The answer to this 6th grade summer school math question is

Answer 7.84

The Answer To This 6th Grade Summer School Math Question Is Answer 7.84

Answers

Answer 1
7.84
Steps on how I solved it
2.8x2.8= 7.8

Related Questions

Find the difference.

(3x3−2x2+4x−8)−(5x3+12x2−3x−4)=

Answers

Answer:

-2x³ - 14x² + 7x - 4

General Formulas and Concepts:

Pre-Algebra

Distributive Property

Algebra I

Terms/Coefficients

Step-by-step explanation:

Step 1: Define

Identify

(3x³ - 2x² + 4x - 8) - (5x³ + 12x² - 3x - 4)

Step 2: Simplify

[Distributive Property] Distribute negative:                                                    3x³ - 2x² + 4x - 8 - 5x³ - 12x² + 3x + 4Combine like terms (x³):                                                                                   -2x³ - 2x² + 4x - 8 - 12x² + 3x + 4Combine like terms (x²):                                                                                   -2x³ - 14x² + 4x - 8 + 3x + 4Combine like terms (x):                                                                                    -2x³ - 14x² + 7x - 8 + 4Combine like terms:                                                                                         -2x³ - 14x² + 7x - 4

Convert 0.53 hectograms to centigrams.
53 centigrams
0.000053 centigrams
530 centigrams
5,3000 centigrams

Answers

Answer:

As for metric prefixes, "hecto" means hundred and "centi" means hundredth.  

So, converting .53 hectograms to centigrams requires multiplying it by 10,000.

So, .53 hectograms * 10,000 equals 5,300 centigrams.

Source http://www.1728.org/convprfx.htm

Step-by-step explanation:

I need help solving this problem. Thanks

Answers

9514 1404 393

Answer:

  f = 2T/(v1 +v2)

Step-by-step explanation:

Multiply by the inverse of the coefficient of f.

  [tex]T=f\cdot\dfrac{v_1+v_2}{2}\\\\f=\dfrac{2T}{v_1+v_2}[/tex]

Find the radius of a circle with a diameter whose endpoints are (-7,1) and (1,3).​

Answers

Answer:

r = 4.1231055

Step-by-step explanation:

So to do this, you need to find the distance between the two points:

(-7,1) and (1,3).

To do this, the distance or diameter (d) is equal to:

d = sqrt ((x2-x1)^2 + (y2-y1)^2)

In this case:

d = sqrt( (1 - (-7))^2 + (3 - 1)^2 )

d = sqrt( 8^2 + 2^2)

d = sqrt( 64 + 4)

d = sqrt( 68 )

The radius is half of the diameter, so:

r = 1/2 * d

r = 1/2 * sqrt( 68 )

r~ 4.1231055

The perimeter of a rectangular swimming pool is 56 meters. The width is 4 meters less than the length. What is the width of the swimming pool?

Answers

Answer:

52mtrs

Step-by-step explanation:

if length is 56meeters and the width is 4meeters less then 56 -4 = 52 so width is 52mtrs

PLEASE ANSWER MY QUESTION AND EXPLAIN RIGHT

Answers

Answer:

$ 1943

Step-by-step explanation:

You two congruent trapezoids.

Find the area of one and multiply by 2.

A = [tex]\frac{base_{1} + base_{2} }{2}[/tex] x  h

  = [tex]\frac{28+39}{2}[/tex] x 14.5

  = [tex]\frac{67}{2}[/tex] x 14.5

  = 33.5 x 14.5

  = 485.75

  = 485.75 x 2 (Two trapezoids)

  = 971.50

  = 971.50 x 2 (two dollars a square foot)

  = 1943.00

A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
p(x, y) y
0 1 2
x 0 0.10 0.03 0.01
1 0 08 0.20 0.06
2 0.05 0.14 0.33
(a) Given that X = 1, determine the conditional pmf of Y�i.e., pY|X(0|1), pY|X(1|1), pY|X(2|1).
(b) Given that two hoses are in use at the self-service island, what is the conditional pmf of the number of hoses in use on the full-service island?
(c) Use the result of part (b) to calculate the conditional probability P(Y ? 1 | X = 2).
(d) Given that two hoses are in use at the full-service island, what is the conditional pmf of the number in use at the self-service island?

