Hello,
3x+9+8x-25=28
11x-16=28
x=44/11
x=4
So, GE=3x+9=3*11+9=42
3 coins are flipped.
Answer:
just keep writing down outcome on a sheet of paper then count total
Step-by-step explanation:
Triangle A'B'C' is formed using the translation (x + 2 y + 0) and the dilation by a scale factor of 1/2 from the origin. Which equation explains the relationship between
AB and A"B"?
Answer:
[tex]A"B" = \frac{AB}{2}[/tex]
Step-by-step explanation:
Given
[tex]k = \frac{1}{2}[/tex] --- scale factor
Required
Relationship between AB and A"B"
[tex]k = \frac{1}{2}[/tex] implies that the sides of A"B"C" are smaller than ABC
i.e.
[tex]A"B" = k * AB[/tex]
[tex]A"B" = \frac{1}{2} * AB[/tex]
This gives:
[tex]A"B" = \frac{AB}{2}[/tex]
every student from different schools planted as many plants of their number if they planted 4225 plants how many students were there
Answer:
65 students.
Step-by-step explanation:
Given that :
Every student planted as many plant as their number ;
Then let the number of student = x
Then the number of plant planted by each student will also = x
The total number of plants planted by all the students = 4225
The Number of students can be obtained thus ;
Total number of plants = Number of plants * number of plants per student
4225 = x * x
4225 = x²
√4225 = x
65 = x
Hence, there are 65 students
This graph shows the solution to which inequality?
(32)
(-3.-6);
A ys 1/x - 2
B. y> fx-2
C. yzfx-2
***-2
If asphalt pavement costs $0.70 per square foot, find the cost to pave the circular How much does it cost to pave this road?
road in the figure shown
nents
(Round to the nearest dollar as nooded)
Please help :)
Answer:
Cost to pave the road = $4257
Step-by-step explanation:
Area of the pavement = Area of the outer circle - Area of the internal circle
Area of the outer circle = πr²
= π(55)²
= 3025π square feet
Area of the inner circle = π(33)²
= 1089π square feet
Area of the pavement = 3025π - 1089π
= 1936π
= 6082.12 square feet
Cost of pavement = $0.70 per square feet
Therefore, cost of 6082.12 square feet = 6082.12 × 0.70
= 4257.49
≈ $4257
Cost to pave the road = $4257
The temperature of a certain deserted, unheated house is in degrees Fahrenheit at time in hours. If the outside temperature is (about the average autumn temperature in the Boston area), and it takes 24 hours for the temperature of the house to drop from to use Newton's law of cooling to write down a differential equation for the temperature of the house.
Answer: Hello attached below is the well written complete question
answer:
T = 40 + 30e^-0.0288t
Step-by-step explanation:
To( outside temperature ) = 40°F
T = ?
k( thermal conductivity ) = constant
A( area of heat transfer) = constant
Hence Differential equation for the temperature of the house
T = 40 + 30e^-0.0288t
Attached below is the detailed solution of the problem
100 POINTS!!
Directions: Respond to this question to demonstrate your understanding of the topic/content. Be sure to provide adequate and relevant details learned in the module to support your response. Pay close attention to organizing your response so it makes sense and uses correct grammar. Your response should be at least 5-7 sentences at a minimum.
Question: Your friend claims that the only solution to the equation sin(x)=1 is x=90 degrees. Is your friend correct? If there are more solutions, explain how to determine additional solutions.
......hope it helps......
Answer:
yes,.to obtain sinx as 1 the angle must be 90degrees
so the answer is correct
but there are more solutions like when the cosine angle is 45 the answer is 1
and when x is 450 still sinx = 1..that is to say sin450= 1
El arquitecto Gómez, dirige el proyecto de remodelación del parque municipal del distrito La Esperanza. La forma del parque está representada por la ecuación polar r(5-3sensθ)=16. El arquitecto planea construir un camino que une los extremos de la parte más ancha del terreno y necesita saber la distancia que existe entre los extremos (considerar que las medidas están en cientos de metros), además en el centro del camino colocará una pileta. Por ello, se requiere obtener las coordenadas de los extremos y del centro en coordenadas rectangulares. Para ayudar al arquitecto Gómez a lograr su objetivo, se deberá seguir la siguiente estrategia:
Pasar la ecuación polar a rectangular (en su forma ordinaria) (2 Puntos)
Hallar el centro, los vértices de la parte más ancha del terreno en la forma rectangular y determinar la distancia entre los vértices (considerar que las medidas están en cientos de metros), utilizando la ecuación cartesiana, hallada en a). (2 Puntos)
Graficar la cónica en el plano cartesiano ubicando las coordenadas de los vértices y del centro. (1 Punto)
Answer:
thank you for the point too mucheeeYou: Your welcome❤
Determine whether the given functions are linearly dependent or linearly independent on the specified interval. Justify your decision.
