Answer:
EF, FG, GH, EG, FH, EH
Step-by-step explanation:
These are all the ones under def. line segment.
See the attachment. It will be helpful.
Mike earned $3500 last month. His employer deducted one-eighth of that amount for taxes. Mike also had $90 out of
what was left taken out for an automatic savings plan. How much money, to the nearest cent, did Mike have left after
these deductions?
Answer:
2972.5
Step-by-step explanation:
3500*7/8 - 90 = 2972.5
Anyone help?? A screenshot is attached below
Answer:
113°
Step-by-step explanation:
By remote interior angle theorem:
a + 35° = a - 30° + a - 48°
a + 35° = 2a - 78°
35° + 78° = 2a - a
113° = a
a = 113°
If a family eats out 4 nights a week, what is the ratio of eating out nights to not eating out nights per week?
Answer: 4:3
eats out : not eating out
Step-by-step explanation:
so theres 7 days in a week so you do simple subtraction and do 7-4=3
then you get the remaining days of the week that you dont eat out.
Will mark brainliest
Answer:
Interquartile range => 7
Third quartile => 22
Range => 13
First quartile => 15
Step-by-step explanation:
Order your data set, from the least amount to the highest amount:
$12, $14, $15, $15, $15, $15, $16, $22, $24, $25
Interquartile range (IQR) = third quartile (Q3) - first quartile (Q1)
Q1 = the middle value of the lower part of the data set, from the median to your left.
Q3 = the middle value of the upper part of the data set, from the median to your right.
The median lies between the 5th and 6th value that is enclosed in the parenthesis below:
$12, $14, ($15), $15, $15,[Median], $15, $16, ($22), $24, $25
The median divides the data set into upper and lower part.
Median = [tex] \frac{15 + 15}{2} = 15 [/tex]
First quartile: Q1 = $15
Third quartile: Q3 = $22
IQR = $22 - $15 = $7
Range = highest amount - least amount = 25 - 12 = $13
Please help! Find the domain of y = 4 square root 4x + 2
Answer:
x ≥ -1/2
Step-by-step explanation:
We know that we cannot graph imaginary numbers. Therefore, our x value has to be greater than or equal to 0:
To find our domain, we need to set the square root equal to zero:
√(4x + 2) = 0
4x + 2 = 0
4x = -2
x = -1/2
We now know that no value below -1/2 can be used or we will get an imaginary number. Therefore, our answer is x ≥ -1/2
Alternatively, we can graph the function and analyze domain:
If you use a 0.10 level of significance in a two-tail hypothesis test, what is your decision rule for rejecting a null hypothesis that the population mean equals 500 if you use the Z test
Answer:
Our decision rule will be to reject The null hypothesis H0 if the test statistic is less than -1.645, or if it is greater than +1.645.
Step-by-step explanation:
The hypotheses would be;
Null hypothesis;H0: μ = 500
Alternative hypothesis;Ha: μ ≠ 500
Since it's two - tailed at 0.1 level of significance, then each tail will contain 5% or 0.05. From the z-table attached, the corresponding critical value of 0.05 is approximately 1.645 standard deviations from the mean.
Thus, our decision rule will be to reject The null hypothesis H0 if the test statistic is less than -1.645, or if it is greater than +1.645.
Calculate the surface area of the prism. Measurements are in centimetres
Please help me asap!!!! The correct answer is 2804
Answer:
2804 cm²
Step-by-step explanation:
Total area comprises of 6 faces: 2 trapezoids and 4 rectangles
Trapezoid = 1/2*(14+32)*24 = 552 cm² eachBottom = 17*32 = 544 cm²Top = 14*17 = 238 cm²Right side = 17*24 = 408 cm²Left side = 17*√((24² + (32-14)²) = 17* √900 = 17*30 = 510 cm²Total area:
552*2 + 544 + 238 + 408 + 510 = 2804 cm²
Find the sum of (root2+root3)+(root3-root7)+(root7-root2
Answer:
Step-by-step explanation:
√2 + √3 + √3 - √7 + √7 - √ 2
by changing the position
√2 - √2 + √3 + √3 - √7 + √7
√2 and -√2 gets canceled
-√7 and √7 gets cancelled
we are left out with √3 + √3
√3 + √3 gives 2√3
so the answer is 2√3
hope this helps
plz mark as brainliest!!!!!!!!
