Answer:
A population of protozoa develops with a constant relative growth rate of 0.6137 per member per day. On day zero the population · Q: For this discussion, you will work in groups to find the area and answer questions.
Step-by-step explanation:
The following formula gives the area A of a trapezoid with base lengths b1 and b2, and height h.
A=12(b1+b2)h
Find the area of a trapezoid with base lengths 3 and 6 and a height of 8.
Explain why the following function is not piecewise continuous
9514 1404 393
Answer:
the function has no finite limit at the left end of the interval (5, ∞)
Step-by-step explanation:
In order for the function to be piecewise continuous, it must have finite limits at the endpoints of each of the subintervals. Here, the function goes to infinity as x → 5+, so has no finite limit there.
Suppose a term of a geometric sequence is a4 = 121.5 and the common ratio is 3. Write the formula for this sequence in the form an = a1 ⋅ rn−1. Explain how you arrived at your answer.
Answer:
[tex]a_n = 4.5 * 3^{n-1}[/tex]
Step-by-step explanation:
Given
[tex]a_4 = 121.5[/tex]
[tex]r = 3[/tex]
Required
[tex]a_n = a_1 * r^{n -1}[/tex]
Substitute 4 for n in [tex]a_n = a_1 * r^{n -1}[/tex]
[tex]a_4 = a_1 * r^{4 -1}[/tex]
[tex]a_4 = a_1 * r^3[/tex]
Substitute 121.5 for [tex]a_4[/tex]
[tex]121.5 = a_1 * 3^3[/tex]
[tex]121.5 = a_1 * 27[/tex]
Solve for a1
[tex]a_1 = \frac{121.5}{27}[/tex]
[tex]a_1 = 4.5[/tex]
So, we have:
[tex]a_n = a_1 * r^{n -1}[/tex]
[tex]a_n = 4.5 * 3^{n-1}[/tex]
Answer:
First I substituted 121.5 for an, 4 for n, and 3 for r in the general form. Then I solved to find a1 = 4.5. Finally, I substituted 4.5 for a1 and 3 for r in the general form to get an = 4.5 ⋅ 3n−1.
Step-by-step explanation:
sample answer on edge ;)
(x + 3)(x + 7) ≡ x2 + ax + 21
Simplify the expression
Answer: …
Step-by-step explanation: you need an image
Answer:
what expression?
Step-by-step explanation:
Find the functional values of r(0), r(3) and r(-3) for the rational function.
Answer:
Step-by-step explanation:
Given function is,
[tex]r(x)=\frac{3x^3-7}{x^2-6x+9}[/tex]
For x = 0, substitute the value of x in the given function.
[tex]r(0)=\frac{3(0)^3-7}{(0)^2-6(0)+9}[/tex]
[tex]r(0)=\frac{-7}{9}[/tex]
For r = 3,
[tex]r(3)=\frac{3(3)^3-7}{(3)^2-6(3)+9}[/tex]
[tex]r(3)=\frac{81-7}{9-18+9}[/tex]
[tex]=\frac{74}{(9-18+9)}[/tex]
[tex]=\frac{74}{0}[/tex]
Function is undefined at x = 3.
For x = -3,
[tex]r(-3)=\frac{3(-3)^3-7}{(-3)^2-6(-3)+9}[/tex]
[tex]=\frac{-81-7}{9+18+9}[/tex]
[tex]=\frac{-88}{36}[/tex]
[tex]=-\frac{22}{9}[/tex]
Here are the test scores for 8 students in Mr. M's class. 87, 55, 96, 38, 83, 64, 44, 81. What is the percentage of these test scores that are less than 84?
Answer:
75%
Step-by-step explanation:
Given that the score of 8 students in Mr. M's class are 87, 55, 96, 38, 83, 64, 44, 81, the scores less than 84 are 55, 38, 83, 64, 44, 81.
These means that 6 student had scores less that 84 of the 8 students hence the percentage of these test scores that are less than 84
= 6/8 * 100%
= 75%
This means that 75% of the students had scores less than 84
238.64 yards.what is the diameter of the field?use 3.14 for pie and do not round your answer
Answer:
It should be 8.6 yards, as 238.64÷3.14 = 74.
√74 = 8.60, or 8.6 :)
Given sets X, Y, Z, and U, find the set Xn(X - Y) using the listing method.