The question is incomplete. The complete question is :
Determine whether the given functions are linearly dependent or linearly independent on the specified interval. Justify your decision.
[tex]$\{ x^5, x^5-1,3 \} \text{ on } (- \infty, \infty)$[/tex]
Solution :
Given :
Function : [tex]$\{ x^5, x^5-1,3 \} \text{ on } (- \infty, \infty)$[/tex]
We have to determine whether the given function is linear dependent or linearly independent for the interval [tex]$(-\infty, \infty)$[/tex].
The given function are linearly dependent because for the constants, [tex]c_1[/tex] and [tex]c_2[/tex], the equation is :
[tex]$c_1x^5 + c_23 = x^5-1$[/tex] has the solution [tex]$c_1 = 1$[/tex] and [tex]$c_2 = -\frac{1}{3}$[/tex]
Therefore,
[tex]$1x^5 + \left(-\frac{1}{3}\right)3 = x^5-1$[/tex]
a. Consider the situation where you have three game chips, each labeled with one of the the numbers 3, 5, and 10 in a hat a. If you draw out 2 chips without replacement between each chip draw, list the entire sample space of po ssible results that can occur in the draw Use the three events are defined as follows, to answer parts b through n below:
Event A: the sum of the 2 drawn numbers is even.
Event B: the sum of the 2 drawn numbers is odd.
Event C: the sum of the 2 drawn numbers is a prime number
Now, using your answer to part a find the following probability values
b. P (A)=
c. P (B)=
d. P (C)=
e. P (A and C)-=
f. P(A or B)=
g. P (B andC)=
h. P(A or C)- =
i. P (C given B)=
j. P(C given A)=
k. P (not B)=
l. P (not C)=
Are events A and B mutually exclusive?Why or why not?
Are events B and C mutually exclusive? Why or why not?
Answer:
a) {3,5}{3,10}{5,10}
b) [tex]P(A)=\frac{1}{3}[/tex]
c) [tex]P(B)=\frac{2}{3}[/tex]
d) [tex]P(C)=\frac{1}{3}[/tex]
e) [tex]P(A and C)=0[/tex]
f) [tex]P(A or B)=1[/tex]
g) [tex]P(B and C)=\frac{1}{3}[/tex]
h) [tex]P(A or C)=\frac{2}{3}[/tex]
i) [tex]P(C given B)=\frac{1}{2}[/tex]
j) [tex]P(C given A)=0[/tex]
k) [tex]P(not B)=\frac{1}{3}[/tex]
l) [tex]P(not C)=\frac{2}{3}[/tex]
Yes, events A and B are mutually exclusive. Because the results can either be even or odd, not both. No, events B and C are not mutually exclusive because the result can be both, odd and prime.
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the possible outcomes, in this case, the possible outcomes are:
{3,5}{3,10} and {5,10}
We could think of the oppsite order, for example {5,3}{10,3}{10,5} but these are basically the same as the previous outcomes, so we will just take three outcomes in our sample space. We can think of it as drawing the two chips at the same time.
