has equal number positive and negative charges. Use this information to explain your results.

4. Which pieces of tape are positively charged? Which pieces of tape are negatively charged? Explain your reasoning.

5. Use your data to create a rule describing how like charges, opposite charges, and neutral bodies interact.

6. What do you observe about the force of attraction or repulsion when the pieces of tape are closer together and farther apart? Does this change happen gradually or quickly?

Answers

1.When the non-sticky sides of the two pieces of tape recording are brought together, they repel each other. This is due to the buildup of electric charge on the  face of the tape recording when it was  hulled off from the flat  face.

2.The pieces didn't change when the tape recording was from different sets.  When two top or two  nethermost pieces of tape recording are brought together, they repel each other.

3.When a top and  nethermost piece of tape recording are brought together, they attract each other. This is  harmonious with the actuality of only two types of charge, positive and negative. The results support the fact that the top and  nethermost pieces of tape recording had  contrary charges.  The top tape recording attracted the arm hair, while the bottom tape recording didn't attract the arm hair. Arm hair is  generally neutral, but it can be  concentrated by the electric field of the charged tape recording.

4.The top tape recording is negatively charged, and it  concentrated the arm hair, which has a positive charge. This redounded in  magnet between the top tape recording and the arm hair.  The pieces of tape recording labeled" T1" and" B2" are  appreciatively charged, while the pieces of tape recording labeled" B1" and" T2" are negatively charged. This can be determined from the  compliances.

5.When the  appreciatively charged tape recording was brought  near to a negatively charged tape recording, they attracted each other. When two  appreciatively charged  videotapes or two negatively charged  videotapes were brought  near together, they repelled each other.  Like charges repel each other,  contrary charges attract each other, and neutral bodies aren't affected by electric fields.  

6.The force of  magnet or aversion between the pieces of tape recording increases as they get  near together and decreases as they move  further  piecemeal. This change happens gradationally, not  snappily.      

Learn more about attraction and repulsion at

https://brainly.com/question/18498449

#SPJ4

a suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.00 s. then security agents appear, and the man runs as fast as he can back along the sidewalk to his starting point, taking 12.6 s. what is the ratio of the man's running speed to the sidewalk's speed?

Answers

The ratio of the man's running speed to the sidewalk's speed is 6.3.

To solve the problem, we can start by using the formula:

distance = speed × time

Let's assume that the length of the moving sidewalk is L, and the speed of the man is v and the speed of the sidewalk is u.

When the man runs along the sidewalk from one end to the other, his speed relative to the ground is (v + u), and the distance he covers is L. Therefore, we have:

L = (v + u) × 2.00 s

When the man runs back along the sidewalk to his starting point, his speed relative to the ground is (v - u), and the distance he covers is also L. Therefore, we have:

L = (v - u) × 12.6 s

Now we can solve for v/u by dividing the two equations:

(v + u)/(v - u) = 2.00/12.6

Solving for v/u gives:

v/u = (2.00/12.6 + 1)/(2.00/12.6 - 1) = 6.3

Therefore, the ratio of the man's running speed to the sidewalk's speed is 6.3.

For more similar questions on distance:

brainly.com/question/12356021

#SPJ11

A small, 200 g cart is moving at 1.70 m/s on a frictionless track when it collides with a larger, 2.00 kg cart at rest. After the collision, the small cart recoils at 0.830 m/sWhat is the speed of the large cart after the collision? Express your answer to three significant figures and include the appropriate units.

Answers

The speed of the large cart after the collision would be 0.087 m/s

Momentum problem

We can use the law of conservation of momentum to solve this problem, which states that the total momentum of a closed system remains constant before and after a collision.

