Solve: |4x+3|=|2x+1|

Answers

Answer 1
(1) 4x+3=2x+1
<=> 2x=-2
<=> x=-1
(2) -4x-3=-2x-1
<=> -2x=2
<=> x=1
Answer 2

Step-by-step explanation:

|4x+3|=|2x+1|

THERE ARE TWO UNIQUE EQUATIONs

4x+3=2x+1

2x=-2

x=-1

(or)

4x+3= -(2x+1)

4x+3=-2x-1

6x=-4

x=-2/3

Therefore x=-1 , -2/3

Related Questions

Can you please help me with this question

Answers

Hirap nyan ah hahahahah

Given n(A) = 1300, n(A U B) = 2290, and n(A n B) = 360, find n(B).

Answers

Answer:

n(B) = 1350

Step-by-step explanation:

Using Venn sets, we have that:

[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]

Three values are given in the exercise.

The other is n(B), which we have to find. So

[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]

[tex]2290 = 1300 + n(B) - 360[/tex]

[tex]940 + n(B) = 2290[/tex]

[tex]n(B) = 2290 - 940 = 1350[/tex]

So

n(B) = 1350

PLEASE HELP!!! Choose the best graph that represents the linear equation:
6x = y + 8
Graph A
On a coordinate plane, a line goes through (negative 2, 4) and (0, negative 8).
Graph B
On a coordinate plane, a line goes through (0, negative 8) and (2, 4).
Graph C
On a coordinate plane, a line goes through (negative 2, negative 4) and (0, 8).
Graph D
On a coordinate plane, a line goes through (0, 8) and (2, negative 4).
a.
Graph A
c.
Graph C
b.
Graph B
d.
Graph D



Please select the best answer from the choices provided


A
B
C
D

Answers

Answer:

b.

Graph B

Step-by-step explanation:

We are given the following linear equation:

[tex]6x = y + 8[/tex]

When x = 0:

[tex]6(0) = y + 8[/tex]

[tex]y = -8[/tex]

Thus, the line goes through (0,-8).

When y = 4:

[tex]6x = y + 8[/tex]

[tex]6x = 4 + 8[/tex]

[tex]6x = 12[/tex]

[tex]x = \frac{12}{6} = 2[/tex]

So also through (2,4).

Thus means that the correct answer is given by Graph B.

Detroit's population in 2012 was 699,710 people. Detroit's population in 2016 was 678,045 people.

What is the absolute change from 2012 to 2016?

Round your answer to the nearest person.

Answers

Answer:

The absolute change was of -21,665 people.

Step-by-step explanation:

Absolute change:

Final value subtracted by the initial value.

In this question:

Initial value: 699,710

Final value: 678,045

What is the absolute change from 2012 to 2016?

678045 - 699710 = -21,665

The absolute change was of -21,665 people.

Which problem has a greater (bigger) answer? Solve both, choose the one that has the bigger answer and explain (1-2 sentences) how you found your
answer.
1) (2 + 3) (5 + 5)
2)2 + 3 x 5 + 5 =

Answers

1) 2 • 5 + 3 • 5 + 2 • 5 + 3 • 5 =
= 10 + 15 + 10 + 15 =
= 50


2) 5 • 10 =
= 50

Two statements are logically equivalent when:
A. The two statements are true in virtue of their logical structure alone, i.e. the two statement are always true.
B. The first statement implies the second, i.e. if the first statement is true, so is the second.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
D. The two statements are false in virtue of their logical structure alone, i.e. the two statement are always false.

Answers

Answer:

C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.

Step-by-step explanation:

For two statements to be logically equivalent, their truth values (true or false) must be the same for every variation of their constituent variables. In other words, if the truth tables of both statements are the same for every possible value of their variables, then they are logically equivalent.

For example;

The two statements P ∩ (Q U R) and (P ∩ Q) ∪ (P ∩ R) are logically equivalent.

