Sara's dog is 5 years younger than Anna's dog. Let A represent Anna's dog and S represent Sara's dog. Complete the table using the equation S = A − 5.

Answers

Answer 1

Answer: c

Step-by-step explanation:


Related Questions

inverse function of f(x)=x-7/x+4

Answers

Final Answer: The inverse of f (x)=7x-4 is f^-1 (x)= (x+4)/7


The lengths of the sides of the right triangle above are a, 3, and c. What is a in terms of c?

Answers

The expression for a in terms of c is [tex]a^{2}= \sqrt{c^{2} -9}[/tex]. The correct option is the third option [tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Pythagorean theorem

From the question, we are to determine the expression for a in terms of c

In the given right triangle, we can write that

[tex]c^{2} = a^{2} +3^{2}[/tex] (Pythagorean theorem)

Thus,

[tex]c^{2} = a^{2} +9[/tex]

[tex]a^{2}= c^{2} -9[/tex]

[tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Hence, the expression for a in terms of c is [tex]a^{2}= \sqrt{c^{2} -9}[/tex]. The correct option is the third option [tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Learn more on Pythagorean theorem here: https://brainly.com/question/23994492

#SPJ1

Evaluate the sum (for math nerds)
[tex]i {}^{0!} + i {}^{1!} + i {}^{2!} + i {}^{3!} + ... + i {}^{100!} [/tex]
Note that :
[tex]i = \sqrt[]{ - 1} [/tex]

Answers

Answer: i+96

Step-by-step explanation:

Note that [tex]i^{4k}[/tex], where k is an integer, is equal to 1.

This means that [tex]i^{4!}=i^{5!}=i^{6}=\cdots=i^{99!}+i^{100!}=1[/tex]

So, we can rewrite the sum as [tex]i^{1}+i^{1}+i^{2}+i^3+97(1)=i+i-1-i+97=i+96[/tex]

[tex]n![/tex] is divisible by 4 for all [tex]n\ge4[/tex]. This means, for instance,

[tex]i^{4!} = \left(i^4\right)^{3!} = 1^{3!} = 1[/tex]

[tex]i^{5!} = \left(i^4\right)^{5\times3!} = 1^{5\times3!} = 1[/tex]

etc, so that [tex]i^{n!} = 1[/tex] for all [tex]n\ge4[/tex].

Meanwhile,

[tex]i^{0!} = i^1 = i[/tex]

[tex]i^{1!} = i^1 = i[/tex]

[tex]i^{2!} = i^2 = -1[/tex]

[tex]i^{3!} = i^6 = (-1)^3 = -1[/tex]

Then the sum we want is

[tex]i^{0!} + i^{1!} + i^{2!} + i^{3!} + 97\times1 = i + i - 1 - 1 + 97 = \boxed{95+2i}[/tex]

Simplify the following
Answer is 6​

Answers

Firstly changing mixed fraction.

[tex] \frac{3}{2} - \frac{5}{4} + \frac{23}{4} [/tex]

By taking the LCM

[tex] \frac{6 - 5 + 23}{4} [/tex]

-5 + 23 (-) (+) = (-)

[tex] \frac{6 + 18}{4} [/tex]

[tex] \frac{24}{4} [/tex]

[tex]6[/tex]

Hope it helps you, any confusions you may ask!

Answer:

6 (work below)

Step-by-step explanation:

1 1/2 = 3/2

1 1/4 = 5/4

5 3/4 = 23/4

The least common multiple of the denominators is 4, so 3/2 will become 6/4.

6/4 - 5/4 = 1/4 + 23/4 = 24/4 = 6

Brainliest, please :)

Write these decimals in order from smallest to largest: 0.507, 0.75, 0.5, 0.078

Answers

0.078, 0.5, 0.507, 0.75.

Hope it helps ; )
0.078, 0.5, 0.507, 0.75

Please tell me fast I am on a time crunch

Answers

x< -6
Solve for the inequality x

f(x)=2^x. What is g(x)?

Answers

The function g(x) is g(x)= (3x)^2

How to solve for g(x)?

The complete question is in the image

From the graph in the image, we have:

f(x) = x^2

The function f(x) is stretched by a factor of 3 to form g(x).

