Answer:
Needed point estimate is $372
Step-by-step explanation:
Given:
Number of houses in resident area = 121
Monthly mean car payment = $372
Find:
Best point estimate for the mean monthly car payment
Explanation:
The "best point estimate" for such average monthly automobile payment for all inhabitants of the nearby apartment complex is used as the "sample mean." In this example, a $372 sample was obtained on 121 residents.
As a result, the needed point estimate is $372.
Mark jogs 10 miles in 2 hours.
Come up with a ratio that shows the distance in miles to the time taken
in hours. Simplify your ratio if needed.
A survey of 249 people asks about their favorite flavor of ice cream. The results of this survey, broken down by the age group of the respondent and their favorite flavor, are as follows:
Chocolate Vanilla Strawberry
Children 40 10 44
Teens 34 10 38
Adults 17 43 13
If one person is chosen at random, find the probability that the person:______.
a) is an adult.
b) likes chocolate the best.
c) is an adult OR likes vanilla the best.
d) is a child AND likes vanilla the best.
e) likes strawberry the best, GIVEN that the person is a child.
f) is a child, GIVEN that the person likes strawberry the best.
Answer:
a) [tex]P(Adult)=\frac{73}{249}=0.2932=29.32%[/tex]
b) [tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c) [tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d) [tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e) [tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f) [tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the number of adults in the survey and divide them into the number of people in the survey by using the following formula>
[tex]P=\frac{desired}{possible}[/tex]
In this case we have a total of 17+43+13 adults which gives us 73 adults and a total of 249 people surveyed so we get:
[tex]P(Adults)=\frac{73}{249}=0.2932=29.32%[/tex]
b)
The same principle works for part b
there are: 40+34+17=91 people who likes chocolate ice cream the best so the probability is:
[tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c)
when it comes to the or statement, we can use the following formula:
P(A or B) = P(A) + P(B) - P( A and B)
In this case:
[tex]P(Adult)=\frac{73}{249}[/tex]
[tex]P(Vanilla)=\frac{10+10+43}{249}=\frac{63}{249}[/tex]
[tex]P(AdultandVanilla)=\frac{43}{249}[/tex]
so:
[tex]P(AdultorVanilla)=\frac{73}{249}+\frac{63}{249}-\frac{43}{249}[/tex]
[tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d)
Is a child and likes vanilla the best.
In the table we can see that 10 children like vanilla so the probability is:
[tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e)
Likes strawberry the best, GIVEN that the person is a child.
In this case we can make use of the following formula:
[tex]P(B/A)=\frac{P(AandB)}{P(A)}[/tex]
so we can get the desired probabilities. First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 40+10+44=94 children, so the probability for the person being a child is:
[tex]P(Child)=\frac{94}{249}[/tex]
Therefore:
[tex]P(Strawberry/Child)=\frac{\frac{44}{249}}{\frac{94}{249}}[/tex]
[tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f)
The same works for the probability of the person being a child given that the person likes strawberry the best.
First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 44+38+13 persons like strawberry, so the probability for the person liking strawberry is:
[tex]P(Child)=\frac{95}{249}[/tex]
Therefore:
[tex]P(Child/Strawberry)=\frac{\frac{44}{249}}{\frac{95}{249}}[/tex]
[tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]
The average undergraduate cost for tuition, fees, and room and board for two-year institutions last year was $13,252. The following year, a random sample of 20 two-year institutions had a mean of $15,560 and a standard deviation of $3500. Is there sufficient evidence at the ?= 0.05 level to conclude that the mean cost has increased. Solve the question by traditional approach.
Answer:
The p-value of the test is 0.0041 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean cost has increased.
Step-by-step explanation:
The average undergraduate cost for tuition, fees, and room and board for two-year institutions last year was $13,252. Test if the mean cost has increased.
At the null hypothesis, we test if the mean cost is still the same, that is:
[tex]H_0: \mu = 13252[/tex]
At the alternative hypothesis, we test if the mean cost has increased, that is:
[tex]H_1: \mu > 13252[/tex]
The test statistic is:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
13252 is tested at the null hypothesis:
This means that [tex]\mu = 13252[/tex]
The following year, a random sample of 20 two-year institutions had a mean of $15,560 and a standard deviation of $3500.