If P, Q and R are all true, then;

P ∩ (Q U R) = true

(P ∩ Q) ∪ (P ∩ R) = true

If P, Q and R are all true, then;

P ∩ (Q U R) = false

(P ∩ Q) ∪ (P ∩ R) = false

If P = false, Q = true and R = true, then;

P ∩ (Q U R) = false

(P ∩ Q) ∪ (P ∩ R) = false

Checking for all other possible combinations of truth values of P, Q and R will always give the same results for the two statements, therefore, they are logically equivalent.

Mischa wrote the quadratic equation 0=_x2+4x-7 in standard form. If a = -1, what is the value of c in her equation?
C=-7
C= 1
c=4
c=7

Answers

Answer:

A. c = -7

Step-by-step explanation:

Standard form of a quadratic equation is given as ax² + bx + c = 0, where,

a, b, and c are known values not equal to 0,

x is the variable.

Given a quadratic equation of -x² + 4x - 7, therefore,

a = -1

b = 4

c = -7

At a sale this week, a sofa is being sold for $117.60. This is a 72% discount from the original price. What is the original price?

Answers

The original price is $420, hope this helps- brainliest if you can please

Which is equivalent to (-m)4x n2 ?

Answers

Answer:

a.) m⁴n²

Step-by-step explanation:

( -m)⁴ × n ²

A negative base raised to an even powers equals a positive.

m ⁴ × n²

multiply the terms

m⁴n²

Answer:

a.) m⁴n²

Step-by-step explanation:

yea

Translate the sentence into an inequality.
The sum of 5 and c is greater than – 22.
what da hell the answer ?

Answers

Answer:

5 + c > -22

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to Right

Algebra I

Inequalities

Step-by-step explanation:

Step 1: Define

Sum of 5 and c is greater than -22

Identify

Sum = addition

5 + c

Is greater than = inequality

>

Add them all together:

5 + c > -22

HELPPPPPPP PLEASEEEEEEE

Answers

Answer:

150 dollars. if I am wrong correct me

Answer:

C and D

Step-by-step explanation:

15 to 30 galons at $9.95 to $21.00

the minimum amount can be found by calculating the minimum amount sold at a minimum price 15*9.95 = $149.25

the maximum amount can be found by calculating the maximum amount sold at a maximum price 30*21 = $630

there are 2 choices that are between 149.25 and 630, C, and D

Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull distributions. For the first component the shape parameter is 2.1 and the characteristic life is 100,000 breaking events. For the second component the shape parameter is 1.8 and characteristic life of 80,000. Find the reliability of the system after 2,000 breaking events:

Answers

Answer:

0.9984

Step-by-step explanation:

we have shape parameter for the first component as 2.1

characteristics life = 100000

for this component

we have

exp(-2000/100000)².¹

= e^-0.0002705

= 0.9997

for the second component

shape parameter = 1.8

characteristic life = 80000

= exp(-2000/80000)¹.⁸

= e^-0.001307

= 0.9987

the reliability oif the system after 2000  events

= 0.9987 * 0.9997

= 0.9984

In which quadrant do the points have negative x-coordinates and negative y-coordinates?

Answers

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

Quadrant III

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

The plane is split into four quadrants. Quadrant III houses all the points with negative signs for both X and Y values.

⸻⸻⸻⸻

See the attached picture for reference.

⸻⸻⸻⸻

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

For sure. Quadrant 3

Divide 30 in the ratio 1 : 4

Answers

Answer:

6 : 24

Step-by-step explanation:

If we are in the ratio of 1 to 4, the total is 1+4 = 5

Divide 30 by 5

30/5 = 6

Multiply each term in the ratio by 6

1  :4

1*6 : 4*6

6 : 24

Answer:

total ratio:

[tex] = 1 + 4 \\ = 5[/tex]

For the portion of 1:

[tex] = 30 \div \frac{1}{5} \\ = 30 \times 5 \\ = 150[/tex]

For the portion of 4:

[tex] = 30 \div \frac{4}{5} \\ = 30 \times \frac{5}{4} \\ = 37.5[/tex]