The momentum before the collision is given by:

p1 = m1v1 + m2v2

where m1 = 0.2 kg is the mass of the small cart, v1 = 1.70 m/s is its velocity before the collision, m2 = 2.00 kg is the mass of the large cart, and v2 = 0 m/s is its velocity before the collision.

p1 = (0.2 kg)(1.70 m/s) + (2.00 kg)(0 m/s) = 0.34 kg m/s

The momentum after the collision is also given by:

p2 = m1v1' + m2v2'

where v1' = -0.830 m/s is the velocity of the small cart after the collision (since it recoils in the opposite direction), and we want to find v2', the velocity of the large cart after the collision.

p2 = (0.2 kg)(-0.830 m/s) + (2.00 kg)(v2')

Since momentum is conserved, we have:

p1 = p2

0.34 kg m/s = (0.2 kg)(-0.830 m/s) + (2.00 kg)(v2')

Solving for v2', we get:

v2' = (0.34 kg m/s - 0.166 kg m/s) / 2.00 kg

v2' = 0.087 m/s

Therefore, the speed of the large cart after the collision is 0.087 m/s, to three significant figures.

More on momentum can be found here: https://brainly.com/question/30487676

#SPJ1

Other Questions
the corinthian messenger believes he is bringing good news to oedipus. explain why he thinks it is good news but why it turns out to be terrible news. write a 2-3 paragraph essay discussing how listening to music helps you focus, why you want to investigate it, your background research, and your hypothesis. Oxidation of Alcohols: Practical Methods1. a) State the reagents & conditions used in the oxidation of alcohols.b) State the colour change observed for the oxidising agent.2.a) Explain why oxidation of a primary alcohol under distillation produces an aldehyde whereas oxidationunder reflux produces a carboxylic acid. You could use ethanol oxidation as an example. Includestructural formulae in your explanation.b) Which experimental set-up below would you use to:i) oxidise ethanol to ethanoic acid?ii) oxidise ethanol to ethanal?2. For eadrawina) ethancb) ethac) pre mariah and jennifer are both famous and wealthy. mariah likes furs. therefore, jennifer probably likes furs, too. what type of fallacy is this?multiple choice question. which of the following results do you expect associated with a continental-continental a divergent plate boundary? The hanger image below represents a balanced equation. Write an equation to represent the imageHELP THIS IS DUE TODAY Some protists, such as amoebas, are surrounded only by their plasma membrane whereas others such as diatoms and foraminifera are surrounded by? student a sprayed perfume in a cold room and it took 30 seconds for it to disperse throughout the room. student b sprayed perfume in a heated room and it took 10 seconds for it to disperse throughout the room. based on the kmt, compare these two rooms with respect to temperature, kinetic energy, particle motion and velocity. what three elements are considered part of the promotional mix? What types of weathering contribute to the lead problem in Picher, Oklahoma? a. Frost wedging b. Biological c. Dissolution d. All of the above. Calculate the pH at 25C of a 0.73M solution of potassium acetate KCH3CO2. Note that acetic acid HCH3CO2 is a weak acid with a pKa of 4.76 . Round your answer to 1 decimal place. what are some of the potential drawbacks to switching from incandescent to compact fluorescent light bulbs? which of the following was not a key characteristic of a dss? a. easy-to-use interactive interface b. designed or customized by it professionals c. models or formulas for sensitivity analysis, what if analysis, goal seeking, and risk analysis In the brown alga Laminaria, the large, leafy-looking thallusA) grows from a zygote.B) is a sporophyte.C) has sporangia.D) is diploid.E) ALL OF THE ABOVE When reporting on a nonissuer's internal control over financial reporting in a separate report, a practitioner should include a paragraph that describes theA.Documentary evidence regarding the control environment factors.B.Changes in the internal control structure since the prior report.C.The practitioner's responsibility to detect material misstatements in account balances.D.The criteria against which the internal control was measured.SHOW CORRECT ANSWER What type of government was in place in China from 1949 forward? The GSSP concept was introduced in the ______, to provide accepted definitions for ______ units. There is some evidence that pharyngeal gill slits occur in certain species of echinoderms that appear early in the fossil record. If confirmed, what do these data suggest? In the context of entrepreneurial orientation, an organization with a tendency of _____ grants individuals and teams the freedom to exercise their creativity, champion promising ideas, and carry them through to completion.Multiple Choiceinnovativenesscompetitive aggressivenessproactivenessindependent actionrisk taking write the relationship between cells tissue and organs in human body