This means that:

g(x) = f(3x)

So, we have:

g(x)= (3x)^2

Hence, the function g(x) is g(x)= (3x)^2

Read more about function transformation at:

brainly.com/question/10222182

#SPJ1

What is the volume of the cylinder?

Answers

The volume of a cylinder with a diameter of 16 feet and height of 10 feet is 2010.62 ft³

What is an equation?

An equation is an expression that shows the relationship between two or more numbers and variables.

The volume of a cylinder with radius (r) and height (h) is:

Volume = πr²h

Given that h = 10 ft, r = 16/2 = 8 ft

The volume = π * 8² * 10 = 2010.62 ft³

The volume of a cylinder with a diameter of 16 feet and height of 10 feet is 2010.62 ft³

Find out more on equation at: https://brainly.com/question/2972832

#SPJ1

Complete the equations to solve 1{,}860 \div61,860÷61, comma, 860, divided by, 6.
\phantom{=}\greenD{1{,}860}\div{\blueD6}=1,860÷6empty space, start color #1fab54, 1, comma, 860, end color #1fab54, divided by, start color #11accd, 6, end color #11accd
=(\greenD{1{,}800}\div\,=(1,800÷equals, left parenthesis, start color #1fab54, 1, comma, 800, end color #1fab54, divided by
) \, + \,(\greenD{60}\div\,)+(60÷right parenthesis, plus, left parenthesis, start color #1fab54, 60, end color #1fab54, divided by
))right parenthesis
= 300 +=300+equals, 300, plus
==equals

Answers

The division of the figure based on the information is 14.09.

How to illustrate the information?

It should be noted that the question is simply to divide 860 by 61.

The division based on the information will be illustrated thus:

= 860 ÷ 61

= 14.09

In conclusion, the correct option is 14.09.

Learn more about division on:

brainly.com/question/1622425

#SPJ1

Alan is building a garden shaped like a rectangle with a semicircle attached to one short side. If he has 70 feet of fencing to go around​ it, what dimensions will give him the maximum area in the​ garden? Round the answers to the nearest tenth.

Answers

The dimension that would give the maximum area is 20.8569

How to solve for the maximum area

Let the shorter side be = x

Perimeter of the semi-circle is πx

Twice the Length of the longer side

[tex][70-(\pi )x -x][/tex]

Length = [tex][70-(1+\pi )x]/2[/tex]

Total area =

area of rectangle + area of the semi-circle.

Total area =

[tex]x[[70-(1+\pi )x]/2] + [(\pi )(x/2)^2]/2[/tex]

When we square it we would have

[tex]70x +[(\pi /4)-(1+\pi)]x^2[/tex]

This gives

[tex]70x - [3.3562]x^2[/tex]

From here we divide by 2

[tex]35x - 1.6781x^2[/tex]

The maximum side would be at

[tex]x = 35/2*1.6781[/tex]

This gives us 20.8569

Read more on areas and dimensions here:

https://brainly.com/question/19819849

#SPJ1

as part of a competition, diego must spin around in a circle 6 times and then run to a tree. the time he spends on each spin is represented by S AND THE TIME HE SPEND RUNNING is R. He gets to the tree 21 seconds after he starts spinning. If it takes diego 1.2 seconds to spin around each time, how many seconds did he spend running

Answers

The time he spent running is 13.80 seconds.

How much time did he spend running?

The equation that can be used to represent the time he gets to the tree is:

Time he gets to the tree = (time of each spin x total spins) + time he spent running

21 = (6 x 1.2) + r

21 = 7.20 + r

r = 21 - 7.20

r = 13.80 seconds

To learn more about mathematical equations, please check: https://brainly.com/question/26427570

#SPJ1

please help!!!!!!nnnn

Answers

Similar: yes

Similarity statement: [tex]ADCB \sim SVUT[/tex]

Scale factor: 1/3

To the nearest percent how much greater is 8 than 6

Answers

The percent greater of 8 than 6 to the nearest percent is 25%

Percentage

Percent greater = difference / higher chance value × 100

= 2/8 × 100

= 0.25 × 100

Percent greater = 25%

Therefore, the percent greater of 8 than 6 to the nearest percent is 25%

Learn more about percentage:

https://brainly.com/question/843074

#SPJ1

3 5/6 + 2 4/9 in its simplest form

Answers

Answer:

>>   [tex]6\frac{5}{18}[/tex]

Step-by-step explanation:

1) Add the whole numbers first.