Answers

Answer:

(a): The conditional pmf of Y when X = 1

[tex]p_{Y|X}(0|1) = 0.2353[/tex]

[tex]p_{Y|X}(1|1) = 0.5882[/tex]

[tex]p_{Y|X}(2|1) = 0.1765[/tex]

(b): The conditional pmf of Y when X = 2

[tex]p_{Y|X}(0|2) = 0.0962[/tex]

[tex]p_{Y|X}(1|2) = 0.2692[/tex]

[tex]p_{Y|X}(2|2) = 0.6346[/tex]

(c): From (b) calculate P(Y<=1 | X =2)

[tex]P(Y\le1 | X =2) = 0.3654[/tex]

(d): The conditional pmf of X when Y = 2

[tex]p_{X|Y}(0|2) = 0.025[/tex]

[tex]p_{X|Y}(1|2) = 0.150[/tex]

[tex]p_{X|Y}(2|2) = 0.825[/tex]

Step-by-step explanation:

Given

The above table

Solving (a): The conditional pmf of Y when X = 1

This implies that we calculate

[tex]p_{Y|X}(0|1), p_{Y|X}(1|1), p_{Y|X}(2|1)[/tex]

So, we have:

[tex]p_{Y|X}(0|1) = \frac{p(y = 0\ n\ x = 1)}{p(x = 1)}[/tex]

Reading the data from the given table, the equation becomes

[tex]p_{Y|X}(0|1) = \frac{0.08}{0.08+0.20+0.06}[/tex]

[tex]p_{Y|X}(0|1) = \frac{0.08}{0.34}[/tex]

[tex]p_{Y|X}(0|1) = 0.2353[/tex]

Using the format of the above formula for the rest, we have:

[tex]p_{Y|X}(1|1) = \frac{0.20}{0.34}[/tex]

[tex]p_{Y|X}(1|1) = 0.5882[/tex]

[tex]p_{Y|X}(2|1) = \frac{0.06}{0.34}[/tex]

[tex]p_{Y|X}(2|1) = 0.1765[/tex]

Solving (b): The conditional pmf of Y when X = 2

This implies that we calculate

[tex]p_{Y|X}(0|2), p_{Y|X}(1|2), p_{Y|X}(2|2)[/tex]

So, we have:

[tex]p_{Y|X}(0|2) = \frac{p(y = 0\ n\ x = 2)}{p(x = 2)}[/tex]

Reading the data from the given table, the equation becomes

[tex]p_{Y|X}(0|2) = \frac{0.05}{0.05+0.14+0.33}[/tex]

[tex]p_{Y|X}(0|2) = \frac{0.05}{0.52}[/tex]

[tex]p_{Y|X}(0|2) = 0.0962[/tex]

Using the format of the above formula for the rest, we have:

[tex]p_{Y|X}(1|2) = \frac{0.14}{0.52}[/tex]

[tex]p_{Y|X}(1|2) = 0.2692[/tex]

[tex]p_{Y|X}(2|2) = \frac{0.33}{0.52}[/tex]

[tex]p_{Y|X}(2|2) = 0.6346[/tex]

Solving (c): From (b) calculate P(Y<=1 | X =2)

To do this, where Y = 0 or 1

So, we have:

[tex]P(Y\le1 | X =2) = P_{Y|X}(0|2) + P_{Y|X}(1|2)[/tex]

[tex]P(Y\le1 | X =2) = 0.0962 + 0.2692[/tex]

[tex]P(Y\le1 | X =2) = 0.3654[/tex]

Solving (d): The conditional pmf of X when Y = 2

This implies that we calculate

[tex]p_{X|Y}(0|2), p_{X|Y}(1|2), p_{X|Y}(2|2)[/tex]

So, we have:

[tex]p_{X|Y}(0|2) = \frac{p(x = 0\ n\ y = 2)}{p(y = 2)}[/tex]

Reading the data from the given table, the equation becomes

[tex]p_{X|Y}(0|2) = \frac{0.01}{0.01+0.06+0.33}[/tex]

[tex]p_{X|Y}(0|2) = \frac{0.01}{0.40}[/tex]

[tex]p_{X|Y}(0|2) = 0.025[/tex]

Using the format of the above formula for the rest, we have:

[tex]p_{X|Y}(1|2) = \frac{0.06}{0.40}[/tex]

[tex]p_{X|Y}(1|2) = 0.150[/tex]

[tex]p_{X|Y}(2|2) = \frac{0.33}{0.40}[/tex]

[tex]p_{X|Y}(2|2) = 0.825[/tex]

The probability that a certain hockey team will win any given game is 0.3773 based on their 13 year win history of 389 wins out of 1031 games played (as of a certain date). Their schedule for November contains 12 games. Let X = number of games won in November.
Find the probability that the hockey team wins at least 3 games in November. (Round your answer to four decimal places.)