This means that [tex]n = 20, X = 15560, s = 3500[/tex]
Value of the test statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{15560 - 13252}{\frac{3500}{\sqrt{20}}}[/tex]
[tex]t = 2.95[/tex]
P-value of the test and decision:
The p-value of the test is found using a t-score calculator, with a right-tailed test, with 20-1 = 19 degrees of freedom and t = 2.95. Thus, the p-value of the test is 0.0041.
The p-value of the test is 0.0041 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean cost has increased.
what is the H.C.F of 30 and 45
Answer:
15
Hope this helped ^^
2[30 5[45
3[15 3[9
5[5 3[3
[1 [1
30=2*3*5*1
45=5*3*3*1 HCF= 3*1=3
hope its helps you
keep smiling be happy stay safe
There are 4 routes from Danbury to Hartford and 6 routes from Hartford to Springfield. You need to drive from Danbury to Springfield for an important meeting. You don’t know it, but there are traffic jams on 2 of the 4 routes and on 3 of the 6 routes. Answer the following:
a. You will miss your meeting if you hit a traffic jam on both sections of the journey. What is the probability of this happening?
b. You will be late for your meeting if you hit a traffic jam on at least one, but not both sections of the trip. What is the probability of this?
c. What is the probability that you will hit no traffic jam?
Answer:
a. P) = 0.25
b. P) = 0.25
c. P) = 0.5
Step-by-step explanation:
a) 1/4 as 1/2 x 1/2 = 1/4 = 0.25 This becomes reduced as we are multiplying one complete probability journey by another complete probability journey.
b) see above as 1/2 x 1/4 and 1/4 x 1/2 = 2.5 = 1/4 = 0.25
or we can Set to 1 and 1 - 3/4 = 1/4. = 0.25.
c) 1/2 as half of the journeys have traffic jams so its 1 - 1/2 = 1/2 = 0.5
(1) If the regression line equation of y on x is : û :
= 0.2x + 3, the value
ofy from the table when x=5 is 4.6, then the value of the error in the
value of y is ...
a 0.6
b 0.4 C 0.3
d 0.1
Answer:
0.6
Step-by-step explanation:
Given the regression equation :
y = 0.2x + 3,
The actual value of y when x = 5 is 4.6
The predicted of y using the model when x = 5 is :
Put x = 5 in the equation :
y = 0.2(5) + 3
y = 1 + 3
y = 4
The error in the value of y predicted is :
Error = Actual value - Predicted value
Error = 4.6 - 4
Error = 0.6
Which statement about the net is true?
The net can be folded to form a pyramid because at least one of the faces is a triangle.
The net can be folded to form a pyramid because more than one of the faces is a triangle.
The net cannot be folded to form a pyramid because one of the faces is a rectangle.
The net cannot be folded to form a pyramid because the faces that are not a base are not all triangles.
Answer:
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Step-by-step explanation:
Identifying Possible Triangles
From which set of dimensions could a triangle be constructed?
side length of 8
side length of 5
side length of 14
O side length of 7
side length of 8
side length of 15
side length of 2
side length of 6
side length of 7
side length of 6
side length of 3
side length of 10 can somebody answer this quickly pls
Answer:
3rd triangle can be constructed with dimensions 2,6,7.
Step-by-step explanation:
sum of any two sides > third side.
difference of any two sides < third side
1.
8+5=13 not >14 (no triangle.)
2.
7+8=15 not >15 (no triangle)
3.
2+6=8>7
2+7=9>6
7+6=13>2
7-2=5<6
7-6=1<2
6-2=4<7
so it is a triangle.
4.