[tex]5+\frac{5}{6} +\frac{4}{9}[/tex]

2) Find the Least Common Denominator (LCD) of [tex]\frac{5}{6} ,\frac{4}{9}[/tex] . In other words, find the Least Common Multiple (LCM) of [tex]6,9[/tex].

Method 1: By Listing Multiples

1. List the multiples of each number.

Multiples of 6 : 6, 12, 18, ...

Multiples of 9 : 9, 18, ...

2. Find the smallest number that is shared by all rows above. This is the LCM.

LCM = 18

3. Make the denominators the same as the LCD.

[tex]5+\frac{5\times 3}{6\times 3}+\frac{4\times 2}{9\times 2}[/tex]

4. Simplify. Denominators are now the same.

[tex]5+\frac{15}{18}+\frac{8}{18}[/tex]

5.  Join the denominators.

[tex]5+\frac{15+8}{18}[/tex]

6. Simplify.

[tex]5+\frac{23}{18}[/tex]

7. Convert [tex]\frac{23}{18}[/tex] to mixed fraction.

[tex]5+1\frac{5}{18}[/tex]

8. Simplify.

[tex]6\frac{5}{18}[/tex]

Decimal Form: 6.277778

Cheers.

The addition of 3 5/6 + 2 4/9  is 113/18

What is fraction?

The fractional bar is a horizontal bar that divides the numerator and denominator of every fraction into these two halves.

The number of parts into which the whole has been divided is shown by the denominator. It is positioned in the fraction's lower portion, below the fractional bar.How many sections of the fraction are displayed or chosen is shown in the numerator. It is positioned above the fractional bar in the upper portion of the fraction.

Given:

3 5/6 + 2 4/9

Now, writing it into normal fraction

3 5/6 + 2 4/9

= 23/ 6 + 22/9

= 23/6 x 3/3 + 22/9 x 2/2

= 69/ 18 + 44/18

= 113/18

Hence, the addition is 113/18

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ5

(2x + 1) (x - 1) solve for X

Answers

Put brackets equal 0

(2x + 1) (x - 1) = 0

(2x + 1) = 0

-1, then ÷2

x = - 1/2 or - 0.5

(x - 1) = 0

+1

x = 1

So, x = - 0.5 & x = 1

Hope this helps!

Answer:

x = -0.5

x = 1

Step-by-step explanation:

Hello!

We can set each factor to 0 and solve for x in both.

(2x + 1) = 0
2x = -1
x = -0.5
(x - 1) = 0
x = 1

There are 2 solutions for x, -0.5 and 1.


Given the functions a(x) = 3x - 12 and b(x) = x-9, solve a[b(x)].

Oa[b(x)] = 3x²-21

O a[b(x)] = 3x² - 39

Oa[b(x)] = 3x - 21

Oa[b(x)] = 3x - 39

Answers

Answer:

Step-by-step explanation:

hello :

a(x) = 3x - 12 and b(x) = x-9, so

a[b(x)]=a(x-9) =3(x-9)-12

a[b(x)]=3x-9-12

a[b(x)]=3x+21

find the product xy if

2^(x)+3^(y)=5,

2^(x+2)+3^(y+1)=18

Answers

The solution to the system of equation is (0, 1)

System of equations

Given the following system of equation as shown below

2^(x)+3^(y)=5,

2^(x+2)+3^(y+1)=18

Rewrite

2^(x)+3^(y)=5,

2^x*2^2 + 3^y*3^1 = 18

___________

2^(x)+3^(y)=5,

4(2^x) + + 3(3^y) = 18

Let a = 2^x and b = 3^y

Substitute

a + b = 5

4a + 3b = 18

a = 5 - b

Substitute

4(5-b) + 3b = 18

20 - 4b + 3b = 18

-b = -2

b = 2

since a = 5 - b

a = 5 - 2

a = 3

Recall that a = 2^x and b = 3^y

2^x = 2

x = 0

Similarly

3^y = 3

y =1

Hence the solution to the system of equation is (0, 1)

Learn more on system of equation here: https://brainly.com/question/25976025

#SPJ1

x is directly proportional to y. When x = 4, y = 7. Work out the value
of y when x = 12

Answers

Answer:

y = 21

Step-by-step explanation:

When x is directly proportional to y:

When x increases, y also increases.