Answers

Answer:

0.8895 = 88.95% probability that the hockey team wins at least 3 games in November.

Step-by-step explanation:

For each game, there are only two possible outcomes. Either the teams wins, or they do not win. The probability of the team winning a game is independent of any other game, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The probability that a certain hockey team will win any given game is 0.3773.

This means that [tex]p = 0.3773[/tex]

Their schedule for November contains 12 games.

This means that [tex]n = 12[/tex]

Find the probability that the hockey team wins at least 3 games in November.

This is:

[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]

In which:

[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{12,0}.(0.3773)^{0}.(0.6227)^{12} = 0.0034[/tex]

[tex]P(X = 1) = C_{12,1}.(0.3773)^{1}.(0.6227)^{11} = 0.0247[/tex]

[tex]P(X = 2) = C_{12,2}.(0.3773)^{2}.(0.6227)^{10} = 0.0824[/tex]

Then

[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0034 + 0.0247 + 0.0824 = 0.1105[/tex]

[tex]P(X \geq 3) = 1 - P(X < 3) = 1 - 0.1105 = 0.8895[/tex]

0.8895 = 88.95% probability that the hockey team wins at least 3 games in November.

You want to be able to withdraw the specified amount periodically from a payout annuity with the given terms. Find how much the account needs to hold to make this possible. Round your answer to the nearest dollar. Regular withdrawal: $1200 Interest rate: 2.5% Frequency monthly Time: 26 years
what is the account balance?​

Answers

Step-by-step explanation:

principal=?. interest=$1200. rate =2. 5%. time=26 NOW, principal=I×100/T×R= $1200×100/26×2. 5=1846. 15

9514 1404 393

Answer:

  $275,098.25

Step-by-step explanation:

The principal amount can be found using the annuity formula.

 A = P(r/12)/(1 - (1 +r/12)^(-12t))

where A is the monthly payment, P is the principal amount, r is the annual interest rate, and t is the number of years.

Solving for P, we have ...

  P = A(12/r)(1 -(1 +r/12)^(-12t)) = 1200(12/0.025)(1 -(1 +.025/12)^(-12·26))

  = $275,098.25

The account balance needs to be $275,098.25.

The proportion of brown M&M's in a milk chocolate packet is approximately 14% (Madison, 2013). Suppose a package of M&M's typically contains 52 M&M's

Answers

Answer:

7 brown M&Ms.

Step-by-step explanation:

This question is not complete, but I will assume that the final question is how many brown M&Ms will be in this package.

0.14 × 52 is our equation.

The answer is 7.28. We cannot have .28 of a brown M&M in a package (unless you count the broken ones) so there will be, on average, 7 brown M&Ms in a package.

(again, the question is incomplete, so this may not be the answer)

Which of the following is NOT true of a perpendicular bisect or?

Answers

Answer:

The forth option

It forms a right angle with the segment.

Write 0.851 as a fraction in simplest form.

Answers

Answer:

[tex]\frac{851}{1000}[/tex]

Step-by-step explanation:

First, we can simply multiply that number by 1000, and divide again by 1000 to get a base fraction:

[tex].851\\\\= \frac{1000}{1000} \times .851\\\\= \frac{1000 \times .851}{1000}\\\\= \frac{851}{1000}[/tex]

851 is a secondary prime, having only two factors, both of which are prime.  Those factors are 23 and 37, neither of which is a factor of 1000, so this is already in simplest form.


Last week at the business where you work, you sold 120 items.  The business paid $1 per item and sold them for $3 each.  What profit did the business make from selling the 120 items?​

Answers

Answer:

240

Step-by-step explanation:

minus how much u sold them and how much it cost to make

3-1=2

times 2 and 120

2(120)

240

Urgent help!!!
*Picture included

Answers

Answer:

3x+4

Step-by-step explanation:

When you factor 9x^2+24x+16, it factors to (3x+4)^2

Factoring 9x^2 - 16 factors to (3x+4)(3x-4)

Therefore the common factor is 3x+4

I hope this helps!