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
Answer:
{f, a}
Step-by-step explanation:
Given the sets:
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
To obtain the set X n (X - Y)
We first obtain :
(X - Y) :
The elements in X that are not in Y
(X - Y) = {f, a}
X n (X - Y) :
X = {d, c, f, a} intersection
(X - Y) = {f, a}
X n (X - Y) = elements in X and (X - Y)
X n (X - Y) = {f, a}
Examine the following expression.
p squared minus 3 + 3 p minus 8 + p + p cubed
Which statements about the expression are true? Check all that apply.
The constants, –3 and –8, are like terms.
The terms 3 p and p are like terms.
The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed.
The terms p squared, 3 p, p, and p cubed have variables, so they are like terms.
The expression contains six terms.
The terms p squared and p cubed are like terms.
Like terms have the same variables raised to the same powers.
The expression contains seven terms.
Answer:
the terms in the expression are p squared, negative 3,3p, negative 8,p,p cubed
Step-by-step explanation:
hope that helps
Suppose a life insurance company sells a $240,000 one-year term life insurance policy to a 19-year-old female for $240. The probability that the female survives the year is 0.999578. Compute and interpret the expected value of this policy to the insurance company. The expected value is $ (Round two decimal places as needed.)
Answer:
$138.72
Step-by-step explanation:
(1-0.999578)*$240,000 = $101.28
$240 - $101.28 = $138.72
what quadratic expression represents (2x+5)(7-4x)
a.-8x^2+6x-35
b.-8x^2-34x+35
c.-8x^2+34x-35
d.-8x^2-6x+35
[tex]\\\\\\[/tex]
Therefore
[tex]\sf{Option~ D ~is ~correct }[/tex][tex]\sf{ }[/tex]
[tex]\sf{ }[/tex]
[tex]\sf{ }[/tex]
[tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex]
Answer:
-8x² -6x + 35
Step-by-step explanation:
A expression is given to us and we need to find out the quadratic equation . For that Multiply the two terms of the quadratic equation. The given expression is ,
Given expression :-
[tex]\rm\implies ( 2x +5)( 7 - 4x ) [/tex]
Multiply the terms :-
[tex]\rm\implies 2x ( 7 - 4x )+5(7-4x) [/tex]
Simplifying the brackets :-
[tex]\rm\implies 14x - 8x^2 + 35 - 20x [/tex]
Rearrange and simplify :-
[tex]\rm\implies -8x^2 -6x + 35 [/tex]
Therefore :-
[tex]\rm\implies\boxed{ \rm Quadratic\ Equation \ = -8x^2 -6x + 35} [/tex]
On a map of a town, 3 cm represents 150 m. Two points in the town are 1 km apart. How far apart are the two points on the map?
Answer:
5000 km
Step-by-step explanation:
We are given that
3 cm represents on a map of a town=150 m
Distance between two points=1 km
We have to find the distance between two points on the map.
3 cm represents on a map of a town=150 m
1 cm represents on a map of a town=150/3 m
1 km=1000 m
1 m=100 cm
[tex]1km=1000\times 100=100000 cm[/tex]
100000 cm represents on a map of a town
=[tex]\frac{150}{3}\times 100000[/tex] m
100000 cm represents on a map of a town=5000000 m
100000 cm represents on a map of a town
=[tex]\frac{5000000}{1000} km[/tex]
100000 cm represents on a map of a town=5000 km
Hence, two points are separated by 5000 km on the map.
A research group at Nike decides to survey NCSU students for their preferences in clothing brands. They divide all students into groups according to the College they belong to (like College of Science, College of Architecture, etc.). Then they take a simple random sample of 50 students from EACH college. What kind of a sample is this
Answer:
Cluster sample
Step-by-step explanation:
i did it before
g Assuming the probability of a single sample testing positive is 0.15, find the probability of a positive result for two samples combined into one mixture. Is the probability low enough so that further testing of the individual samples is rarely necessary?
Solution :
The objective is to obtain the [tex]\text{probability of a positive result}[/tex] for 2 samples combined into a [tex]\text{mixture}[/tex].