b)
Now the probability of the sum of the chips to be even. There is only one outcome where the sum of the chips is even, {3,5} since 3+5=8 the other outcomes will give us an odd number, so:
[tex]P=\frac{#desired}{#possible}[/tex]
[tex]P(A)=\frac{1}{3}[/tex]
c) For the probability of the sum of the chips to be odd, there are two outcomes where the sum of the chips is odd, {3,10} since 3+10=13 and {5,10} since 5+10=15 the other outcomes will give us an even number, so:
[tex]P(B)=\frac{2}{3}[/tex]
d) The probability of the sum of the chips is prime. There is only one outcome where the sum of the chips is prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(C)=\frac{1}{3}[/tex]
e) The probability of the sum of the chips to be even and prime. There are no results where we can get an even and prime number, since the only even and prime number there is is number 2 and no outcome will give us that number, so:
P(A and C)=0
f) The probability of the sum of the chips is even or odd. We can either get even or odd results, so no matter what outcome we get, we will get an odd or even result so:
[tex]P(A or B)=1[/tex]
g) The probability of the sum of the chips is odd and prime. There is only one outcome where the sum of the chips is odd and prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(B and C)=\frac{1}{3}[/tex]
h) The probability of the sum of the chips is even or prime. There are two outcomes where the sum of the chips is even or prime, {3,10} since 3+10=13 and {3,5} since 3+5=8 so:
[tex]P(A or C)=\frac{2}{3}[/tex]
i) The probability of the sum of the chips is prime given that the sum of the chips is odd. There are two possible results where the sum of the chips is odd {3,10} and {5,10} and only one of those results is even, {3,10}, so
[tex]P(C given B)=\frac{1}{2}[/tex]
j) The probability of the sum of the chips is prime given that the sum of the chips is even. There is only one possible even result: {3,5} but that result isn't prime, so
[tex]P(C given A)=0[/tex]
k) The probability of the sum of the chips is not odd. There is only one outcome where the sum of the chips is not odd (even), {3,5} so:
[tex]P(not B)=\frac{1}{3}[/tex]
l) The probability of the sum of the chips is not prime. There are two outcomes where the sum of the chips is not prime, {3,5} and {5,10} so:
[tex]P(not C)=\frac{2}{3}[/tex]
Are events A and B mutually exclusive?
Yes, events A and B are mutually exclusive.
Why or why not?
Because the results can either be even or odd, not both.
Are events B and C mutually exclusive?
No, events B and C are not mutually exclusive.
Why or Why not?
Because the result can be both, odd and prime.
At a snack food manufacturing facility, the quality control engineer must ensure that all products feature the appropriate expiration date. Suppose that a box of 60 candy bars includes 12 which do not have the proper printed expiration date. The quality control engineer, in inspecting the box, grabs a handful of seven candy bars. What is the probability that there are exactly 3 faulty candy bars among the seven
Answer:
0.1108 = 11.08% probability that there are exactly 3 faulty candy bars among the seven.
Step-by-step explanation:
The bars are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
60 total candies means that [tex]N = 70[/tex]
12 are faulty, which means that [tex]k = 12[/tex]
Seven are chosen, so [tex]n = 7[/tex]
What is the probability that there are exactly 3 faulty candy bars among the seven?
This is [tex]P(X = 3)[/tex]. So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 3) = h(3,70,7,12) = \frac{C_{12,3}*C_{48,4}}{C_{60,7}} = 0.1108[/tex]
0.1108 = 11.08% probability that there are exactly 3 faulty candy bars among the seven.
I need this to pass summer school
Answer: The answer is b
Leroy borrowed $1500 at an annual simple interest rate of 12%. He paid $270 in interest. For what time period did Leroy borrow the money?
Answer:
i hope you understand easily
mark me brainlist
Step-by-step explanation:
integrate G(x,y,z)=yz over the surface of x+y+z=1 in the first octant.
Parameterize the surface (I'll call it S) by
r(u, v) = (1 - u) (1 - v) i + u (1 - v) j + v k
with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
Take the normal vector to this surface to be
n = ∂r/∂u × ∂r/∂v = ((v - 1) i + (1 - v) j) × ((u - 1) i - u j + k) = (1 - v) (i + j + k)
with magnitude
||n|| = √3 (1 - v)
Then in the integral, we have
[tex]\displaystyle\iint_SG(x,y,z)\,\mathrm ds = \int_0^1\int_0^1 G((1-u)(1-v),u(1-v),v) \|\mathbf n\| \,\mathrm du\,\mathrm dv \\\\= \sqrt3 \int_0^1\int_0^1uv(1-v)^2\,\mathrm du\,\mathrm dv \\\\= \boxed{\frac1{8\sqrt3}}[/tex]
Alternatively, if you're not familiar with parameterizing surfaces, you can use the "projection" formula:
[tex]\displaystyle\iint_S G(x,y,z)\,\mathrm ds = \int_{S_{xy}}G(x,y,z)\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2}\,\mathrm dx\,\mathrm dy[/tex]
where I write [tex]S_{xy}[/tex] to mean the projection of the surface onto the (x, y)-plane, and z = f(x, y). We would then use
x + y + z = 1 ==> z = f(x, y) = 1 - x - y
and [tex]S_{xy}[/tex] is the triangle,
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 - x}
Then the integral becomes
[tex]\displaystyle\int_0^1\int_0^{1-x}y(1-x-y)\sqrt{1+(-1)^2+(-1)^2}\,\mathrm dy\,\mathrm dx \\\\= \sqrt3\int_0^1\int_0^{1-x} y(1-x-y)\,\mathrm dy\,\mathrm dx \\\\= \frac{\sqrt3}{24} \\\\= \boxed{\frac1{8\sqrt3}}[/tex]
X
10
11
12
y
27
a
11
In order for the data in the table to represent a linear
function with a rate of change of -8, what must be the
value of a?