For a confidence level of 88%, find the critical value for a normally distributed variable. The sample mean is normally distributed if the population standard deviation is known.

Answers

Answer:

z = ±  0.772193214

Step-by-step explanation:

Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].

What is the standard deviation?

Standard deviation is the degree of dispersion or the scatter of the data points relative to its mean, in descriptive statistics.

It tells how the values are spread across the data sample and it is the measure of the variation of the data points from the mean.

Here given that,

For a confidence level of  [tex]88[/tex]%, find the critical value for a normally distributed variable.

Let us assume that the standard normal distribution having a mean is [tex]0[/tex] and the standard deviation is [tex]1[/tex].

As the significance level is [tex]1[/tex] - confidence interval

Confidence interval is [tex]\frac{80}{100}=0.88[/tex]

i.e., [tex]1-0.88=0.12[/tex]

For the two sided confidence interval the confidence level is [tex]0.44[/tex].

Now, the standard normal probability table the critical value for the  [tex]88[/tex]% confidence level is [tex]1.56[/tex].

Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].

To know more about the standard deviation

https://brainly.com/question/13905583

#SPJ5

How long will it take her to travel 72 miles? use the unit ratio to solve the following problem.

Answers

Answer:

It will take Noshwa 3 hours and 36 minutes to travel 72 miles.

Step-by-step explanation:

Since Noshwa is completing the bike portion of a triathlon, assuming that she travels 40 miles in 2.5 hours, to determine how long will it take her to travel 72 miles, the following calculation must be performed:

40 = 2.5

72 = X

72 x 2.5 / 50 = X

180/50 = X

3.6 = X

1 = 60

0.6 = X

0.6 x 60 = X

36 = X

Therefore, it will take Noshwa 3 hours and 36 minutes to travel 72 miles.

The function f is defined by the following rule. f(x) = 5x+1 Complete the function table.

Answers

Answer:

[tex]-5 \to -24[/tex]

[tex]-1 \to -4[/tex]

[tex]2 \to 11[/tex]

[tex]3 \to 16[/tex]

[tex]4 \to 21[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 5x + 1[/tex]

Required

Complete the table (see attachment)

When x = -5

[tex]f(-5) = 5 * -5 + 1 = -24[/tex]

When x = -1

[tex]f(-1) = 5 * -1 + 1 = -4[/tex]

When x = 2

[tex]f(2) = 5 * 2 + 1 = 11[/tex]

When x = 3

[tex]f(3) = 5 * 3 + 1 = 16[/tex]

When x = 4

[tex]f(4) = 5 * 4 + 1 = 21[/tex]

So, the table is:

[tex]-5 \to -24[/tex]

[tex]-1 \to -4[/tex]

[tex]2 \to 11[/tex]

[tex]3 \to 16[/tex]

[tex]4 \to 21[/tex]

Two cell phone companies charge a flat fee plus an added cost for each minute or part of a minute used. The cost is represented by C and the number of minutes is represented by t.
Call-More: C = 0.40t + 25 Talk-Now: C = 0.15t + 40

Answers

Answer:

The call more is cheaper than talk-now.

Step-by-step explanation:

The companies charge a flat fee plus an added cost for each minute or part of a minute used for two companies are as follows :

Call-More: C = 0.40t + 25 Talk-Now: C = 0.15t + 40

We need to find which company is cheaper if a customer talks for 50 minutes.

For call more,

C = 0.40(50) + 25 = 45 units

For talk-now,

C = 0.15(50) + 40 = 47.5 units

So, it can be seen that call more is cheaper than talk-now.

Which of the following shows the graph of y=-(2)^3 – 1?

Answers

Answer:

The first graph

Step-by-step explanation:

Given

[tex]y = -(2)^x - 1[/tex]

Required

The graph

Set the exponent part to get the minimum/maximum of the graph

So, we have:

[tex]y = 0 - 1[/tex]

[tex]y = - 1[/tex]

The above implies that the curve passes through the y-axis at [tex]y = - 1[/tex].

By comparing the two graphs, we can conclude that the first represents [tex]y = -(2)^x - 1[/tex] because it passes through [tex]y = - 1[/tex]

There are four different colored balls in a bag. There is equal probability of selecting the red, black, green, or blue ball.What is the expected value of getting a green ball out of 20 experiments with replacement?