= 30 : 7.5

What is the surface area of the rectangular prism pictured below?
3 meters
9 meters
4 meters

Answers

Answer:

108 meters with the formula lxhxw

g(x)=(cosθsinθ)^4 what's the differential

Answers

Answer:

sin²2θ. (cos θ sin θ). cos 2θ

Step-by-step explanation:

finding g'(x)

g'(x)

(x^n)' = nx^(n -1)

= 4 (cosθsinθ)³ . { cosθ. (sinθ)' + sinθ. (cosθ)' }

(cosθ)' = - sinθ (sinθ)' = cosθ

= 4 (cosθsinθ)³ { cosθ. cos θ + sinθ.(-sin θ)}

= 4 (cosθsinθ)³{ cos²θ - sin²θ}

cos²θ - sin²θ = cos 2θ2sinθ cosθ = sin 2θ

= (4 cosθ sinθ)². (cosθ sinθ). { cos²θ - sin²θ}

= sin²2θ. (cos θ sin θ). cos 2θ

Identify the transformation that occurs to create the graph of m(x)
m(x)=f(5x)

Answers

Answer:

m(x) is a dilation of scale factor K = 1/5 of f(x).

Step-by-step explanation:

The transformation is a horizontal dilation

The general transformation is defined as:

For a given function f(x), a dilation of scale factor K is written as:

g(x) = f(x/K)

If K > 1, then we have a dilation (the graph contracts)

if 0 < K < 1, then we have a contraction (the graph stretches)

Here we have m(x) = f(5*x)

Then we have a scale factor:

K = 1/5

So this is a contraction.

Then the transformation is:

m(x) is a dilation of scale factor K = 1/5 of f(x).

1. In the spring of 2017, the Consumer Reports National Research Center conducted a survey of 1007 adults to learn about their major health-care concerns. The survey results showed that 574 of the respondents lack confidence they will be able to afford health insurance in the future. Develop a 90% confidence interval for the population proportion of adults who lack confidence they will be able to afford health insurance in the future.

Answers

Answer:

The correct answer is "1668". A further solution is provided below.

Step-by-step explanation:

According to the question,

Estimated proportion,

[tex]\hat{p} = \frac{574}{1007}[/tex]

  [tex]=0.57[/tex]

Margin of error,

E = 0.02

Level of confidence,

= 90%

= 0.90

Critical value,

[tex]Z_{0.10}=1.65[/tex]

Now,

⇒  [tex]0.02=1.65\times \sqrt{\frac{0.57\times 0.43}{n} }[/tex]

 [tex]0.0004=2.7225\times \frac{0.2451}{n}[/tex]

         [tex]n=\frac{2.7225\times 0.2451}{0.0004}[/tex]

             [tex]=1668.21[/tex]

or,

         [tex]n \simeq 1668[/tex]

What sum is represented by the following number line?

Answers

Answer:

[tex]2\frac{3}{4} +(-4\frac{1}{4} )=-1\frac{2}{4}[/tex]

Step-by-step explanation:

That's the only equation that makes sense to the number line

Mathematics puzzle from my calculus text book.

Answers

Answer:

[tex]{ \tt{g(x) = a {x}^{2} + bx + c = 0 }} \\ { \tt{f(x) = {a'x}^{2} + b 'x + c' = 0}} \\ { \boxed{ \bf{f(g(x)) = g(f(x))}}} : \\ { \tt{ =( \frac{a}{a'})x {}^{2} + ( \frac{b}{b'}) x} + \frac{c}{c'} } = 0[/tex]

4ab-3a+3bx-2ab anyone know the answer to this problem?

Answers

Answer:

-3a+3bx+2ab

Step-by-step explanation:

A wiper blade of a car is of length 24 cm sweeping through an angle of begin mathsize 18px style text 120° end text end style. The total area cleaned at one sweep of the blade is​

Answers

Answer:

[tex]A=603.18\ cm^2[/tex]

Step-by-step explanation:

The length of a blade, r = 24 cm

The sweeping angle is 120°.