0
a = 2
a=3
a = 19
a = 35
Answer:
a = 19
Step-by-step explanation:
Form a equation using y = mx + c form
(27) = (-8)(10) + c
27 = -80 + c
107 = c
y = -8x + 107
Substitute the x value to find a
y = -8(11) + 107
y = 19
Which of these professionals most directly uses geometry? Choose the best answer
Answer:
- Surveyors
- developers of the GPS system
Step-by-step explanation:
Simplify the expression using the order of operations agreements.
-8÷2+2×8=
Answer:
12
Step-by-step explanation:
PEMDAS is the order
P = parenthesis
E = exponent
M = *
D = division
A = +
S = -
so first 8*2 = 16
and then -8/2 = -4
and then -4 + 16
= 12
What are the lower, middle, and upper quartiles of this data?
122, 164, 71, 98, 84, 147, 114, 111, 98, 85, 104, 71, 77
Answer:
71, 71, 75, 85, 98, 98, 104, 111, 114, 122, 164
The middle quartile is 98.
The lower quartile is 80
The upper quartile is 112.5
Assume the population is bell-shaped. Between what two values will approximately 95% of the population be
Answer:The 95% Rule states that approximately 95% of observations fall within two ... about 95% will be within two standard deviations of the mean, and about 99.7% will be ... Suppose the pulse rates of 200 college men are bell-shaped with a mean of 72 ... 1.2 - Samples & Populations ... 3.5 - Relations between Multiple Variables.
Step-by-step explanation:
Convert 1101, to base 10.
1*2^3+0*2^2+1*2^1+1*2^0
8+0+2+1
=11
Type the correct answer in each box. Use numerals instead of words.
Multiply the expressions.
If a = 1, find the values of b, c, and d that make the given expression equivalent to the expression below.
Answer:
a=1, b=9, c=-2, d=4
Step-by-step explanation:
If p = 7, q = 2, r = 4; find the value of q (5p - r).
Answer: 62
Step-by-step explanation:
Given
p = 7, q = 2, r = 4
Solve
q ( 5p - r )
Substitute
(2) (5(7) - (4))
Simplify
(2) (35 - 4)
(2) (31)
62
Hope this helps!! :)
Please let me know if you have any questions
Suppose a research company takes a random sample of 45 business travelers in the financial industry and determines that the sample average cost of a domestic trip is $1,192, with a sample standard deviation of $279. Construct a 98% confidence interval for the population mean (for domestic trip) from these sample data. Round your answers to 3 decimal places.
Answer:
98% confidence interval for the population mean =(1095.260,1288.740)
Step-by-step explanation:
We are given that
n=45
[tex]\mu=1192[/tex]
Standard deviation,[tex]\sigma=279[/tex]
We have to construct a 98% confidence interval for the population mean.
Critical value of z at 98% confidence, Z =2.326
Confidence interval is given by
[tex](\mu\pm Z\frac{\sigma}{\sqrt{n}})[/tex]
Using the formula
98% confidence interval is given by
[tex]=(1192\pm 2.326\times \frac{279}{\sqrt{45}})[/tex]
[tex]=(1192\pm 96.740)[/tex]
=[tex](1192-96.740,1192+96.740)[/tex]
=[tex](1095.260,1288.740)[/tex]
Hence, 98% confidence interval for the population mean (1095.260,1288.740)
The figure shows trapezoid ABCD on a coordinate plane.
Which of the following represents the area of this figure, rounded to the nearest square unit?
99
121
198
231
Answer:
121 unit^2.
Step-by-step explanation:
The area = height/2 * ( sum of the opposite parallel lines)
= h/2(BC + AD
h = BF = 14 - 3 = 11 units.
BC = 13 - 5 = 8 units.
AD = 16 - 2 = 14 units.
Area = (11/2)(8 + 14)
= 5.5 * 22
= 121 unit^2.