6+3=9 not >10 (not a triangle)
Calculate the perimeter
Answer:
sorry i cannot help you
Estimate 620 / 17 by first rounding each number so that it has only 1 nonzero digit.
no links plz
Step-by-step explanation:
620 / 17 =36.47058.. ≈ 36.5
find the value of x rounded to the nearest tenth
9514 1404 393
Answer:
3.8
Step-by-step explanation:
The angle bisector divides the triangle segments proportionally.
x/3 = 5/4
x = 15/4 = 3.75 . . . . multiply by 3
x ≈ 3.8
Ray is constructing a flower bed
Answer:
41 feet
Step-by-step explanation:
12 +12 + [tex]\sqrt{144+144}[/tex]
Answer:
Perfilar. Comienza por delimitar la forma y dimensión del macizo. ...
Cavar y abonar. ...
Enmarcar y rastrillar. ...
Distribuir y plantar.
Step-by-step explanation:
After x hours, the distance between two trains traveling in opposite directions from the same station is 704 km. If one train travels 96 km/h and the other travels 80 km/h, find the number of hours they traveled if they left at the same time.
Answer:
4 hr
Step-by-step explanation:
96 x 4= 384
80 x 4=320
384+320=704
Jerome is cooking dinner. He needs 8 ounces of broccoli for each person. Part A: Jerome is not sure how many people will come to dinner. Write an expression with a variable that represents the amount of broccoli Jerome needs for dinner. Identify what the variable represents. Part B: If Jerome has 32 ounces of broccoli, how many people can he feed? Create an equation and show all work to solve it.
Answer:
A. 8x = amount of broccoli needed
B. 4 people; 32÷8=4
Step-by-step explanation:
A. the variable (x) represents the amount of people.
B. 32 ounces divided by 8 ounces is enough for four people.
You buy a six pack of Gatorade for $9.00. What is the unit price or the price per bottle?
Answer:
Price per bottle is 1.5 or $1.50
Step-by-step explanation:
To get price per unit, you just divide the amount of money spent by the items purchased. 9/6 = 1.5
Which of the following is the solution set of -2|x| < -8 {x | -4 > x > 4} {x | x < -4 or x > 4} {x | -4 < x < 4}
Answer:
the second one
Step-by-step explanation:
please give full solutions
√8281
Answer:
the answer is 91
Step-by-step explanation:
What’s is the domain
9514 1404 393
Answer:
(b) x -3 ≥ 0
Step-by-step explanation:
The square root function will return non-negative values, so the inequality √(x-3) ≥ 0 gives no new information. What is required is that the argument of the square root function be non-negative:
x -3 ≥ 0
The probability that a person will develop the flu after getting a flu shot is 0.04. In a random sample of 100 people in a community who got a flu shot, what is the probability that 5 or more of the 100 people will get the flu
Answer:
0.3711 = 37.11% probability that 5 or more of the 100 people will get the flu
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they will develop the flu after getting the shot, or they will not. The probability of a person developing the flu after getting the shot is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The probability that a person will develop the flu after getting a flu shot is 0.04.
This means that [tex]p = 0.04[/tex]
Random sample of 100 people:
This means that [tex]n = 100[/tex]
What is the probability that 5 or more of the 100 people will get the flu?
This is:
[tex]P(X \geq 5) = 1 - P(X < 5)[/tex]
In which
[tex]P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{100,0}.(0.04)^{0}.(0.96)^{100} = 0.0169[/tex]
[tex]P(X = 1) = C_{100,1}.(0.04)^{1}.(0.96)^{99} = 0.0703[/tex]
[tex]P(X = 2) = C_{100,2}.(0.04)^{2}.(0.96)^{98} = 0.1450[/tex]
[tex]P(X = 3) = C_{100,3}.(0.04)^{3}.(0.96)^{97} = 0.1973[/tex]
[tex]P(X = 4) = C_{100,4}.(0.04)^{4}.(0.96)^{96} = 0.1994[/tex]
Then
[tex]P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0169 + 0.0703 + 0.1450 + 0.1973 + 0.1994 = 0.6289[/tex]
[tex]P(X \geq 5) = 1 - P(X < 5) = 1 - 0.6289 = 0.3711[/tex]
0.3711 = 37.11% probability that 5 or more of the 100 people will get the flu
A wooden log 10 meters long is leaning against a vertical wall with its other end on the ground. The top end of the log is sliding down the wall. When the top end is 6 meters from the ground, it slides down at 2m/sec. How fast is the bottom moving away from the wall at this instant?
