Answer:
1/3a
Step-by-step explanation:
[tex] \frac{(a - 3)}{15a} \times \frac{5}{(a - 3)} = \frac{5}{15a} = \frac{1}{3a} [/tex]
Add the following fractions. See the image below
Answer:
[tex]\dfrac{19}{840}[/tex]
Step-by-step explanation:
The given fraction is:
[tex]\dfrac{1}{168}+\dfrac{3}{180}[/tex]
We need to solve it.
The LCM of 168 and 180 is 2520.
So,
[tex]\dfrac{1}{168}+\dfrac{3}{180}=\dfrac{15+3\cdot14}{2520}\\\\=\dfrac{19}{840}[/tex]
So, the required answer is equal to [tex]\dfrac{19}{840}[/tex].
help pleaseeee it’s timed!!!
Answer:
C
Step-by-step explanation:
The solution triangle is attached below :
Tonobtinnthe Angle formed, θ; we apply trigonometry ;
Using ;
Cos θ = Adjacent / hypotenus
Cos θ = 4 / 7
θ = Cos^-1(4/7)
θ = 55.15°
θ = 55°
What is the value of z2 if 3z1 = 6 + 18i and z1 + z2 = 5 + 9i?
Answer:
z2=-3-3i
Step-by-step explanation:
3z1+0z2=6+18i
z1+z2=5+9i (×3)
3z1+3z2=15+27i
3z1+0z2=6+18i (-) =
-3z2=9+9i
z2=-3÷(9+9i)
z2=-3-3i
A sequence is defined by the formula f(n+1)=f(n)-3. If f(4)=22, what is f(1)?
10h
3
31
34
==============================================
Explanation:
The recursive rule
f(n+1)=f(n)-3
can be rearranged to
f(n) = f(n+1)+3
after adding 3 to both sides
----------------
Now let's say we plug in n = 3
f(n) = f(n+1)+3
f(3) = f(3+1)+3
f(3) = f(4)+3
f(3) = 22+3
f(3) = 25
Repeat for n = 2
f(n) = f(n+1)+3
f(2) = f(2+1)+3
f(2) = f(3)+3
f(2) = 25+3
f(2) = 28
Each time we keep adding 3 to get the previous term (since the original recursive rule says to subtract 3 to get the next term; we just go backwards of what the instructions say).
Lastly, we can find that f(1) = f(2)+3 = 28+3 = 31 making the answer to be choice C.
I'm not good with ordering fractions from smallest to largest. Can help anyone help with this problem?
35 of 39
Complete the item by determining if the equation is true or false,
5x 3 1/2 = 3 x 5 1/2
0 17.5 = 16.5 (false)
O 17.5 = 17.5 (true)
O 18,5 = 18,5 (true)
O 18.5 = 19.5 (false)
Step-by-step explanation:
5x 3 1/2 = 3 x 5 1/2 is false
11x+7y=17
solve for y
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {\: y = \frac{17 - 11x}{7} }}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
[tex]\\11x + 7y = 17[/tex]
[tex] \\➺ \: 7y = 17 - 11x[/tex]
[tex]\\➺ \: y = \frac{17 - 11x}{7} [/tex]
[tex]\bold{ \green{ \star{ \orange{Mystique35}}}}⋆[/tex]
In Problem, p is in dollars and q is the number of units.
(a) Find the elasticity of the demand function
p2 + 2p + q = 49 at p = 6.
(b) How will a price increase affect total revenue?
Answer:
-14
Explanation:
Elasticity of demand is the degree of change in demand after a change I'm price, basically demand's sensitivity to price change.
Formula for calculating price elasticity is: change in price/change in quantity =dq/dp
Since we are given p²+2p+q=49 and not initial and current amount of price and quantity, we differentiate to find demand elasticity, thus:
2p+2+dq/dp=0
dq/dp=-2p-2
Given p =6, we substitute:
dq/dp=-2×6-2
dq/dp=-12-2
dq/dp=-14
With a demand elasticity of -14 there is an inverse relationship between price and demand. While price increases, demand falls.
If 21% of kindergarten children are afraid of monsters, how many out of
each 100 are afraid?
Answer:
The appropriate answer is "21".