Answer:
121
Step-by-step explanation:
prime factorization of a 4- digit number with at least three distinct factors
Need two examples. SHOW ALL STEPS
Answer:
We know that every number can be written as a product of prime numbers.
The method to find the factorized form of a number depends on the number, we just try to find the different factors by dividing by them, for example for the number 1000 we have:
1000 is an even number, then we can divide it by 2 (2 is a prime number)
1000 = 2*500 (so we already found a prime factor)
500 is also an even number, so we can divide it by 2
1000 = 2*500 = 2*2*250 (we found another prime factor)
dividing by 2 again we get:
1000 = 2*2*250 = 2*2*2*125
1000 = (2*2*2)*125
now we just need to factorize 125
we know that 125 is a multiple of 5, such that:
125 = 5*25 = 5*5*5
(5 is a prime number, so it is completely factorized).
Then the factorization of 1000 is:
1000 = (2*2*2)*(5*5*5) = 2^3*5^3
Now with another example, 1422
1422 is an even number, so we again start using the factor 2:
1422 = 2 = 711
then:
1422 = 2*711
we already found a factor.
711 is a multiple of 3 (the sum of its digits is a multiple of 3), then:
711/3 = 237
We can write our number as:
1422 = 2*3*237
237 is also a multiple of 3
237/3 = 79
then:
1422 = 2*3*3*79
and 79 is a prime number, so we already have 1422 completely factorized.
On planet Ghaap, two Gheeps are worth three Ghiips, two Ghiips are worth five Ghoops, and three Ghoops are worth two Ghuups. How many Ghuups are seven Gheeps worth?
Answer:
10 Ghuups I believe. I am sorry if this is wrong
log2(6x) – log2 (x)-2
Answer:
xlog(64)−xlog(2)−2
Step-by-step explanation:
Simplify 6log(2) by moving 6 inside the logarithm.
log(2^6)x − log(2)x − 2
Raise 2 to the power of 6.
log(64)x − log(2)x − 2
Reorder factors in log(64)x − log(2)x −2.
Three more than twice a number is 35.
Answer:
x = 16, or if you didn't want the value for x,
2x + 3 = 35
Step-by-step explanation:
Three more: +3
Twice a number: 2x
Combined:
2x + 3 = 35.
Get rid of the 3 by subtracting it from both sides:
2x = 32
Get rid of the 2 by dividing it from both sides:
x = 16
Answer:
The number is 16.
Step-by-step explanation:
Let the unknown number be x.
Now we translate the sentence into an equation piece by piece.
Three more than twice a number is 35.
2x
Three more than twice a number is 35.
2x + 3
Three more than twice a number is 35.
2x + 3 = 35
Now we solve the equation.
Subtract 3 from both sides.
2x = 32
Divide both sides by 2.
x = 16
Answer: The number is 16.
P.S. Notice that x was a variable that was introduced solely to solve the problem. The original problem is a word problem, not an equation, and has no x in it. The correct answer makes no reference to x since x was used to solve the equation but is not part of the given problem. The person asking the question has no idea what x is. He just wants a number as an answer.
Suppose 49% of the doctors in America are dentists. If a random sample of size 689 is selected, what is the probability that the proportion of doctors who are dentists will be less than 47%
Answer:
[tex]P(<47\%)=0.1468[/tex]
Step-by-step explanation:
From the question we are told that:
Percentage of Dentist Doctors P(D)=49\%
Sample size n=689
Generally the equation for probability that the proportion of doctors who are dentists will be less than [tex]P(<47\%)[/tex] is mathematically given by
[tex]P(<47\%)=Z>(\frac{\=x-P(D)}{\sqrt{\frac{P(D)*1-P(D)}{n}}})[/tex]
[tex]P(<47\%)=Z>(\frac{0.47-0.49}{\sqrt{\frac{0.49*0.51}{689}}})[/tex]
[tex]P(<47\%)=Z>(1.05)[/tex]
Therefore from table
[tex]P(<47\%)=0.1468[/tex]
Trapezoid A B C D is shown. A diagonal is drawn from point B to point D. Sides B C and A D are parallel. Sides B A and C D are congruent. Angle C B D is 24 degrees and angle B A D is 116 degrees.
What is the measure of angle ABD in trapezoid ABCD?
24°
40°
64°
92°
Answer:
40 degrees un edge
Step-by-step explanation:
Answer:
The person above me got this correct, so the answer to this is 40! I just did the Unit Test and got a 100%!