In this case, it is so you write,

1. Write down the formula: y=kx

k being the constant.

Let's use "When x = 4, y = 7" to work out the constant.

2. Substitute the 'when' values: 7=k×4

3. Rearrange to find the constant: 7÷4=k

4. Find k: k=1.75

Now let's see the new problem, 'what is y when x = 12'.

5. Substitute the values now but keep the constant: y = 1.75 × 12

6. Rearrange if needed.

7. Find the missing value: y = 21

Hope this helped and if you require further assistance from me please comment below! :)

Ps: If it was inversely proportional then the formula would be y = k / x

with k still being the constant.

A tower is composed of a prism with a square base and a pyramid. The base length is 20 meters, and the height of the prism is 40 meters, while the slant height of the pyramid is 10√2 meters. What is the total surface area, including the bottom base? 400√2 + 3,600 m2 200√2 + 3,600 m2 400√2 + 400 m2 4000√2 m2

Answers

The total surface area of the tower composed of a prism with a square base and a pyramid is 3600 + 400√2 m²

How to find the surface are of a composite figure?

Total surface area of the tower = area of the base + 4(area of the rectangular surface) + 4(area of the triangular surface)

Therefore,

area of the base = 20² = 400 m²

4(area of the rectangular surface)  = 4(40 × 20) = 3200 m²

4(area of the triangular surface) = 4(1 / 2 × 10√2 × 20) = 4(100√2) = 400√2 m²

Therefore,

total surface area = 400 + 3200 + 400√2

total surface area = 3600 + 400√2 m²

learn more on surface area here: https://brainly.com/question/27730192

#SPJ1

Answer:

a)400V2 plus 3,600 m2

Step-by-step explanation:

What point is 2/3 of the distance from point A(3, 1) to point B(3, 19)?

What point is 2/3 of the distance from point A(3, 1) to point B(3, 19)?

(3, 13)

(9/3, 13)

(2, 12)

(3, 19)

Answers

Answer: (3, 13)

Step-by-step explanation:

If we let the point be P, then AP:BP=2:1.

[tex]P=\left(\frac{(2)(3)+(1)(3)}{2+1}, \frac{(2)(19)+(1)(1)}{2+1} \right)=(3, 13)[/tex]

A candy shop sells a box of chocolates for $30. It has $29 worth of chocolates plus $1 for the box. The box includes two kinds of candy: caramels and truffles. Lita knows how much the different types of candies cost per pound and how many pounds are in a box. She said,
If x is the number of pounds of caramels included in the box and y is the number of pounds of truffles in the box, then I can write the following equations based on what I know about one of these boxes:

x + y = 3
8x + 12y + 1 = 30

Assuming Lita used the information given and her other knowledge of the candies, use her equations to answer the following:

How many pounds of candy are in the box?

What is the price per pound of the caramels

What does the term 12y in the second equation represent?

What does 8x + 12y + 1 in the second equation represent?

Answers

Answer:

There are 3 lbs of candy in the box.

The caramels are $8 per pound.

12y represents the total cost of truffles in the box.

8x + 12y + 1 represents the cost of caramels in the box + the cost of truffles in the box + the cost of the box.

Step-by-step explanation:

x = the number of pounds of caramels

y = the number of pounds of truffles

x + y = total lbs. and we know x + y = 3

We know x is the number of pounds of caramels.

8x = (cost per pound of caramels) × (number of pounds of caramels)

So 8 = cost of caramels

We know y = number of pounds of truffles. So 12 is the cost of truffles by pound, and 12y is the total cost of truffles in the box.

Based on all the above,

The cost of caramels in the box + the cost of truffles in the box + the cost of the box is = total cost of the box. 8x + 12y + 1 = 30

could anyone help me with this?