Step-by-step explanation:
Given:
Afraid percentage,
p = 21%
or,
= 0.21
Sample size,
n = 100
As we know,
⇒ [tex]X=np[/tex]
By putting the values, we get
[tex]=0.21\times 100[/tex]
[tex]=21[/tex]
Find the value of n?
Answer:
[tex]n^{2} -3=39.2=78\\n^2=78+3=81\\n=\sqrt{81} \\n=9[/tex]
Step-by-step explanation:
20 POINTS MATH PROBLEM
Answer:
D. x=36
Step-by-step explanation:
3x-5=103
3x=103+5
3x=108
x=36
Sketch the region enclosed by the given curves and calculate its area.
y=4-x^2 ,y=0
The answer is 32/3. But how do I get to that answer?
Answer:
Step-by-step explanation:
1.) we need to find the bounds of integration which is just the points of intersection
here is it (-2,0) and (2,0)
which means we will integrate from -2 to 2
next, we take the upper equation and subtract that from the lower one
kind of confusing but it would look like (sketch it out if you're not sure)
(4-x²)-0= 4-x²
then we can integrate
[tex]\int\limits^2_{-2} {4-x^2} \, dx =4x-\frac{x^3}{3}|_{-2}^{2}=(4*(2)-\frac{2^3}{3})-(4(-2)-\frac{-2^3}{3})=5.333333-(-5.3333333)= 10.666666667=\frac{32}{3}[/tex]
Find the correct algebraic representation of the dilation shown below.
a- (1/2x,1/2y)
b-(2/7x,2/7y)
c-(7/2x,7/2y)
d-(7x,7y)
Given:
The diagram of triangle DEF and triangle D'E'F' on a coordinate plan.
To find:
The algebraic representation of the dilation.
Solution:
The vertices of triangle DEF are D(0,7), E(7,-7) and F(-7,-7).
The vertices of triangle D'E'F' are D'(0,2), E(2,-2) and F(-2,-2).
We know that, the dilation factor is:
[tex]k=\dfrac{x\text{ or }y\text{ coordinate of the dilated point}}{x\text{ or }y\text{ coordinate of the corresponding original point}}[/tex]
For point D' the y-coordinate is 7 and for point D the y-coordinate is 2. So,
[tex]k=\dfrac{2}{7}[/tex]
The rule of dilation is:
[tex](x,y)\to \left(kx,ky\right)[/tex]
[tex](x,y)\to \left(\dfrac{2}{7}x,\dfrac{2}{7}y\right)[/tex]
The algebraic representation of the dilation is [tex]\left(\dfrac{2}{7}x,\dfrac{2}{7}y\right)[/tex].
Therefore, the correct option is b.
If Sarah turns 15 on august 27 and her graduation year is 2024 how old will she be when she graduates high school?
Answer:
She will be 17
Step-by-step explanation:
My sister is like that but she's graduating in 22'
It sort of depends where Sarah lives -.-
But if she starts high school when she's 15 (in 2021) and she graduates in 2024 it means high school is three years.
So 15 plus 3.
Sarah will be 18 when she graduates high school.
A medical device company knows that the percentage of patients experiencing injection-site reactions with the current needle is 11%.
What is the probability that an injection-site reaction occurs for the first time on the 6th patient of the day?
0.0001
0.0614
0.3685
0.4970
Answer:
0.4970
Step-by-step explanation:
I might be wrong
The probability that an injection-site reaction occurs for the first time on the 6th patient of the day will be 0.4970. Then the correct option is D.
What is probability?Its fundamental concept is that someone will nearly surely occur. The proportion of positive events in comparison to the total of occurrences.
Then the probability is given as,
P = (Favorable event) / (Total event)
A medical device company knows that the percentage of patients experiencing injection-site reactions with the current needle is 11%.
The probability that an injection-site reaction occurs for the first time on the 6th patient of the day is given as,
P = (1 - 0.11)⁶
P = (0.89)⁶
P = 0.4970
The probability that an injection-site reaction occurs for the first time on the 6th patient of the day will be 0.4970. Then the correct option is D.