Find the absolute extrema for f(x,y)=4-x^2-y^4+1/2y^2 over the closed disk D:x^2+y^2 is less than or equal to 1
Find the critical points of [tex]f(x,y)[/tex]:
[tex]\dfrac{\partial f}{\partial x}=-2x=0\implies x=0[/tex]
[tex]\dfrac{\partial f}{\partial y}=y-4y^3=y(1-4y^2)=0\implies y=0\text{ or }y=\pm\dfrac12[/tex]
All three points lie within [tex]D[/tex], and [tex]f[/tex] takes on values of
[tex]\begin{cases}f(0,0)=4\\f\left(0,-\frac12\right)=\frac{65}{16}\\f\left(0,\frac12\right)=\frac{65}{16}\end{cases}[/tex]
Now check for extrema on the boundary of [tex]D[/tex]. Convert to polar coordinates:
[tex]f(x,y)=f(\cos t,\sin t)=g(t)=4-\cos^2-\sin^4t+\dfrac12\sin^2t=3+\dfrac32\sin^2t-\sin^4t[/tex]
Find the critical points of [tex]g(t)[/tex]:
[tex]\dfrac{\mathrm dg}{\mathrm dt}=3\sin t\cos t-4\sin^3t\cos t=\sin t\cos t(3-4\sin^2t)=0[/tex]
[tex]\implies\sin t=0\text{ or }\cos t=0\text{ or }\sin t=\pm\dfrac{\sqrt3}2[/tex]
[tex]\implies t=n\pi\text{ or }t=\dfrac{(2n+1)\pi}2\text{ or }\pm\dfrac\pi3+2n\pi[/tex]
where [tex]n[/tex] is any integer. There are some redundant critical points, so we'll just consider [tex]0\le t< 2\pi[/tex], which gives
[tex]t=0\text{ or }t=\dfrac\pi3\text{ or }t=\dfrac\pi2\text{ or }t=\pi\text{ or }t=\dfrac{3\pi}2\text{ or }t=\dfrac{5\pi}3[/tex]
which gives values of
[tex]\begin{cases}g(0)=3\\g\left(\frac\pi3\right)=\frac{57}{16}\\g\left(\frac\pi2\right)=\frac72\\g(\pi)=3\\g\left(\frac{3\pi}2\right)=\frac72\\g\left(\frac{5\pi}3\right)=\frac{57}{16}\end{cases}[/tex]
So altogether, [tex]f(x,y)[/tex] has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).
If A is the set of all natural numbers, choose the set B that will make the following statement true
(See photo)
Answer:
b= {1,2,3,4} is the answer
(10c^6d^-5)(2c^-5d^4)
10c^6d^-5×2c^-5d^4
20cd^-1
20c×1/d
20c/d
If z=(x+y)ey and x=u2+v2 and y=u2−v2, find the following partial derivatives using the chain rule. Enter your answers as functions of u and v.
∂z/∂u= ______
∂z/∂v= ______
Answer:
Step-by-step explanation:
Given the functions z=(x+y)[tex]e^y\\[/tex] and x=u²+v² and y=u²−v²
Using the composite derivative formula;
∂z/∂u= ∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u
∂z/∂u = y[tex]e^y[/tex]*2u + [(x+y)[tex]e^y[/tex]+x[tex]e^y[/tex]]*2u
∂z/∂u =y[tex]e^y[/tex]*2u + 2u[x[tex]e^y[/tex]+y[tex]e^y[/tex]+x[tex]e^y[/tex]]
∂z/∂u = y[tex]e^y[/tex]*2u + 2u[2x[tex]e^y[/tex]+y[tex]e^y[/tex]]
∂z/∂u = 2u[u²−v²][tex]e^{u^2-v^2}[/tex]+ 2u[2(u²+v²)[tex]e^{u^2-v^2}[/tex]+y[tex]e^{u^2-v^2}[/tex]]]
∂z/∂v= ∂z/∂x*∂x/∂v+∂z/∂y*∂y/∂v
∂z/∂v = y[tex]e^y[/tex]*2v + [(x+y)[tex]e^y[/tex]+x[tex]e^y[/tex]]*-2v
∂z/∂v =y[tex]e^y[/tex]*2v -2v[x[tex]e^y[/tex]+y[tex]e^y[/tex]+x[tex]e^y[/tex]]
∂z/∂v = y[tex]e^y[/tex]*2v -2v[2x[tex]e^y[/tex]+y[tex]e^y[/tex]]
∂z/∂v = 2v[u²−v²][tex]e^{u^2-v^2}[/tex]-2v[2(u²+v²)[tex]e^{u^2-v^2}[/tex]+y[tex]e^{u^2-v^2}[/tex]]
sameer usually drinks 3 cups of coffee in the morning. How many liters of coffee does he drink? Round your answer to the nearest tenth
Answer: 0.7 liters
Step-by-step explanation:
First convert 3 cups to Liters
3 cups = 0.709765
Now round 0.709765 to the nearest 10 which give you 0.7
Answer:
0.7 liters Hope this helps!