Answers

Answer:

The expected value is of 5 green balls.

Step-by-step explanation:

For each experiment, there are only two possible outcomes. Either it is a green ball, or it is not. Since there is replacement, the probability of a green ball being taken in an experiment is independent of any other experiments, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

Probability of exactly x successes on n repeated trials, with p probability.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

20 experiments

This means that [tex]n = 20[/tex]

There is equal probability of selecting the red, black, green, or blue ball.

This means that 1 in 4 are green, so [tex]p = \frac{1}{4} = 0.25[/tex]

What is the expected value of getting a green ball out of 20 experiments with replacement?

[tex]E(X) = np = 20*0.25 = 5[/tex]

The expected value is of 5 green balls.

The expected value of getting a green ball out of 20 experiments with replacement is 5.

What is a binomial distribution?

The binomial probability distribution of the number of successes in a sequence of n independent experiments is the binomial distribution with parameters n and p.

As it is given that the probability of all the balls coming out of the bag is equal. Therefore, the probability of a green ball coming can be written as,

[tex]\text{Probability of Green Ball} = 0.25[/tex]

Also, we can write the probability of not getting a green ball can also be written as,

[tex]\rm Probability(\text{Not coming Green Ball}) = P(Red\ ball)+P(Black\ ball)+P(Blue\ ball)[/tex]

                                                         [tex]=0.25+0.25+0.25\\\\=0.75[/tex]

Now, as there are only two outcomes possible, therefore, the distribution of the probability is a binomial distribution. And we know that the expected value of a binomial distribution is given as,

[tex]\rm Expected\ Value, E(x) = np[/tex]

where n is the number of trials while p represents the probability.

Now, substituting the values, we will get the expected value,

[tex]\rm Expected\ Value, E(Green\ ball) = 20 \times 0.25 = 5[/tex]

Hence, the expected value of getting a green ball out of 20 experiments with replacement is 5.

Learn more about Binomial Distribution:

https://brainly.com/question/12734585

In an international film festival, a penal of 11 judges is formed to judge the best film. At last two films FA and FB were considered to be the best where the opinion of judges got divided. Six judges where in favor of FA whereas five in favor of FB. A random sample of five judges was drawn from the panel. Find the probability that out of five judges, three are in favor of film FA.

Answers

Answer:

The answer is "0.4329 ".

Step-by-step explanation:

P( three in favor of FA)

Select 3 out of 6 FA supporters then select 2 out of 5 FB supportive judges  

[tex]=\frac{^{6}_{C_{3}}\times ^{5}_{C_{2}}}{^{11}_{C_{5}}}\\\\=\frac{\frac{6!}{3!(6-3)!}\times \frac{5!}{2!(5-2)!}}{\frac{11!}{5!(11-5)!}}\\\\=\frac{\frac{6!}{3! \times 3!}\times \frac{5!}{2! \times 3!}}{\frac{11!}{5! \times 6!}}\\\\=\frac{\frac{6 \times 5 \times 4 \times 3!}{3 \times 2 \times 1\times 3!}\times \frac{5 \times 4 \times 3!}{2 \times 1 \times 3!}}{\frac{11 \times10 \times 9 \times 8 \times 7 \times 6! }{5 \times 4 \times 3 \times 2 \times 1 \times 6!}}\\\\[/tex]

[tex]=\frac{ (5 \times 4) \times(5 \times 2)}{(11 \times 3 \times 2 \times 7 )}\\\\=\frac{ 20 \times 10 }{(11 \times 42)}\\\\=\frac{ 200 }{462}\\\\=\frac{100 }{231}\\\\=0.4329[/tex]

Using the simple spinner below what is the probability of landing on either 2, 4, or 7?

Answers

Answer:

3/10

Step-by-step explanation:

Total possibilities = 10

favourable possibilities = 3

Answer:

A

Step-by-step explanation:

There is a 1 out of 10 chance that it will land on 2.

There is a 1 out of 10 chance that it will land on 4.

There is a 1 out of 10 chance that it will land on 7.

[tex]\frac{1}{10}\cdot3=\frac{3}{10}[/tex] so the anwser is A.

In ABC, if CB AC≅ , m∠A = 3x + 18, m∠B = 7x – 58, and m∠C = 2x – 8, find x and the measure of each angle.