More about the probability link is given below.
https://brainly.com/question/795909
#SPJ2
Multiple choice math problem
Answer:
ok so its a triangle with one side being
11
on side being
2
and one side is x
so we just use the formula
11^2+2^2=c^2
11^2+2^2=125
125 squared is 25
so
3 times the square root of 13 is 10.8166538264
so no
5 times the square root of 5 is 11.1803398875
so the answer i guess might be a?
Hope This Helps!!!
Suppose that 48% of high school students would admit to lying at least once to a teacher during the past year and that 25% of students are male and would admit to lying at least once to a teacher during the past year.20 Assume that 50% of the students are male. What is the probability that a randomly selected student is either male or would admit to lying to a teacher, during the past year? Be sure to show your work and indicate all the rules that you use to find your answer.
Answer:
0.73 = 73% probability that a randomly selected student is either male or would admit to lying to a teacher, during the past year.
Step-by-step explanation:
I am going to treat these events as Venn probabilities, considering that:
Event A: Lying to the teacher.
Event B: Male
48% of high school students would admit to lying at least once to a teacher during the past year and that 25% of students are male and would admit to lying at least once to a teacher during the past year
This means that [tex]P(A) = 0.48, P(A \cap B) = 0.25[/tex]
Assume that 50% of the students are male.
This means that [tex]P(B) = 0.5[/tex]
What is the probability that a randomly selected student is either male or would admit to lying to a teacher, during the past year?
This is:
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]
Considering the values we were given:
[tex]P(A \cup B) = 0.48 + 0.5 - 0.25 = 0.73[/tex]
0.73 = 73% probability that a randomly selected student is either male or would admit to lying to a teacher, during the past year.
The table represents the equation y= 8x what y= value is missing from the table?
Answer:
24
Step-by-step explanation:
y=8(3)= twenty four
you just fill in the x
Một đề thi trắc nghiệm có 10 câu, mỗi câu có 4 phương án trả lời và chỉ có một đáp án đúng. Một sinh viên trả lời một cách ngẫu nhiên, xác suất để sinh viên được 5 điểm là
Câu trả lời:
0,0584
Giải thích từng bước:
Câu hỏi đưa ra đáp ứng điều kiện cần thiết cho phân phối xác suất nhị thức:
Số câu hỏi, số lần thử, n = 10
Xác suất, p = 1 / số lựa chọn = 1/4 = 0,25
q = 1 - p = 1 - 0,25 = 0,75
Tính xác suất để sinh viên đó được 5 điểm, x = 5;
Gợi lại:
P (x = x) = nCx * p ^ x * q ^ (n-x)
P (x = 5) = 10C5 * 0,25 ^ 5 * 0,75 ^ 5
P (x = 5) = 252 * 0,25 ^ 5 * 0,75 ^ 5
P (x = 5) = 0,0584
Jack is 2 years older than his sister jill. The sum of their ages is 24 years. If jack is x years, find x
Answer:
x = 13
Jack is 13 years old and Jill is 11 years old.
====================================================
Explanation:
x = Jack's age
x-2 = Jill's age, since she is 2 years younger than Jack
Add up the ages and set the sum equal to 24 to solve for x
x+(x-2) = 24
2x-2 = 24
2x = 24+2
2x = 26
x = 26/2
x = 13
Jack is 13 years old and his sister is x-2 = 13-2 = 11 years old
Check: 13+11 = 24, so the answer is confirmed.
If f(x) = x -2 and g(x) = 2x – 6, then g(4)/f(3) =
Answer:
Step-by-step explanation:
(2×4-6)/(3-2)=2
Answer:
[tex]{ \tt{f(x) = x - 2}} \\ { \bf{f(3) = 3 - 2 = 1}} \\ \\ { \tt{g(x) = 2x - 6}} \\ { \bf{g(4) = 2(4) - 6 = 2}} \\ \\ { \boxed{ \tt{ \frac{g(4)}{f(3)} = \frac{2}{1} = 2}}}[/tex]
6. Roll a pair of dice. What is the probability that a total of 12 will be face up?
Answer:
The Probability would be 2.78%
Step-by-step explanation: Hope this helps :)
write cos2x as sinx
please help with this
Answer:
[tex]\cos(2\, x) = 1 - 2\, (\sin(x))^2[/tex].