We need to find the total area cleaned at one sweep of the blade. The area of sector is given by :

[tex]A=\dfrac{\theta}{360}\times \pi r^2[/tex]

[tex]A=\dfrac{120}{360}\times \pi \times 24^2\\\\=603.18\ cm^2[/tex]

So, the total area cleaned at one sweep of the blade is [tex]603.18\ cm^2[/tex].

Find the measure of of RA.

Answers

Answer:

RA = 24

Step-by-step explanation:

Since the triangle is isosceles ( 2 equal sides ) , then LU is a perpendicular bisector , so

AU = RU , that is

4r = 18 - 2r ( add 2r to both sides )

6r = 18 ( divide both sides by 6 )

r = 3

Then

RA = 18 - 2r + 4r = 18 + 2r = 18 + 2(3) = 18 + 6 = 24

find from first principle the derivative of 3x+5/√x​

Answers

Answer:

[tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]

General Formulas and Concepts:

Algebra I

Exponential Rule [Powering]:                                                                          [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]Exponential Rule [Rewrite]:                                                                              [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex] Exponential Rule [Root Rewrite]:                                                                     [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:                                                            [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                               [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \frac{3x + 5}{\sqrt{x}}[/tex]

Step 2: Differentiate

Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle \frac{3x + 5}{x^\bigg{\frac{1}{2}}}[/tex]Quotient Rule:                                                                                                   [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{(x^\bigg{\frac{1}{2}})^2}[/tex]Simplify [Exponential Rule - Powering]:                                                          [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{x}[/tex]Basic Power Rule [Derivative Property - Addition/Subtraction]:                   [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})(3x^{1 - 1} + 0) - (\frac{1}{2}x^\bigg{\frac{1}{2} - 1})(3x + 5)}{x}[/tex]Simplify:                                                                                                             [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2}x^\bigg{\frac{-1}{2}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Rewrite]:                                                              [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2x^{\frac{1}{2}}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle \frac{d}{dx} = \frac{3\sqrt{x} - (\frac{1}{2\sqrt{x}})(3x + 5)}{x}[/tex]Simplify [Rationalize]:                                                                                       [tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

A manufacturer of nails claims that only 4% of its nails are defective. A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective. Is it fair to reject the manufacturer's claim based on this observation?

Answers

Answer:

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Step-by-step explanation:

A manufacturer of nails claims that only 4% of its nails are defective.

At the null hypothesis, we test if the proportion is of 4%, that is:

[tex]H_0: p = 0.04[/tex]

At the alternative hypothesis, we test if the proportion is more than 4%, that is:

[tex]H_a: p > 0.04[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.

4% is tested at the null hypothesis

This means that [tex]\mu = 0.04, \sigma = \sqrt{0.04*0.96}[/tex]

A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective.

This means that [tex]n = 20, X = 0.1[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \frac{0.1 - 0.04}{\frac{\sqrt{0.04*0.96}}{\sqrt{20}}}[/tex]

[tex]z = 1.37[/tex]

P-value of the test and decision:

Considering an standard significance level of 0.05.

The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.

Looking at the z-table, z = 1.37 has a p-value of 0.9147

1 - 0.9147 = 0.0853

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Answer:

Considering an standard significance level of 0.05.

The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.

Looking at the z-table, z = 1.37 has a p-value of 0.9147

1 - 0.9147 = 0.0853

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Step-by-step explanation:

An airplane flies 105 miles in ½ hour. How far can it fly in 1 ¼ hours at the same rate of speed?

Answers

Answer:

262.5 miles

Step-by-step explanation:

Correct me if I am wrong

Given: triangle ABC with side lengths a, b, and c, and height h
Prove: Area = 1/2absin C

Answers

Answer:

Step-by-step explanation:

                    Statements                                        Reasons

1). ΔABC with side lengths a, b, c, and h      1). Given

2). Area = [tex]\frac{1}{2}bh[/tex]                                                 2). Triangle area formula

3). [tex]\text{sin}C=\frac{h}{a}[/tex]                                                    3). Definition of sine

4). asin(C) = h                                                4). Multiplication property of

                                                                          equality.