Step-by-step explanation:
You believe the population is normally distributed. Find the 80% confidence interval. Enter your answer as an open-interval (i.e., parentheses) accurate to twp decimal places.
You intend to estimate a population mean μ from the following sample. 26.2 27.7 8.6 3.8 11.6 You believe the population is normally distributed. Find the 80% confidence interval. Enter your answer as an open-interval (i.e., parentheses) accurate to twp decimal places.
Answer:
The Confidence interval = (8.98 , 22.18)
Step-by-step explanation:
From the given information:
mean = [tex]\dfrac{ 26.2+ 27.7+ 8.6+ 3.8 +11.6 }{5}[/tex]
mean = 15.58
the standard deviation [tex]\sigma[/tex] = [tex]\sqrt{\dfrac{\sum(x_i - \mu)^2 }{n}}[/tex]
the standard deviation = [tex]\sqrt{\dfrac{(26.2 - 15.58)^2 +(27.7 - 15.58)^2 +(8.6 - 15.58)^2 + (3.8 - 15.58)^2 + (11.6 - 15.58)^2 }{5 } }[/tex]
standard deviation = 9.62297
Degrees of freedom df = n-1
Degrees of freedom df = 5 - 1
Degrees of freedom df = 4
For df at 4 and 80% confidence level, the critical value t from t table = 1.533
The Margin of Error M.O.E = [tex]t \times \dfrac{\sigma}{\sqrt{n}}[/tex]
The Margin of Error M.O.E = [tex]1.533 \times \dfrac{9.62297}{\sqrt{5}}[/tex]
The Margin of Error M.O.E = [tex]1.533 \times 4.3035[/tex]
The Margin of Error M.O.E = 6.60
The Confidence interval = ( [tex]\mu \pm M.O.E[/tex] )
The Confidence interval = ( [tex]\mu + M.O.E[/tex] , [tex]\mu - M.O.E[/tex] )
The Confidence interval = ( 15.58 - 6.60 , 15.58 + 6.60)
The Confidence interval = (8.98 , 22.18)
The vector parametric equation for the line through the points (−1,−4,2) and (−1,0,−3) is:_______
Answer: [tex]x(t)=-1[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]
Step-by-step explanation:
To find: The vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3).
Let A (−1,−4,2) and B(−1,0,−3)
First we find direction vectors : [tex]\overrightarrow{AB}=<-1-(-1),0-(-4),-3-2>[/tex]
[tex]<0,4,-5>[/tex]
Now, the parametric equations of the line:
[tex]x(t)=-1+0(t)[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]
Hence, the vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3):
[tex]x(t)=-1[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]
Daniel is starting his own sewing business. Daniel has calculated that he needs to earn $360 per week to support his family. If he knows he will only be able to work 30 hours per week, what is the minimum amount of dollars per hour will he need to charge his customers?
Answer:
$12 the hour
Step-by-step explanation:$360 divided by 30 is 12, meaning he will need to make a minimum of 12 an hour to support his family.
Answer: 12 dollars
Step-by-step explanation:
360 divided by 30 is 12
Uma folha de papel foi dobrada como mostra o esquema abaixo. Determine o valor do ângulo alfa.
