Answer:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Explanation:
Dalton's law of partial pressures state that, in a mixture of gases, the total pressure is equal to the sum of the partial pressure exerted by each gas of the mixture. The equation is:
Total pressure = Partial pressure Gas 1 + Partial pressure Gas 2 + .... + Partial pressure Gas n
To complete the sentence we can say:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Considering the Dalton's partial pressure, the total pressure in a mixture of gases is equal to the sum of partial pressures of each gas.
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
[tex]P_{T} =P_{A} +P_{B}[/tex]
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
[tex]P_{A} =x_{A} P_{T}[/tex]
In summary, the total pressure in a mixture of gases is equal to the sum of partial pressures of each gas.
Learn more:
https://brainly.com/question/14239096?referrer=searchResultshttps://brainly.com/question/25181467?referrer=searchResultshttps://brainly.com/question/14119417Determine whether or not each ion contributes to water hardness.
a. Ca2+
b. (HCO)3^-
c. K+
d. Mg2+
Answer: The ion that contribute to water hardness are:
--> a. Ca2+
--> b. (HCO)3^- and
--> c. Mg2+
While K+ DOES NOT contribute to water hardness.
Explanation:
WATER in chemistry is known as a universal solvent. This is so because it is polar in nature and dissolves most inorganic solutes and some polar organic solutes to form aqueous solutions. It is composed of elements such as hydrogen and oxygen in the combined ratio of 2:1.
Water is said to be HARD if it does not lather readily with soap. There are two types of water hardness:
--> Permanent hardness: This is mainly due to the presence of CALCIUM and MAGNESIUM ions in the form of soluble tetraoxosulphate(VI) and chlorides. These ions are removed by adding washing soda or caustic soda.
--> Temporary hardness: This is due to the presence of calcium HYDROGENTRIOXOCARBONATES. It can be removed by boiling and using slaked lime.
Therefore from the above given ions, Ca2+,(HCO)3^- and Mg2+ contributes to water hardness.
What size volumetric flask would you use to create a 1.00M solution using 166.00 g of KI?
Answer:
A 1 liter volumetric flask should be used.
Explanation:
First we convert 166.00 g of KI into moles, using its molar mass:
Molar mass of KI = Molar mass of K + Molar mass of I = 166 g/mol
166.00 g ÷ 166 g/mol = 1 mol KIThen we calculate the required volume, using the definition of molarity:
Molarity = moles / litersLiters = moles / molarity
1 mol / 1.00 M = 1 L“Conductor, circuit breaker, switch” use the words provided to write the function of fuses.
Answer pls
Answer:
The fuse is a thin wire that is the conductor of electricity is designed to breaks the circuit if there is a fault in an appliance that causes excessive current to flow in a circuit.
The conductor used in the fuse is melt and separated in such cases of excessive current in a circuit and switch the current off.
A circuit breaker is made up of a thin wire that is specially designed to switch that automatically breaks circuit current in the overcurrent condition.
Which equation represents a combustion reaction?
2SO2 + O2 → 2SO3
Pb(NO3)2 + 2HCl → PbCl2 + 2HNO3
2C2H6 + 7O2 → 4CO2 + 6H2O
Ca + 2HCl → CaCl2 + H2
Answer:
2SO2 + O2 => 2SO3
Explanation:
Combustion reaction involves heating of a compound/element/substance in presences of oxygen.
A certain alkyl halide is reacted with OH- to form an alcohol. The alkyl halide is optically active but the product(s) is/are optically inactive. Which of the following could be the reactant?a) 3-bromo-3-methylhexane.b) 1-chlorobutane.c) 2-bromo-2-methylbutane.d) 3-bromo-2,3,4-trimethypentane.
Answer:
a. 3-brumo - 3-methylhexane
Explanation:
Alkyl Halides can undergo substitution reactions. Nucleophiles are electron rich species and has negative charge while Electrophiles are electron deficient species which carry positive charge. Alkyl halide which have polar carbon atom are electrophiles.
How is the atomic mass of an element calculated?
Answer:
Mass number (A) is the number of nucleons (proton and neutron) present in a atom.
Explanation:
electrons don't cout since they are thousandth's of the mass of protons or neutrons
Which of the following is true for a nuclear reaction? (5 points)
Select one:
a.Electrons are lost.
b.Electrons are gained.
c.The identity of element changes.
d.The identity of element remains same.
the identity of element remains same
. ¿Cuantos moles de Fosfato de Bario se producen cuando reaccionan 0.38 mol de Nitrato
de bario? Suponga que el ácido fosfórico está en exceso. Base sus cálculos en la siguiente
ecuación.