5). Area = [tex]\frac{1}{2}ba\text{sin}C[/tex]                                         5). Substitution property

6). Area = [tex]\frac{1}{2}ab\text{sin}C[/tex]                                         6). Commutative property of

                                                                           multiplication.

Hence, proved.

Calculate the pH of a buffer solution made by mixing 300 mL of 0.2 M acetic acid, CH3COOH, and 200 mL of 0.3 M of its salt sodium acetate, CH3COONa, to make 500 mL of solution. Ka for CH3COOH = 1.76×10–5

Answers

Answer:

Approximately [tex]4.75[/tex].

Step-by-step explanation:

Remark: this approach make use of the fact that in the original solution, the concentration of  [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] are equal.

[tex]{\rm CH_3COOH} \rightleftharpoons {\rm CH_3COO^{-}} + {\rm H^{+}}[/tex]

Since [tex]\rm CH_3COONa[/tex] is a salt soluble in water. Once in water, it would readily ionize to give [tex]\rm CH_3COO^{-}[/tex] and [tex]\rm Na^{+}[/tex] ions.

Assume that the [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] ions in this solution did not disintegrate at all. The solution would contain:

[tex]0.3\; \rm L \times 0.2\; \rm mol \cdot L^{-1} = 0.06\; \rm mol[/tex] of [tex]\rm CH_3COOH[/tex], and

[tex]0.06\; \rm mol[/tex] of [tex]\rm CH_3COO^{-}[/tex] from [tex]0.2\; \rm L \times 0.3\; \rm mol \cdot L^{-1} = 0.06\; \rm mol[/tex] of [tex]\rm CH_3COONa[/tex].

Accordingly, the concentration of [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] would be:

[tex]\begin{aligned} & c({\rm CH_3COOH}) \\ &= \frac{n({\rm CH_3COOH})}{V} \\ &= \frac{0.06\; \rm mol}{0.5\; \rm L} = 0.12\; \rm mol \cdot L^{-1} \end{aligned}[/tex].

[tex]\begin{aligned} & c({\rm CH_3COO^{-}}) \\ &= \frac{n({\rm CH_3COO^{-}})}{V} \\ &= \frac{0.06\; \rm mol}{0.5\; \rm L} = 0.12\; \rm mol \cdot L^{-1} \end{aligned}[/tex].

In other words, in this buffer solution, the initial concentration of the weak acid [tex]\rm CH_3COOH[/tex] is the same as that of its conjugate base, [tex]\rm CH_3COO^{-}[/tex].

Hence, once in equilibrium, the [tex]\rm pH[/tex] of this buffer solution would be the same as the [tex]{\rm pK}_{a}[/tex] of [tex]\rm CH_3COOH[/tex].

Calculate the [tex]{\rm pK}_{a}[/tex] of [tex]\rm CH_3COOH[/tex] from its [tex]{\rm K}_{a}[/tex]:

[tex]\begin{aligned} & {\rm pH}(\text{solution}) \\ &= {\rm pK}_{a} \\ &= -\log_{10}({\rm K}_{a}) \\ &= -\log_{10} (1.76 \times 10^{-5}) \\ &\approx 4.75\end{aligned}[/tex].

4
5

start fraction, 5, divided by, 4, end fraction hour ==equals
minutes

Answers

Answer:

1.25. It would be 1.25 if ur just talking about dividing in general which is pretty tough

Answer:

\dfrac54=-4c+\dfrac14 4 5 ​ =−4c+ 4 1 ​ start fraction, 5, divided by, 4, end fraction, equals, minus, 4, c, plus, start fraction, 1, divided by, 4, end fraction

Step-by-step explanation:

The mean number of words per minute (WPM) typed by a speed typist is 149 with a standard deviation of 14 WPM. What is the probability that the sample mean would be greater than 147.8 WPM if 88 speed typists are randomly selected