Answer:
Step-by-step explanation:
This is a related rates problem from calculus using implicit differentiation. The main equation is Pythagorean's Theorem. Basically, what we are looking for is [tex]\frac{dx}{dt}[/tex] when y = 6 and [tex]\frac{dy}{dt}=-2[/tex].
The equation for Pythagorean's Theorem is
[tex]x^2+y^2=c^2[/tex] where x and y are the legs and c is the hypotenuse. The length of the hypotenuse is 10, so when we find the derivative of this function with respect to time, and using implicit differentiation, we get:
[tex]2x\frac{dx}{dt}+2y\frac{dy}{dt}=0[/tex] and divide everything by 2 to simplify:
[tex]x\frac{dx}{dt}+y\frac{dy}{dt}=0[/tex]. Looking at that equation, it looks like we need a value for x, y, [tex]\frac{dx}{dt}[/tex] and [tex]\frac{dy}{dt}[/tex].
Since we are looking for [tex]\frac{dx}{dt}[/tex], that can be our only unknown and everything else has to have a value. So what do we know?
If we construct a right triangle with 10 as the hypotenuse and use 6 for y, we can solve for x (which is the only unknown we have, actually). Using Pythagorean's Theorem to solve for x:
[tex]x^2+6^2=10^2[/tex] and
[tex]x^2+36=100[/tex] and
[tex]x^2=64[/tex] so
x = 8.
NOW we can fill in the derivative and solve for [tex]\frac{dx}{dt}[/tex].
Remember the derivative is
[tex]x\frac{dx}{dt}+y\frac{dy}{dt}=0[/tex] so
[tex]8\frac{dx}{dt}+6(-2)=0[/tex] and
[tex]8\frac{dx}{dt}-12=0[/tex] and
[tex]8\frac{dx}{dt}=12[/tex] so
[tex]\frac{dx}{dt}=\frac{12}{8}=\frac{6}{4}=\frac{3}{2}=1.5 m/sec[/tex]
Question 3: Is the mean hemoglobin level of high-altitude workers different from 20 g/cm ? To investigate this, researchers examined a sample of 20 workers and found that sample mean hemoglobin level is 17 g/cm whereas sample standard deviation is 3 g/cm². Test this claim at alpha=0.10.
Answer:
Science is really connected to mathematics.Hemoglobin is the red bloodThe list shows the ages of first-year teachers in one school system. What is the mode of the ages? 23, 42, 21, 25, 23, 24, 23, 24, 37, 23, 39, 51, 63, 24, 55
Answer:
La moda es 23
Step-by-step explanation:
23 es el numero que mas se repite es decir la moda
Using law of sines please show process!!!
Let the <C=x
We know in a triangle
☆Sum of angles=180°
[tex]\\ \sf\longmapsto 51+26+x=180[/tex]
[tex]\\ \sf\longmapsto 77+x=180[/tex]
[tex]\\ \sf\longmapsto x=180-77[/tex]
[tex]\\ \sf\longmapsto x=103°[/tex]
What is the solution to
this system of linear
equations?
3
2
1
-4-3-2-1,0 1 2 3 4
Aώ Ν.