Ba(NO3)2(aq) + HAPO.(aq)
Ba,(PO.),(s) + HNO3(aq)
-
Respuesta:
0.13 mol
Explicación:
Paso 1: Escribir la ecuación química balanceada
3 Ba(NO₃)₂ + 2 H₃PO₄ ⇒ Ba₃(PO₄)₂ + 3 H₂O
Paso 2: Establecer la relación molar apropiada
La relación molar de Ba(NO₃)₂ a Ba₃(PO₄)₂ es 3:1.
Paso 3: Calcular cuantos moles de fosfato de bario se producen a partir de 0.38 moles de nitrato de bario
0.38 mol Ba(NO₃)₂ × 1 mol Ba₃(PO₄)₂/3 mol Ba(NO₃)₂ = 0.13 mol Ba₃(PO₄)₂
The acid dissociation constant, Ka, of HNO3 is 4.0 x104. What does the ka
value indicate about this compound?
A. HNO3 is neither an acid nor a base,
B. HNO3 is a strong acid.
C. HNO3 is a weak acid
D. HNO3 is a strong base.
Answer:
i thing its b
Explanation:
The acid dissociation constant (Ka) is a measure of the strength of an acid in solution. In HNO₃ (nitric acid), the given Ka value is 4.0 x 10⁴. It represents the equilibrium constant for the dissociation reaction of an acid in water. Therefore, option B is correct.
The dissociation constant often denoted as Kd, is a measure of the strength of the interaction between a ligand and a receptor or between a substrate and an enzyme.
A high Ka value indicates a strong acid, while a low Ka value indicates a weak acid. In this case, the Ka value of 4.0 x 10⁴ for HNO₃ is relatively high.
To learn more about the dissociation constant, follow the link:
https://brainly.com/question/28197409
#SPJ6
Help on both please and thanks
Answer:
1. Granite
2. 535.5J
Explanation:
1. The lower the specific heat capacity of a substance, which is the amount of heat needed to raise the temperature of a particular mass of substance by 1 °C or K, the slower the rate at which the temperature is raised.
In this question 1, the substance with the lowest specific heat capacity in J/gK is GRANITE, hence, it will raise temperature the slowest.
2. Using the formula as follows:
Q = m × c × ∆T
Where;
c = specific heat capacity
Q = amount of heat (J)
m = mass of substance
∆T = change in temperature (°C)
m = 35g, c = 0.45 J/g°C, ∆T = 54°C - 20°C = 34°C
Q = 35 × 0.45 × 34
Q = 535.5J
An article about half-lives describes a parent isotope. What is a parent isotope?
A. The isotope that forms from the radioactive decay of a less stable isotope.
B. The isotope that forms from the radioactive decay of a more stable isotope.
C. The isotope that undergoes radioactive decay to form a less stable isotope.
D. The isotope that undergoes radioactive decay to form a more stable isotope.
I think the answer is D.
Answer:
D. The isotope that undergoes radioactive decay to form a more stable isotope.
Explanation:
In radioactivity, isotopes of an unstable atom disintegrates/decays into more stable ones accompanied with the emissions of certain particles e.g alpha, gamma and beta particles.
In this process, the isotope of the atom that undergoes radioactive decay to form a more stable isotope is known as the PARENT ISOTOPE while the more stable isotope that arises from the decay is called the DAUGHTER ISOTOPE.
(238, 92) Uranium → (234,90) Thorium + (4,2) Helium
In the above reaction, Uranium is the parent isotope because it decays into a more stable isotope (Thorium).
Answer:
He's Right
Explanation:
i got it right
the intrument that tells both the speed and direction of the wind is the?
Answer:
anemometer
Explanation:
The instrument that is being described is called an anemometer. This is a device that has 4 ladel like objects that allow the wind to hit it, causing it to spin. The force of the spin allows meteorologists to calculate the speed of the wind. On top of this device is usually an arrow which can rotate around the device with the wind and point in the direction that the wind is blowing. Using a N, NE, E, SE, S, SW, W, and NW direction.
For the iron thiocyanate system, what is the value of the equilibrium constant, Kc, if the following are the concentrations of all species present. Provide your answer to three digits after the decimal.
FeSCN2+ 0.501
Fe3+ 0.494
SCN- 0.639
Answer:
Kc = 0.630
Explanation:
The equilibrium of the thiocyanate system occurs as follows:
FeSCN²⁺(aq) ⇄ Fe³⁺(aq) + SCN⁻(aq)
And equilibrium constant, kc, is:
Kc = [SCN⁻] [Fe³⁺] / [FeSCN²⁺]
Replacing with the gven concentrations:
Kc = 0.639M*0.494M / 0.501M
Kc = 0.630Select all the correct answers
When two generalizations can be made based on what you know about cycles of matter in a closed system?
New matter is added, and old matter is destroyed.
Matter changes its physical form, allowing it to return to its original state.
The amount of matter within the system remains the same
Matter and energy can cross the boundaries of the system.