Answers

Answer:

78.81%

Step-by-step explanation:

We are given;

Population mean; μ = 149

Sample mean; x¯ = 147.8

Sample size; n = 88

standard deviation; σ = 14

Z-score is;

z = (x¯ - μ)/(σ/√n)

Plugging in the relevant values;

z = (147.8 - 149)/(14/√88)

z = -0.804

From z-distribution table attached, we have; p = 0.21186

P(X > 147.8) = 1 - 0.21186 = 0.78814

In percentage gives; p = 78.81%

Other Questions
Plz help me asapplz plzi will give u brainliest plz asap plz plz Find ordered pairs for y= 2x + 3 if x is {1,2,3} Hellooo can you please help me on this Explain why the flow from the battery increases when the switch is closed. Give the label of the concept(s) that you use from the model of electricity. [ Using the organisms you identified in part B, create a food web for the ecosystem you chose. Use this sample food web for reference, although your food web will contain fewer organisms. Note that your food web does not have to include images, but you may include them if you choose. However, be sure to include arrows to indicate the direction of energy flow in your food web. Design your food web using any method listed below: An urn contains 2 small pink balls, 7 small purple balls, and 6 small white balls.Three balls are selected, one after the other, without replacement.Find the probability that all three balls are purpleExpress your answer as a decimal, rounded to the nearest hundredth. 1. Explain the relationship between the terms species and organism. Which of the following best defines "diction?" a. the use of figurative language b. the use of a dictionary to learn foreign language c. word choice d. sentence fluency Which conclusion about f(x) and g(x) can be drawn from the table?The functions f(x) and g(x) are reflections over the x-axis.The functions f(x) and g(x) are reflections over the y-axis.The function f(x) is a decreasing function, and g(x) is an increasing function.The function f(x) has a greater initial value than g(x). Instructions: Find AB. given that line AD is the perpendicular bisector of BC. pls help me im so stuck Ten years from now, Abdul will be twice as old as his son pavel ten years ago, Abdul was seven times as old as pavel how old are Abdul and pavel now? What will be the potential difference measured by an ideal voltmeter in the circuit of the figure? who was first king and queen of Nepal a package is accidentally dropped from a helicopter from a height of 3,136ft. if the equation for height as a function of time is h(t) = -16t^2 + initial height where t is time in seconds and h(t) is height in feet, how many seconds will it take for the package to hit the ground? Values, attitudes, and moods and emotions capture how managers experience their jobs as individuals. Although these three aspects of managers' work experience are highly personal, they also have important implications for understanding how managers behave, how they treat and respond to others, and how, through their efforts, they help contribute to organizational effectiveness through planning, leading, organizing, and controlling. This exercise gives you the opportunity to not only recognize and analyze the value, attitudes, and moods and emotions of others, but to reflect on your own as well. It is important not only to be able to recognize how these elements affect others at work but also how you values, attitudes, and moods and emotions affect you and others around you. Write the name to the appropriate area below.i. Esther ii. Alex iii. Hector iv. Douglas v. Connie vi. Rebecca vii. Guya. Terminal valueb. Instrumental valuec. Normd. Organizational citizenship behaviore. Organizational commitmentf. Positive moog. Negative mood A cardboard box without a lid is to have a volume of 4,000 cm3. Find the dimensions that minimize the amount of cardboard used. (Let x, y, and z be the dimensions of the cardboard box.) Juan and Lizette rented a car for one week to drive from Phoenix to Boise. The car rental rate was $250 per week and $0.20 per mile. By the most direct route, the drive is 926 miles. How much did they spend on the rental car? help plisssss(no entiendo) PLEASE HELP ASAP! What is the value of x in the inequality start fraction seven plus two x over five end fraction minus three less than x ?A. x greater than negative start fraction eight over three end fractionB. x less than negative start fraction eight over three end fractionC. x greater than start fraction eight over three end fractionD. x less than negative start fraction three over eight end fraction