Step-by-step explanation:
Angle sum identity for cosine: [tex]\cos(a + b) = \cos(a) \, \cos(b) - \sin(a) \, \sin(b)[/tex].
Pythagorean identity: [tex](\cos(a))^{2} + (\sin(a))^{2} = 1[/tex] for all real [tex]a[/tex].
Subtract [tex](\cos(x))^{2}[/tex] from both sides of the Pythagorean identity to obtain: [tex](\sin(a))^{2} = 1 - (\cos(a))^{2}[/tex].
Apply angle sum identity to rewrite [tex]\cos(2\, x)[/tex].
[tex]\begin{aligned}&\cos(2\, x)\\ &= \cos(x + x) \\ &= \cos(x) \, \cos(x) - \sin(x)\, \sin(x) \\ &= (\cos(x))^{2} + (\sin(x))^{2}\end{aligned}[/tex].
[tex](\sin(a))^{2} = 1 - (\cos(a))^{2}[/tex] follows from the Pythagorean identity. Hence, it would be possible to replace the [tex](\cos(x))^{2}[/tex] in the previous expression with [tex](1 - (\sin(x))^{2})[/tex].
[tex]\begin{aligned}&(\cos(x))^{2} - (\sin(x))^{2}\\ &= \left[1 - (\sin(x))^{2}\right] - (\sin(x))^{2} \\ &= 1 - 2\, (\sin(x))^{2} \end{aligned}[/tex].
Conclusion:
[tex]\begin{aligned}&\cos(2\, x) \\ &= (\cos(x))^{2} + (\sin(x))^{2} \\ &=1 - 2\, (\sin(x))^{2}\end{aligned}[/tex]
After a new product is launched the cumulative sales S(t) (in $1000) t weeks after launch is given by:
S(t) = 72/1 + 9e^-0.36t
Required:
a. Determine the cumulative amount in sales 3 weeks after launch.
b. Determine the amount of time required for the cumulative sales to reach $70,000.
c. What is the limiting value in sales?
Answer:
$17.750 ; 15.979 ; 72
Step-by-step explanation:
Given that :
Cummulative sales, S(t) is represented by the equation :
S(t) = 72/(1 + 9e^-0.36t)
Cummulative sales after 3 weeks :
Put t = 3 in the equation, as t = time after launch
S(3) = 72/(1 + 9e^-0.36(3))
S(3) = 72 / (1 + 9e^-1.08)
S(3) = 72 / (1 +3.0563597)
S(3) = 72 / 4.0563597
S(3) = 17.749905 = $17.750 thousands
Amount of time required for sales to reach 70000
S(t) = 72/(1 + 9e^-0.36t)
S(t) = 70
70 = 72/(1 + 9e^-0.36t)
70 * (1 + 9e^-0.36t) = 72
(1 + 9e^-0.36t) = 72 / 70
1 + 9e^-0.36t = 1.0285714
9e^-0.36t = 1.0285714 - 1
9e^-0.36t = 0.0285714
e^-0.36t = 0.0285714 / 9
e^-0.36t = 0.0031746
Take the In of both sides ;
In(e^-0.36t) = In(0.0031746)
-0.36t = - 5.752573
t = - 5.752573 / - 0.36
t = 15.979
About 16 weeks
The limiting value in sales :
Take the limit as t - - > ∞
S(t - - > ∞) = 72/(1 + 9e^-0.36t)
Put t = 0
S(0) - - > 72 / (1 + 0)
72 / 1
= 72
15 points What’s the area‼️‼️‼️‼️‼️ please help me attach work too if you can
Answer:
66
Step-by-step explanation:
5x2= 10
7x8= 56
10+56= 66
Answer:
106
Step-by-step explanation:
split the shape, so you have 2 rectangles.
Multiply 8 and 7 = 56
add 2 and 8 =10, then multiply 10 by 5. =50
add 50 and 56
therefore your answer is 106.
an electric guitar costs $790 with a 235 full replacement warranty if the manufacturer sells 500 and 98,274 warranties and has to honor 11% of them, how much profit did the manufacturer gain from the warrenties
Answer:
i got Profit = $125,129,007.1
Step-by-step explanation:
Please help me with this question
The length of a rectangle is four times its width.