The cycle has a well-defined starting and Stopping point
Answer:
A
Explanation:
Use the electronic configuration to explain the occurrence of period and groups to the periodic table.
Answer:
H2O
Explanation:
hydrogen has 1 electron
and oxygen has 6 electron which form a water molecule Atom
What is the initial pressure of a gas if it’s occupied a volume of 0.375 L but now occupies a volume of 1.25 L at a pressure of 95.5 K PA
Answer:
318 kPa
Explanation:
Step 1: Given data
Initial pressure (P₁): ?Initial volume (V₁): 0.375 LFinal pressure (P₂): 95.5 kPaFinal volume (V₂): 1.25 LStep 2: Calculate the initial pressure of the gas
Assuming constant temperature and ideal behavior, we can calculate the initial pressure of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
P₁ = P₂ × V₂ / V₁
P₁ = 95.5 kPa × 1.25 L / 0.375 L = 318 kPa
5pts) Reaction Characterization (1pts) Select the type of reaction Choose... (1pts) Write the balanced equation for the formation of the Grignard reagent from bromobenzene. Include all reagents and products but not solvents.
Answer:
See explanation and image attached
Explanation:
Grignard reagent is any organic compound that is classified as an alkyl or aryl magnesium halide (RMgX).
Grignard reagents are produced when the alkyl halide reacts with magnesium metal in ether and tetrahydrofuran as solvents.
They are good nucleophiles and are involved in the synthetic routes to many important classes of organic compounds.
The formation of Grignard reagent from bromobenzene is shown in the image attached to this answer.
Question 10 What is the UPAC name for this compound? CH3-----CHO
Answer:
Ethanal or acetaldehyde
Explanation:
Ethanal, also called acetaldehyde is the second member of the alkanal or aldehyde group of hydrocarbons, which have a functional group of -CHO. The -CHO functional group characterizes every member to this group and makes them behave chemically similar.
However, the second member of this aldehyde group with a formula of CH3----CHO, has a methyl group (CH3) attached to the functional group, hence, it is called ETHANAL OR ACETALDEHYDE.
which effect of long-term environmental change is the driving force behind evolution?
Answer:
climate change
Explanation:
climate change is driving force of evolution because when the climate is changed the animal and human need to adapt to it's natural change.
How many joules of heat energy are required to raise the temperature of 100.0 g of aluminum by 120.0°C? The specific heat of aluminum is 0.897 J/g.°C. 2 3
Answer:
10764 J
Explanation:
Remember the equation for specific heat::
q = mcΔT
q = 100 x 0.897 x 120
q = 10764
A length of copper wire has a mass of 6.19 g. How many moles of copper are in the wire? moles
Answer:
molar mass of copper = 63.55 g/mol
( 1 mol of copper)
6.19 g copper × ( 63.55g copper )
0.0975 moles
what is the atomic structure of an element that has atomic number of 11 and neutron number of 12.
Answer:
See explanation
Explanation:
The atomic number refers to the number of protons in the nucleus, it also tells us the number of electrons in the neutral atom since the atom is electrically neutral because the number of protons and electrons are equal.
If an atom has the atomic number 11, then the electrons in the atom are arranged in the shells in the order; 2, 8, 1.
Two electrons are found in the innermost shell, eight electrons are found in the next shell and one electron is found on the outermost shell.
The nucleus of the atom is composed of a total of 23 nucleons; 11 protons and 12 neutrons.
if B is completely insoluble in water. Your description should include the volume of solvent required.6b) Assuming that 2 mg of the impurity B are present along with 100 mg of A, describe how you can purify A if B has the same solubility behavior as A. Will one crystallization produce pure A
Answer:
1st step : mix the mixture with water that way A will dissolve while B will remain insoluble.
2nd step :To get B from the solution, filter the mixture and get B
3rd step : To get A from the solution evaporate the new solution
Explanation:
Assuming 2mg of impurity B to be present
100 mg of A is present as well
Method of purifying A given that B is of same solubility
Dissolve the 100 mg of A with 30 mL
1st step : mix the mixture with water that way A will dissolve while B will remain insoluble.
2nd step :To get B from the solution, filter the mixture and get B
3rd step : To get A from the solution evaporate the new solution
La is element 57 on the periodic table a sample contains 2.82 * 10€25 power atoms of La calculate the amount of LA
Answer:
[tex]n=46.8molLa\\\\m=6.50x10^3gLa[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate both moles and grams of lanthanum by using the Avogadro's number as a relationship of atoms to moles and its atomic mass as a relationship to moles to grams to obtain the following:
[tex]n=2.82x10^{25}atomsLa*\frac{1molLa}{6.022x10^{23}atomsLa}=46.8molLa\\\\m=46.8molLa*\frac{138.9gLa}{1molLa} =6.50x10^3gLa[/tex]
Regards!