Answers

9514 1404 393

Answer:

  x = 19

  A = 30°

  B = C = 75°

Step-by-step explanation:

In an isosceles triangle, the angles opposite the congruent sides have the same measures.

  A = B

  3x +18 = 7x -58

  76 = 4x . . . . . . . . add 58-4x

  19 = x . . . . . . . . . divide by 4

Then the equal angles measure ...

  A = B = 3(19) +18 = 75

  C = 2(19) -8 = 30

Angles A, B, C measure 75°, 75°, 30°, respectively.

_____

Alternate solution

The sum of angles in a triangle is 180°, so you could write ...

  (3x +18) +(7x -58) +(2x -8) = 180

  12x = 228 . . . . . add 48

  x = 19 . . . . . divide by 12

Find the distance between the points (3,4) and (–8,4)

Answers

Answer:

distance = 11

Step-by-step explanation:

distance = [tex]\sqrt{[3-(-8)]^{2} +(4-4)^{2}}[/tex]

             = [tex]\sqrt{11^{2} }[/tex]

             = 11

A box contains 5 orange pencils, 8 yellow pencils, and 4 green pencils.
Two pencils are selected, one at a time, with replacement.
Find the probability that the first pencil is green and the second pencil is yellow.
Express your answer as a decimal, rounded to the nearest hundredth.

Answers

Answer:

total pencil = 5 orange pencils + 8 yellow pencils + 4 green pencils

= 17 pencils

P (g n y) = 4/17 + 8/17

= 0.706

Step-by-step explanation:

1. first find the total number of pencils

2. since there is a replacement the demoinator remains the same

3. find the probability of each green and yellow

4. add the two probability

Find the missing term in the pattern.

Answers

Answer:

20

Step-by-step explanation:

6 + 2 = 8

8 + 3 = 11

11 + 4 =15

15 + 5 =20

Answer:

20

Step-by-step explanation:

the pattern is increase the number by one more than the increase before. so 6,8=2 greater

8-11=3 greater. 11-15=4 greater. so, 15+5=20 (with this answer being 5 greater continuing the pattern.)

The probability that a tennis set will go to a tiebreaker is 13%. In 120 randomly selected tennis sets, what is the mean and the standard deviation of the number of tiebreakers

Answers

Answer:

[tex]\mu = 15.6[/tex]

[tex]\sigma =3.684[/tex]

Step-by-step explanation:

Given

[tex]p =13\%[/tex]

[tex]n = 120[/tex]

Solving (a): The mean

This is calculated as:

[tex]\mu = np[/tex]

So, we have:

[tex]\mu = 13\% * 120[/tex]

[tex]\mu = 15.6[/tex]

Solving (b): The standard deviation

This is calculated as:

[tex]\sigma = \sqrt{\mu * (1 - p)[/tex]

So, we have:

[tex]\sigma = \sqrt{15.6 * (1 - 13\%)[/tex]

[tex]\sigma = \sqrt{15.6 * 0.87[/tex]

[tex]\sigma =\sqrt{ 13.572[/tex]

[tex]\sigma =3.684[/tex]

which pair of fractions are equivalent? 2/3 and 12/9 20/40 and 45/ 55 20/40 and 4/8 5/5 and 25/50​

Answers

Answer:

[tex]\frac{20}{40} \ and \ \frac{4}{8} \ is \ equivalent[/tex]

Step-by-step explanation:

1.

[tex]\frac{2}{3} \ and \ \frac{12}{9} \\\\\frac{2}{3} \ and \ \frac{4}{3}\\\\Not \ equivalent[/tex]

2.

[tex]\frac{20}{40} \ and \ \frac{45}{55}\\\\\frac{1}{2} \ and \ \frac{9}{11}\\\\Not\ equivalent[/tex]

3.

[tex]\frac{20}{40} \ and \ \frac{4}{8}\\\\\frac{1}{2} \ and \ \frac{1}{2} \\\\Equivalent[/tex]

4.

[tex]\frac{5}{5} \ and \ \frac{25}{50} \\\\\frac{1}{1} \ and \ \frac{1}{2} \\\\not \ equivalent[/tex]

2/3 and 12/9 are not equivalent since 12/2 isn’t equal to 9/3.
➡️ 6 isn’t equal to 3.