Given that the [tex]\text{probability of a single sample testing positive is 0.15}[/tex]
The probability of the positive test result is calculated as follows :
P ( positive mixture ) = P(1 or more samples positive)
= 1 - P (none +ve)
= 1 - P ((-ve) x (-ve))
[tex]$= 1-P(-ve )^2$[/tex]
[tex]$=1-[1-P(+ve)]^2$[/tex]
[tex]$=1-(1-0.15)^2$[/tex]
[tex]$=1-(0.85)^2$[/tex]
= 1 - 0.7225
= 0.2775
No, the probability is not low enough.
The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters. Round your answer to four decimal places.
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σwe have μ=87 , σ=6 & X=84
Find the probability that the diameter of a selected bearing is greater than 84 millimetersThis is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)
plsssssssssssssssssssssssssssssssssssssssssssss quick
Answer:
D
y = mx + b
-10 is b because it´s the y intercept (the y value when x is 0).
now, the slope (m) is rise/run:
this is easier graphed, but you can see that the run is 3 (moving sideways on the x axis) and the rise is 2 (going up or down) so its 2/3.
because we are going down on the y axis, the slope is negative (so is the y intercept).
So y = -2/3 -10 is the answer.
Question 8
Points 3
Identify the functions whose lines are parallel.
0 3x + 2y = 45 and 8x + 4y = 135
x + y = 25 and 2x + y = 15
O 2x + 2y = 50 and 4x + 2y = 90
O 2x + 2y = 4 and 4x + 4y = 16
Answer:
2x + 2y = 4 and 4x + 4y = 16
Step-by-step explanation:
For two lines to be parallel, they must have the same slope.
To determine the correct answer to the question, we shall determine the slope of each equation in the given options to see which have the same slope. This can be obtained as follow:
1st option:
3x + 2y = 45 and 8x + 4y = 135
We shall rearrange the above equations to look like y = mx + c
NOTE: m is the slope.
3x + 2y = 45
rearrange
2y = –3x + 45
Divide both side by 2
y = –3x/2 + 45/2
Slope (m) = –3/2
8x + 4y = 135
Rearrange
4y = –8x + 135
Divide both side by 4
y = –8x/4 + 135/4
Slope (m) = –8/4 = –2
The two equation has different slopes. Thus, they are not parallel.
2nd option:
x + y = 25 and 2x + y = 15
x + y = 25
Rearrange
y = –x + 25
Slope (m) = –1
2x + y = 15
Rearrange
y = –2x + 15
Slope (m) = –2
The two equations has different slopes. Thus, they are not parallel.
3rd option:
2x + 2y = 50 and 4x + 2y = 90
2x + 2y = 50
Rearrange
2y = –2x + 50
Divide both side by 2
y = –2x/2 + 50/2
Slope (m) = –2/2 = –1
4x + 2y = 90
Rearrange
2y = –4x + 90
Divide both side by 2
y = –4x/2 + 90/2
Slope (m) = –4/2 = –2
The two equations has different slopes. Thus, they are not parallel.
4th option:
2x + 2y = 4 and 4x + 4y = 16
2x + 2y = 4
Rearrange
2y = –2x + 4
Divide both side by 2
y = –2x/2 + 4/2
Slope (m) = –2/2 = –1
4x + 4y = 16
Rearrange
4y = –4x + 16
Divide both side by 4
y = –4x/4 + 16/4
Slope (m) = –4/4 = –1
The two equations have the same slopes. Thus, they are parallel.
exponential function in the form y=ab^xy=ab
x
that goes through points (0, 13)(0,13) and (5, 416)(5,416).
Hello!
[tex]\large\boxed{y = 13(2)^x}}[/tex]
y = abˣ
We know that at x = 0, b = 1 because any number to the power of 0 = 1.
Therefore:
13 = a(1)
13 = a
Now, plug in this value to solve for b:
y = 13bˣ
Substitute in the next point:
416 = 13(b)⁵
Divide both sides by 13:
32 = b⁵
Take the 5th root of both sides:
2 = b
Rewrite:
y = 13(2)ˣ
Assume the random variable X is normally distributed, with mean of 50 and a standard deviation of 9. Find the 9th percentile.
Answer:
37.94
Step-by-step explanation:
the 9th percentile is equal to a zscore of -1.34
-1.34=(x-50)/9
x=37.94
Convert 1.5% to decimal and a fraction. Show and explain your method.