A
(1, -3)
B
(-3, 1)
I need help :)What’s m
Answer:
[tex] \large{ \tt{❃ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]
[tex] \large{ \tt{⇢m \: \angle \: GHI= m \: \angle \: GHQ + m \: \angle \: QHI}}[/tex]
[tex] \large{ \tt{➝14x + 6 = 3x - 3 + 130 \degree}}[/tex]
[tex] \large{ \tt{➝14x + 6 = 3x + 127}}[/tex]
[tex] \large{ \tt{➝ \: 14x - 3x = 127 - 6}}[/tex]
[tex] \large{ \tt{➝ \: 11x = 121}}[/tex]
[tex] \large{ \tt{➝ \: x = \frac{121}{11} }}[/tex]
[tex] \large{ \tt{➝ \: x = 11}}[/tex]
[tex] \large{ \tt{✣ \: REPLACING \: VALUE}} : [/tex]
[tex] \large{ \tt{✺ \: m \: \angle \: GHI = 14x + 6 = 14 \times 11 + 6 = \boxed{ \tt{160 \degree}}}}[/tex]
Our final answer : 160° . Hope I helped! Let me know if you have any questions regarding my answer! :)▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Suppose f(x)=x^2 and g(x)=(1/2x)^2. Which statement best compares the graph of g(x) with the graph of f(x)?
Answer:
"A"
Step-by-step explanation:
How many students rank themselves as introverts? Demonstrate your work.
Answer:
36 introverts
Step-by-step explanation:
Total number of adults in the survey = 120
Ratio of introverts to extroverts = 3:7
Number of introverts = ratio number of introverts / ratio total × 120
Ratio number of introverts = 3
Ratio total = 3 + 7 = 10
Number of introverts = 3/10 × 120
= 36
Assume that when blood donors are randomly selected, 45% of them have blood that is Group O (based on data from the Greater New York Blood Program).
1. If the number of blood donors is n = 16 equation, find the probability that the number with Group O blood is equation x = 6.
2. If the number of blood donors is n = 8, find the probability that the number with group O is x = 3.
3. if the number of blood donors is n = 20, find the probability that the number with group O blood is x = 16.
4. if the number of blood donors is n = 11, find the probability that the number with group O blood is x = 9.
Answer:
1. 0.1684 = 16.84%.
2. 0.2568 = 25.68%
3. 0.0013 = 0.13%
4. 0.0126 = 1.26%.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they have blood that is Group O, or they do not. The probability of a person having blood that is Group O is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
45% of them have blood that is Group O
This means that [tex]p = 0.45[/tex]
Question 1:
This is P(X = 6) when n = 16. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{16,6}.(0.45)^{6}.(0.55)^{10} = 0.1684[/tex]
So 0.1684 = 16.84%.
Question 2:
This is P(X = 3) when n = 8. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{8,3}.(0.45)^{3}.(0.55)^{5} = 0.2568[/tex]
So 0.2568 = 25.68%.
Question 3:
This is P(X = 16) when n = 20. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 16) = C_{20,16}.(0.45)^{16}.(0.55)^{4} = 0.0013[/tex]
So 0.0013 = 0.13%.
Question 4:
This is P(X = 9) when n = 11. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{11,9}.(0.45)^{9}.(0.55)^{2} = 0.0126[/tex]
So 0.0126 = 1.26%.
BRE
What is the radius of a circle whose equation is (x - 7)2 + (y - 10)2 = 4?
2 units
ОО
4 units
8 units
16 units
Answer:
2
Step-by-step explanation:
The equation of a circle is given as:
(x-h)^2 + (y-k)^2 = r^2
so r^2 = 4
r = sqrt(4)
r = 2
Answer:
A
Step-by-step explanation:
Researchers study the mean weight (in pounds) of adults between the ages of 30-40. The researchers form a SRS of adults and build a 90% confidence interval: [160, 180]. Which of the following statements are true about this confidence interval?
a. 90% of intervals built according to the method capture the true mean weight of adults between the ages of 30-40.
b. The intervals margin of error is 20.
c. There is a 90% chance that the mean weight of adults between the ages of 30- 40 is between 160 and 180 pounds.
d. The sample mean used to build this interval was 170 pounds.
Answer:
d. The sample mean used to build this interval was 170 pounds.
Step-by-step explanation:
Confidence interval concepts:
A confidence interval has two bounds, a lower bound and an upper bound.
A confidence interval is symmetric, which means that the point estimate used is the mid point between these two bounds, that is, the mean of the two bounds.
The margin of error is the difference between the two bounds, divided by 2.
In this question:
Bounds 160 and 180, so the sample mean used was (160+180)/2 = 170, and thus the correct answer is given by option d.