Answers

Answer:

Step-by-step explanation:

A=6x²

[tex]\frac{dA}{dt} =6\times 2x \times \frac{dx}{dt} \\\frac{dA}{dt}=12x \frac{dx}{dt}[/tex]

Suppose f(x)=2^x. What is the graph of g(x)=1/3f(x)?

Answers

Please see the blue curve of the image attached below to know the graph of the function g(x) = (1/3) · 2ˣ.

How to graph a transformed function

Herein we have an original function f(x). The transformed function g(x) is the result of compressing f(x) by 1/3. Then, we find that g(x) = (1/3) · 2ˣ. Lastly, we graph both function on a Cartesian plane with the help of a graphing tool.

The result is attached below. Please notice that the original function f(x) is represented by the red curve, while the transformed function g(x) is represented by the blue curve.

To learn more on functions: https://brainly.com/question/12431044

#SPJ1

i don’t understand!!!

Answers

Answer:  12/13

In other words, 12 goes in the top box and 13 goes in the bottom. The fraction slash sign is not part of either box.

===========================================================

Explanation:

Cosine is the ratio of adjacent over hypotenuse.

cos(angle) = adjacent/hypotenuse

For the reference angle X, the adjacent leg is 36 units long. It's the leg closest or touching angle X.

The hypotenuse is always the longest side. It is always opposite the 90 degree angle. The hypotenuse in this case is 39 units.

Therefore,

cos(X) = 36/39 = (12*3)/(13*3) = 12/13

A particle travels so that its distance D (in metres) from its origin O is modelled by the equation D = 24 + 15t - [tex]\frac{t^{2} }{2}[/tex], where t is the time in minutes after the particle has started to move.

a. calculate the particle's distance from O when it first started to move.

b. determine the time when the particle first reaches O. Give your answer to 2 decimal places.

c. determine the particle's speed when it has been moving for 3 minutes. Give your answer in m [tex]S^{-1}[/tex]

Answers

(a) The particle's distance from O when it first started to move is 24 m.

(b) The time when the particle first reaches O is 15 mins.

(c) The particle's speed when it has been moving for 3 minutes is 0.2 m/s.

Particle's distance from O when it first started to move

D = 24 + 15 - t²/2

when the time, t  = 0

D = 24 m

When the object first reaches O

When the object reaches O, its final velocity, v = 0

v = dD/dt

v = 15 - t

0 = 15 - t

t = 15 mins

Speed of the particle after 3 minutes

v = 15 - t

v = 15 - 3

v = 12 m/min

v = 12 m/min x 1min/60s = 0.2 m/s

Thus, the particle's distance from O when it first started to move is 24 m.

The time when the particle first reaches O is 15 mins.

The particle's speed when it has been moving for 3 minutes is 0.2 m/s.

Learn more about speed here: https://brainly.com/question/6504879

#SPJ1

Which expression is equivalent to
xay
8
700
8√√√x
y
8√√y
Mark this and return
128x56
√ 2x75
? Assume x > 0 and y> 0.
Save and Exit

Answers

The equivalent expression of [tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex] is [tex]\frac{8\sqrt y}{x}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex]

Divide 128 by 2

[tex]\sqrt{\frac{64x^5y^6}{x^7y^5}}[/tex]

Apply the law of indices to the variables

[tex]\sqrt{\frac{64y^{6-5}}{x^{7-5}}}[/tex]

Evaluate the differences

[tex]\sqrt{\frac{64y}{x^2}}[/tex]

Take the square root of 64

[tex]8\sqrt{\frac{y}{x^2}}[/tex]

Take the square root of x^2

[tex]\frac{8\sqrt y}{x}[/tex]

Hence, the equivalent expression of [tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex] is [tex]\frac{8\sqrt y}{x}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832

#SPJ1

Hi I would like to know how I can solve this problem.