Calculate the amount of heat needed to melt 89.9 g of solid methanol (CH3OH) and bring it to a temperature of 49.1C.
Answer:
20075.35 J
Explanation:
We'll begin by calculating the number of mole in 89.9 g of CH₃OH. This can be obtained as follow:
Mass of CH₃OH = 89.9 g
Molar mass of CH₃OH = 12 + (3×1) + 16 + 1
= 12 + 3 + 16 + 1
= 32 g/mol
Mole of CH₃OH =?
Mole = mass / molar mass
Mole of CH₃OH = 89.9 / 32
Mole of CH₃OH = 2.81 moles
Next, we shall determine the heat required to melt the solid methanol (CH₃OH). This can be obtained as follow:
Mole of CH₃OH (n) = 2.81 moles
Heat of fusion (Hբ) = 3.17 KJ/mol
Heat required to melt CH₃OH (Q₁) = ?
Q₁ = n × Hբ
Q₁ = 2.81 × 3.17
Q₁ = 8.9077 KJ
Converting to J
Q₁ = 8.9077 × 1000
Q₁ = 8907.7 J
Next, we shall determine the heat required to change the temperature of methanol to 49.1 °C. This can be obtained as follow:
Mass of CH₃OH (M) = 89.9 g
Initial temperature (T₁) = 0 °C
Final temperature (T₂) = 49.1 °C.
Specific heat capacity of CH₃OH (C) = 2.53 J/gºC
Heat required to change the temperature (Q₂) =?
Q₂ = MC(T₂ – T₁)
Q₂ = 89.9 × 2.53 × (49.1 – 0)
Q₂ = 89.9 × 2.53 × 49.1
Q₂ = 11167.65 J
Finally, we shall determine the total heat. This can be obtained as follow:
Heat required to melt CH₃OH (Q₁) = 8907.7 J
Heat required to change the temperature (Q₂) = 11167.65 J
Total heat required (Q) =?
Q = Q₁ + Q₂
Q = 8907.7 + 11167.65
Q = 20075.35 J
Therefore, the total heat required to melt the methanol and bring it to a temperature of 49.1 °C is 20075.35 J
The main product of free radical bromination of methane is
A) ethane
B) chloromethane
C) bromonethane
D) bromine
Answer: C
Explanation:
Soybeans is used in food production and cooking in 2007 United States produced 3.06 billions bushels of soybeans and 65% of the harvest was used to make soybeans oil
Answer:
1.071
Explanation:
Answer:
Find the percentage of soybeans used for other purposes:
100% − 65% = 35%.
Multiply the result (35%) by the total bushels of soybeans produced:
35
100
=
0.35
.
0.35 × 3.06 billion bushels = 1.071 billion bushels
The amount of soybeans used for other purposes was 1.071 billion bushels.
Explanation:
PLATO
The energy of a photon that has a frequency of 1.821 x 1016 5-1 is blank j?
Answer:
1.207 ××10⁻¹⁷ J
Explanation:
Step 1: Given and data
Frequency of the photon (ν): 1.821 × 10¹⁶ s⁻¹Planck's constant (h): 6.626 × 10⁻³⁴ J.sStep 2: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × ν
E = (6.626 × 10⁻³⁴ J.s) × ( 1.821 × 10¹⁶ s⁻¹) = 1.207 ××10⁻¹⁷ J
How many moles are present in a sample if it consists of 5.61x1022 particles? Report your answer to 3 decimal places. Do not include units.
Answer:
The mole is defined as a collection of 6.022 × 1023 particles.
The atomic mass given on a periodic table that is given in grams is the mass of
one mole (6.022 × 1023 particles) of that element
Explanation:
10-Concentration is the amount of a substance in a predefined volume of space. The basic measurement of concentration in chemistry is molarity or the number of moles of solute per liter of solvent. What is the molarity of a solution containing 9.478 grams of Rucl, in enough water to make 1.00 L of solution?
Answer:
0.0457 M
Explanation:
Concentration is the amount of a substance in a predefined volume of space. The basic measurement of concentration in chemistry is molarity or the number of moles of solute per liter of solution. What is the molarity of a solution containing 9.478 grams of RuCl₃, in enough water to make 1.00 L of solution?
Step 1: Given data
Mass of RuCl₃ (solute): 9.478 gVolume of solution: 1.00 LStep 2: Calculate the moles corresponding to 9.478 g of RuCl₃
The molar mass of RuCl₃ is 207.4 g/mol.
9.478 g × 1 mol/207.4 g = 0.04570 mol
Step 3: Calculate the molarity of the solution
We will use the definition of molarity.
M = moles of solute / liters of solution
M = 0.04570 mol / 1.00 L = 0.0457 M