If the area of the rectangle is 100 yd”, find its perimeter.
Answer: 50yd
Step-by-step explanation:
We know that the area of any rectangle is length times width. The perimeter is the sum of twice the length and twice the width.
Let width = x
Let length = 4x
Area = 100m2
Next, we can write an equation using these variables and formula for area.
4x2 = 100
x2 = 25
x = -5 and x = 5
Since the dimensions cannot be negative, we accept the positive value:
x = 5
Next, we can substitute this value of x into the variables.
width = 5 m
length = 20 m
Finally, we can find the perimeter by plugging in these dimensions into the perimeter formula,
Perimeter = 2(5 m) + 2(20 m)
= 10 m + 40 m
= 50 m
Pls Helppppp meeeeee!!
Answer:
G
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplifying the radicals in the expression
[tex]\sqrt{52}[/tex]
= [tex]\sqrt{4(13)}[/tex]
= [tex]\sqrt{4}[/tex] × [tex]\sqrt{13}[/tex]
= 2[tex]\sqrt{13}[/tex]
------------------
[tex]\sqrt{117}[/tex]
= [tex]\sqrt{9(13)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{13}[/tex]
= 3[tex]\sqrt{13}[/tex]
Then
[tex]\sqrt{52}[/tex] + [tex]\sqrt{117}[/tex]
= 2[tex]\sqrt{13}[/tex] + 3[tex]\sqrt{13}[/tex]
= 5[tex]\sqrt{13}[/tex] → G
[tex]{\small\sf{The\:expression \sqrt{52} + \sqrt{117} \:is \: equivalent \: to}}[/tex]
[tex]\small\bf{F.} \: \sf{13} [/tex]
[tex]\small\bf{G.}\sf \:5 \sqrt{13} [/tex]
[tex]\small\bf{H.}\sf\:6 \sqrt{13} [/tex]
[tex]\small\bf{J.}\sf\:13 \sqrt{13} [/tex]
Solution:-[tex]\small\sqrt{52}+\sqrt{117}\sqrt{4•13} +\sqrt{9•13}\tiny\sf\purple{(Product\:Property)}[/tex]
[tex]\small{ \: \:\: \: \: \: \: \:=\sqrt{2²•13}+\sqrt{3²•13}\tiny\sf\purple{(Prime\:Factorization)}}[/tex]
[tex]\small{\: \:\: \: \: \: \: \:=\sqrt{2²}\sqrt{13}+\sqrt{3²}\sqrt{13}\tiny\sf\purple{(Product\:Property)}}[/tex]
[tex]\small{\: \:\: \: \: \: \: \:=2\sqrt{13}+3\sqrt{13}\tiny\sf\purple{(Simplify)}}[/tex]
[tex]\small{\: \:\: \: \: \: \: \:=5\sqrt{13}\tiny\sf\purple{(Simplify)}}[/tex]
Answer:-So, the correct option is D.
=======================#Hope it helps!
(ノ^_^)ノ
What is the slope intercept form of the equation of the line shown below
Answer:
[tex]y=\frac{4}{3}x-4[/tex]
Step-by-step explanation:
----------------------------------------
The slope-intercept form formula is: [tex]y=mx+b[/tex]
The [tex]m[/tex] stands for the slope and the [tex]b[/tex] stands for the y-intercept.
By looking at the graph, I can figure out that the y-intercept is -4 because y-intercept is where the lines cross the y-axis and in this graph, the line crosses the y-axis at (0,-4).
The slope is [tex]\frac{4}{3}[/tex] because to get to the ordered pair (3,0), from (0,-4), you would have to go up 4 and over 3 to the right so it's [tex]\frac{4}{3}[/tex]
So now, if we insert the values in the formula, it would be [tex]y=\frac{4}{3}x-4[/tex]
----------------------------------------
Hope this is helpful.
Answer:
y = 4/3x -4
Step-by-step explanation:
First find the slope
m = ( y2-y1)/(x2-x1)
= ( 0 - -4)/( 3 - 0)
= (0+4)/( 3-0)
= 4/3
The y intercept is -4
The slope intercept form of the equation is
y = mx+b where m is the slope and b is the y intercept
y = 4/3x -4