Answers

The [tex]n[/tex]-th term is

[tex]U_n = \dfrac14 n^2 (n+1)^2[/tex]

so the 39th term is

[tex]U_{39} = \dfrac14 39^2 40^2 = \boxed{608,400}[/tex]

Observe that

[tex]2^3 + 4^3 + 6^3 = 2^3 + 2^3\times2^3 + 2^3\times3^3 = 8\left(1^3+2^3+3^3)[/tex]

which suggests that

[tex]V_n = 8U_n = \boxed{2n^2(n+1)^2}[/tex]

Please look at the attachment and answer my question :(

Answers

Answer:

AB / BC = 2 / 3

A equals 9 and C = 13

AC = 13 - 9 = 4

AB + BC = 13

A) AB + BC = 4

B) AB / BC = 2/3   Therefore BC = AB / (2/3)  

B) BC = 1.5 AB  

A) BC = 4 - A/B

Multiplying equation A) by -1

A) -BC = -4 + AB then we add equation B)

B) BC = 1.5 AB then adding both equations

0 = 2.5 AB -4

2.5 AB = 4

AB = 1.6

Since A = 9 then the number at B is 9 + 1.6

equals 10.6

Step-by-step explanation:

Answer:

The number at B is 10.6

Step-by-step explanation:

Let the number at B be x.

We know that distance between two points on the number line is the absolute value of the difference of numbers at those points.

Then distances representing the lengths of segments AB and BC are:

AB = x - 9BC = 13 - x

We are given the ratio of segments:

AB/BC = 2/3

Substitute and solve for x:

(x - 9)/(13 - x) = 2/33(x - 9) = 2(13 - x)3x - 27 = 26 - 2x3x + 2x = 26 + 275x = 53x = 53/5x = 10.6

A random variable X has a gamma density function with parameters α= 8 and β = 2.
Without making any assumptions, derive the moment generating function of X and use to
determine the mean and variance of X.

Answers

I know you said "without making any assumptions," but this one is pretty important. Assuming you mean [tex]\alpha,\beta[/tex] are shape/rate parameters (as opposed to shape/scale), the PDF of [tex]X[/tex] is

[tex]f_X(x) = \dfrac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} = \dfrac{2^8}{\Gamma(8)} x^7 e^{-2x}[/tex]

if [tex]x>0[/tex], and 0 otherwise.

The MGF of [tex]X[/tex] is given by

[tex]\displaystyle M_X(t) = \Bbb E\left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x) \, dx = \frac{2^8}{\Gamma(8)} \int_0^\infty x^7 e^{(t-2) x} \, dx[/tex]

Note that the integral converges only when [tex]t<2[/tex].

Define

[tex]I_n = \displaystyle \int_0^\infty x^n e^{(t-2)x} \, dx[/tex]

Integrate by parts, with

[tex]u = x^n \implies du = nx^{n-1} \, dx[/tex]

[tex]dv = e^{(t-2)x} \, dx \implies v = \dfrac1{t-2} e^{(t-2)x}[/tex]

so that

[tex]\displaystyle I_n = uv\bigg|_{x=0}^{x\to\infty} - \int_0^\infty v\,du = -\frac n{t-2} \int_0^\infty x^{n-1} e^{(t-2)x} \, dx = -\frac n{t-2} I_{n-1}[/tex]

Note that

[tex]I_0 = \displaystyle \int_0^\infty e^{(t-2)}x \, dx = \frac1{t-2} e^{(t-2)x} \bigg|_{x=0}^{x\to\infty} = -\frac1{t-2}[/tex]

By substitution, we have

[tex]I_n = -\dfrac n{t-2} I_{n-1} = (-1)^2 \dfrac{n(n-1)}{(t-2)^2} I_{n-2} = (-1)^3 \dfrac{n(n-1)(n-2)}{(t-2)^3} I_{n-3}[/tex]

and so on, down to

[tex]I_n = (-1)^n \dfrac{n!}{(t-2)^n} I_0 = (-1)^{n+1} \dfrac{n!}{(t-2)^{n+1}}[/tex]

The integral of interest then evaluates to

[tex]\displaystyle I_7 = \int_0^\infty x^7 e^{(t-2) x} \, dx = (-1)^8 \frac{7!}{(t-2)^8} = \dfrac{\Gamma(8)}{(t-2)^8}[/tex]

so the MGF is

[tex]\displaystyle M_X(t) = \frac{2^8}{\Gamma(8)} I_7 = \dfrac{2^8}{(t-2)^8} = \left(\dfrac2{t-2}\right)^8 = \boxed{\dfrac1{\left(1-\frac t2\right)^8}}[/tex]

The first moment/expectation is given by the first derivative of [tex]M_X(t)[/tex] at [tex]t=0[/tex].