20/40 and 45/55 are not equivalent since 45/20 isn’t equal to 55/40.
➡️ 2.25 isn’t equal to 1.375.


20/40 and 4/8 are equivalent since 20/4=40/8
➡️ 5=5


5/5 and 25/50 are not equivalent since 25/5 isn’t equal to 50/5.
➡️ 1 isn’t equal to 10

The probability that a certain movie will win an award for acting is 0.15, the probability that it will win an award for direcing is 0.23, and the probability that it will win both is 0.09. Find the probabilities of the following.

a. The movie wins an award for acting, given that it wins both awards.
b. The movie wins an award for acting, given that it wins exactly one award.
c. The movie wins an award for acting, given that it wins at least one award.

Answers

Answer:

a) 0.15 / 0.09

b) 0.15 / 1

c) 0.15 / 0.23

from the given illustration at the right the law of sines cannot be used since

Answers

Answer:

D. No angle opposite the sides is given

Step-by-step explanation:

Given

See attachment for triangle

Required

Why the law of sines cannot be used

From the attached image of a triangle, we can see that all sides are given while none of the angles are given.

Since none of the angles are given, then law of sines doesn't apply

Other Questions
any blinks at herei am blink also a ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. what is the balls overall speed at the top of its trajectory? make a list of nacessities for overall development of a country What is the result of subtracting the second equation from the first? -2x+y = 0-7x+3y = 2 The most long-lasting strategic alliances Multiple Choice (1) involve collaboration with suppliers or distribution allies, or (2) conclude that continued collaboration is in their mutual interest, perhaps because new opportunities for learning are emerging. aim at insulating the partners against the impacts of the five competitive forces and industry driving forces. are those whose purpose is helping a company master a new technology. are those formed to enable the partners to be consistent first movers or fast followers. aim at teaming up with world-class suppliers or else companies with world-class know-how in product innovation. What is 10{,}000+2{,}000+50+510,000+2,000+50+510, comma, 000, plus, 2, comma, 000, plus, 50, plus, 5 in standard form? HELP ASAPJack is taking a two-day road trip. He drove 425 miles on the first day, and needs to travel a total of 825 miles to reach his final destination. How many miles does Jack need to drive on the second day to get to his destination? Find the derivative of the function. f(x) = 2x + 6 a. 6 b. 2c. -2 d. 1/2 PLEASE ANSWER WITH THESE ANSWERS Apply the concept of sustainable development to harvestingtrees in the timber industry. How could trees be cut down without drastically impacting the forest ecosystems? Question 2A force F=5i+3j-2k is applied to move a block of cement from A(0,1,1) to B(4.-1,3).Determine the work done by the force. Una recta pasa por los puntos A(-40) y B(2,-3).calcular su rea III. Fill in the blank with the correct word from the chart. Each word can only beused once.11. No s dnde est mi tarea dematemticas. Creo que la encima de la mesa A wire 54.6 cm long carries a 0.480 A current in the positive direction of an x axis through a magnetic field with an x component of zero, a y component of 0.000420 T, and a z component of 0.0130 T. Find the (a) x, (b) y, and (c) z components of the magnetic force on the wire. geometry peculiar poolplease help!!! after the sketch answer1. Let x represent the length of BC. Write expressions for the lengths of AB, CD, and DE. If the electron has half the speed needed to reach the negative plate, it will turn around and go towards the positive plate. What will its speed be, in meters per second, when it reaches the positive plate in this case 17Select the correct answer from each drop-down menu.Consider this system of equations:2x+y=3(equation A)fr-y=6(equation B)The expressions that give the value of y areThe solution for the given system isand You are Divyansh / Divyanshi of C-25, Subhash Nagar, New Delhi. Write a letter to the Editor of a newspaper expressing your concern regarding the decline of reading habits among students. Also suggest some ways to create their interest in reading. plss help its urgent. Which statement best explains why this is an example of a counterclaim by Douglass?Douglass addresses a potential argument of the other side and makes a case against it.Douglass addresses a potential argument of the other side and admits the point is solid.Douglass makes a claim and offers facts to support it.Douglass makes a claim and admits the flaws within it. You enter into a forward contract to buy a 10-year, zero coupon bond that will be issued in one year. The face value of the bond is $1000 and the one-year and 11-year spot interest rates are 5 and 7 percent respectively. What is the forward price of your contract Ingredients for making simple homemade doughnuts