Answer:
0.015
Step-by-step explanation:
1.5% = means 1.5 per 100 or simply 1.5/100.if you divide 1.5 by 100 you will get 0.015
If someone can pls give the answer with steps that would be greatly appreciated :)
hope it helps.
stay safe healthy and happy..Answer: look below
Step-by-step explanation:
A straight angle is 180
180-50=130
the opposite is also the same angle which is the same
180-50-50=80 and 80 + 2x =180
x=50
the angles are 50, 50, 50, 50, 80, 130 and 130 degrees respectively
2 starting terms of a diginacci sequence when the 2021st term is 11
Hello,
In a diginacci sequence, all term is the sum off digits of the 2 terms before.
Answer: 2,3
[tex]u_{-2}=1\\u_{-1}=1\\u_0=digit(u_{-2})+digit(u_{-1})=1+1=2\\u_1=1+2=3\\u_2=2+3=5\\u_3=3+5=8\\u_4=5+8=13\\u_5=8+1+3=12\\...\\u_{18}=11\\u_{19}=8\\u_{20}=10\\u_{21}=9\\u_{22}=10\\u_{23}=10\\u_{24}=2**********\\u_{25}=3**********\\2020=24*84+4\\u_{2020}=u_{4}=13\\[/tex]
We must begin with 13 , 10
Proof:
Dim a As Long, b As Long, c As Long, nb As Integer
a = 13
b = 10
nb = 1
Print nb, a
While nb < 2021
nb = nb + 1
c = somme&(a, b)
a = b
b = c
' Print nb, a
Wend
Print nb, a
End
Function somme& (a1 As Long, b1 As Long)
Dim strA As String, strB As String, n As Long
strA = LTrim$(Str$(a1))
strB = LTrim$(Str$(b1))
n = 0
For i = 1 To Len(strA)
n = n + Val(Mid$(strA, i, 1))
Next i
For i = 1 To Len(strB)
n = n + Val(Mid$(strB, i, 1))
Next i
somme& = n
End Function
20 points help please.
Answer:
-2 is the answer trust me
Help me pls I am bad at math
Answer:
D is the correct answer.
Step-by-step explanation:
You can get every y value by multiplying the x value by 3/2. This value never changes and there are no extra limitations.
The diagram shows triangle ABC.
С
Work out the sizes of angles x, y and z.
40°
110°
х
Z
A
В
Answer:
x=70
y=30
z=20
Step-by-step explanation:
x=180-110 (angles on a straight line)
y=180-110-40 (angle sum of triangle)
z= 180-90-70 (angle sum of triangle)
Answer:
x=70°
y=30°
z=20°
Step-by-step explanation:
x=180°-110°(anlges on a straight line)
x=70°
y+110°+40°=180°(sum of angles of triangle)
y+150°=180°
y=180°-150°
y=30°
z+x+90°=180°(sum of angles of triangle)
z+70°+90°=180°
z+160°=180°
z=180°-160°
z=20°
Jose bought 750 bags of peanuts for 375.00. He intends to sell each bag for 0.15 more the he paid. How much should he charge for each bag
Answer:
Charge for each bag = 0.65
Step-by-step explanation:
Let the cost of 1 bag be = x
Bags Cost
750 375.00
1 x
[tex]\frac{750}{1} = \frac{375}{x}\\\\x \times 750 = 375 \times 1\\\\x = \frac{375}{750} = 0.50[/tex]
Therefore, the amount Jose paid for each bag = 0.50
He is going to sell each bag for 0.15 more than he paid,
that is , 0.50 + 0.15 = 0.65
Which of the following situations WOULD NOT represent a binomial application? A. Choosing a card randomly from a standard deck and noting its color (remember color has only two outcomes black or red) B. Choosing a card randomly from a standard deck and noting whether its a face card C. Choosing a card randomly from a standard deck and noting its suit D. Choosing a card randomly from a standard deck and noting whether or not it's an ace
Answer:
Choosing a card randomly and noting its suit
Step-by-step explanation:
Choosing a card randomly and noting its suit
This is because binomial distributions only work for bernoulli trials (a trail in which there are only two outcomes)
f(x)=2x1 + 16x2 + 7x3 + 4x4 -> min
Step-by-step explanation:
f(x)=(2x-1)square=0
it can be 0 or greater than 0
Hence,maximum value of (2x- 1)square=0
maximum value of (2x- 1square)+3=0+3=3
What is the equation of a parabola with its vertex at the origin and its focus at (–2, 0)?
Step-by-step explanation:
this is the answerI hope it helps