[tex]\Bbb E[X] = M_x'(0) = \dfrac{8\times\frac12}{\left(1-\frac t2\right)^9}\bigg|_{t=0} = \boxed{4}[/tex]

Variance is defined by

[tex]\Bbb V[X] = \Bbb E\left[(X - \Bbb E[X])^2\right] = \Bbb E[X^2] - \Bbb E[X]^2[/tex]

The second moment is given by the second derivative of the MGF at [tex]t=0[/tex].

[tex]\Bbb E[X^2] = M_x''(0) = \dfrac{8\times9\times\frac1{2^2}}{\left(1-\frac t2\right)^{10}} = 18[/tex]

Then the variance is

[tex]\Bbb V[X] = 18 - 4^2 = \boxed{2}[/tex]

Note that the power series expansion of the MGF is rather easy to find. Its Maclaurin series is

[tex]M_X(t) = \displaystyle \sum_{k=0}^\infty \dfrac{M_X^{(k)}(0)}{k!} t^k[/tex]

where [tex]M_X^{(k)}(0)[/tex] is the [tex]k[/tex]-derivative of the MGF evaluated at [tex]t=0[/tex]. This is also the [tex]k[/tex]-th moment of [tex]X[/tex].

Recall that for [tex]|t|<1[/tex],

[tex]\displaystyle \frac1{1-t} = \sum_{k=0}^\infty t^k[/tex]

By differentiating both sides 7 times, we get

[tex]\displaystyle \frac{7!}{(1-t)^8} = \sum_{k=0}^\infty (k+1)(k+2)\cdots(k+7) t^k \implies \displaystyle \frac1{\left(1-\frac t2\right)^8} = \sum_{k=0}^\infty \frac{(k+7)!}{k!\,7!\,2^k} t^k[/tex]

Then the [tex]k[/tex]-th moment of [tex]X[/tex] is

[tex]M_X^{(k)}(0) = \dfrac{(k+7)!}{7!\,2^k}[/tex]

and we obtain the same results as before,

[tex]\Bbb E[X] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=1} = 4[/tex]

[tex]\Bbb E[X^2] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=2} = 18[/tex]

and the same variance follows.

will give brainly .Which statements are true regarding undefinable terms in geometry? Check all that apply.


A point has no length or width.

A point indicates a location in a coordinate plane.

A plane has one dimension, length.

A line has a definite beginning and end.

A plane consists of an infinite set of lines.

A line consists of an infinite set of points.

Answers

The true statements about terms in geometry that are undefinable are;

A point has no length or widthA point indicates a location on the coordinate planeA line consists of an infinite set of points.A plane consists of an infinite set of points.

How can the true statements be found?

Three undefinable terms in geometry are;

1) Point

2) Line

3) Plane

The above terms do not have a formal definition but they can be described based on their properties.

The other geometric terms are defined based on the above undefinable terms.

A point can be described as a location in space that is dimensionless and can be specified on the coordinate plane as an ordered pairs (x, y).

True statements about a point are therefore;

A point has no length or widthA point indicates a location on the coordinate plane

A line is infinitely long, that has no beginning or end. It has one dimension, with no thickness or height.

Given that a point is dimensionless, a line can be considered a set of points.

A true statement is therefore;

A line consists of an infinite set of points.

A plane is a two dimensional geometric figure that have infinite length and width.

An infinite set of lines that forms a two dimensional figure can be used to describe a plane.

The true statement with regards to a plane is therefore;

A plane consists of an infinite set of points.

Learn more about undefinable terms in geometry here:

https://brainly.com/question/1706041

#SPJ1

Other Questions
During each of the past three months, Tyler grewby the following amounts: 1/8in., 3/16in., and 1/4in.What is Tyler's total amount of growth over thesethree months?Answer with supporting work: Question 8 of 10What does the medium of the National Geographic report allow it to use thatthe Bloomburg Business report cannot?O A. GraphicsB. LightingC. ImagesD. Sources 1.1. Which statement explains why the two systems of equations below have thesame solution?A6x + 8y = -102x - 5y = 12B8x + 3y = 212x + 16y = -20 Help!! Please!! I'll name you brainliest!! he Supreme Court chooses to hear cases that __________.A.affect only small groups of peopleB.are important to the president, since he/she appoints the justices to the courtC.most often deal with international legal questionsD.involve the Constitution A rectangle is such that the length of 2 of each adjacent sides are in the ratio 1:3. A similar rectangle has 1 side of 6cm. Find 2 possible values for the length of each adjacent sides. what 5/8x + 1/2 (1/4x + 10)? what is the answer to -4 - (-7) Who expanded the Persian empire to its largest area A. Abraham B. Sargon C. Darius the great B. Nebuchadnezzar HELPPPP I DONT KNOW THE ANSWER PLEASE HELP ME 16/20 1/4 = I need help please thank you Why did the Europeans firsttake an interest in the African continent? hello cherry how r u i am back PLS HELP IM TIMED!!Fish eggs that are fertilized externally are typically clustered and covered in a thick, jelly-like substance.What is most likely the function of this substance?a) to protect the eggs and keep them consistently warm inside the parent's bodyb) to protect the eggs and keep them safe from any harmful environmental conditionsc) to ensure that only a few of the eggs are fertilized by sperm since external fertilization is uncommon and riskyd) to ensure that only some of the eggs are fertilized by sperm so others can be fertilized internally Powell Panther Corporation: Income Statements for Year Ending December 31 (Millions of Dollars) 20192018 Sales$3,220.0$2,800.0 Operating costs excluding depreciation and amortization2,576.02,380.0 EBITDA$644.0$420.0 Depreciation and amortization90.078.0 Earnings before interest and taxes (EBIT)$554.0$342.0 Interest70.861.6 Earnings before taxes (EBT)$483.2$280.4 Taxes (25%)193.3112.2 Net income$289.9$168.2 Common dividends$260.9$134.6 Powell Panther Corporation: Balance Sheets as of December 31 (Millions of Dollars) 20192018 Assets Cash and equivalents$36.0$31.0 Accounts receivable370.0308.0 Inventories678.0616.0 Total current assets$1,084.0$955.0 Net plant and equipment902.0784.0 Total assets$1,986.0$1,739.0 Liabilities and Equity Accounts payable$315.0$252.0 Accruals269.0224.0 Notes payable64.456.0 Total current liabilities$648.4$532.0 Long-term bonds644.0560.0 Total liabilities$1,292.4$1,092.0 Common stock614.2596.6 Retained earnings79.450.4 Common equity$693.6$647.0 Total liabilities and equity$1,986.0$1,739.0 Write out your answers completely. For example, 25 million should be entered as 25,000,000. Round your answers to the nearest dollar, if necessary. Negative values, if any, should be indicated by a minus sign. What was net operating working capital for 2018 and 2019 What aspects of Jacob Riis's photography suggest a danger or menace to middle class American society? What seems to be the character of the menace? How does cultural diffusion and globalization make the world a smaller place?PLEASE HELP ME ASSAP!!!! PLEASE...i really need to do this.. Evaluate28.47% of 637.38cmGive your answer rounded to 2 DP.cm PLs help me on this.......... Re-read this excerpt from the story:Here was I, the white man with his gun, standing in front of the unarmed native crowd seemingly the leading actor of the piece; but in reality I was only an absurd puppet pushed to and fro by the will of those yellow faces behind. I perceived in this moment that when the white man turns tyrant it is his own freedom that he destroys. He becomes a sort of hollow, posing dummy, the conventionalized figure of a sahib. For it is the condition of his rule that he shall spend his life in trying to impress the natives, and so in every crisis he has got to do what the natives expect of him. He wears a mask, and his face grows to fit it.The authors choice to use the bold and underlined words leads the reader to infer that Orwell ________.A. Believes the Burmese are puppetsB. Feels controlled and powerless by his position as sahibC. Feels overwhelmed by chaosD. Is in control of the situation