Answer:
[tex]\alpha = 35º[/tex]
Step-by-step explanation:
Primeiro, vamos dizer que essa folha tem extremidades nos pontos [tex]A, B, C, D[/tex].
E vamos chamar os vértices do triângulo que contém o ângulo [tex]\alpha[/tex] de [tex]E, F, G[/tex].
Na semireta de baixo, formada por [tex]DC[/tex], a gente tem um ângulo de [tex]70º[/tex] e um outro ângulo de [tex]90º[/tex] (porque ele indica um ângulo reto).
Vamos dizer que estes dois ângulos se encontram no ponto [tex]E[/tex], que combinamos antes, como vértice (extremidade) do triângulo de cima.
Como os dois ângulos, estão num mesmo ponto, [tex]E[/tex], podemos dizer que existe um terceiro ângulo para o qual sua soma seja [tex]180º[/tex]. E tem, seria o ângulo à esquerda de
Vamos chamar este ângulo de [tex]\beta _{I}[/tex]. Portanto:
[tex]\beta _{I} + 90º + 70º = 180º\\\beta _{I} = 180º - 160º\\\beta _{I} = 20º[/tex]
Agora, temos um outro triângulo no canto inferior esquerdo da folha, cujos ângulos são [tex]\beta x_{I}[/tex], [tex]90º[/tex] e um outro ângulo, que vamos chamar de [tex]\beta x_{II}[/tex]
Esse último vai ser o ângulo superior deste triângulo, tá legal?
Então, vamos ter que:
[tex]\beta _{I} + 90º + \beta _{II} = 180º\\\beta _{I} + \beta _{II} = 90º\\[/tex]
Como [tex]\beta _{I} = 20º[/tex],
[tex]\beta _{I} + \beta _{II} =20º + \beta _{II}[/tex]
[tex]20º + \beta _{II} = 90º\\\beta _{II} = 90º - 20º\\\beta _{II} = 70º[/tex]
Ou seja, o ângulo superior do triângulo no canto inferior esquerdo, é 70º.
Vamos concordar, que este mesmo triângulo tem vértices nos pontos [tex]F, D, E[/tex]. Onde [tex]F[/tex] é o ponto superior, [tex]D[/tex] é a extremidade inferior esquerda do retângulo e [tex]E[/tex] é aquele mesmo ponto em que se encontram os ângulos de [tex]90º[/tex]e [tex]70º[/tex].
Mais à frente, você vai entender o porquê é importante nomear estes pontos, eu fiquei 40 minutos tentando fazer essa questão sem fazer isso e não conseguia porque empacava numa parte da resolução.
Então, agora, sabemos que o ângulo [tex]\beta _{II}[/tex], que é o encontro dos seguimentos [tex]FD[/tex] e [tex]EF[/tex] vale [tex]70º[/tex].
Até aqui, foi só aplicar propriedades. Mas, a partir desse ponto, você vai precisar usar a criatividade.
Então, você entende que o ângulo [tex]\beta _{II}[/tex] está inserido numa reta com outros dois ângulos concentrados no ponto [tex]F[/tex].
Então, pode dizer que esse ângulo externo é o suplemento de [tex]\beta _{II}[/tex].
Vamos chamar todo ele de [tex]\beta _{III}[/tex]
[tex]\beta _{II} + \beta _{III} = 180º\\70º + \beta _{III} = 180º\\\beta _{III} = 180º - 70º\\\beta _{III} = 110º[/tex]
Agora, vamos elevar o nível de criatividade no raciocínio e ver também que temos um quadrilátero formado pelos pontos [tex]A, G, F, E[/tex]
A soma dos ângulos de qualquer quadrilátero é 360º.
E temos que esse mesmo quadrilátero é formado por dois ângulos retos, além do ângulo de 110º que calculamos.
A última extremidade que falta é um ângulo formado pela soma de [tex]\alpha[/tex] a um outro ângulo, que vamos chamar de [tex]\beta _{IV}[/tex].
Então, temos que:
[tex]90º + 110º + 90º + \alpha + \beta _{IV} = 360º\\\alpha + \beta _{IV} +290º = 360º\\\alpha + \beta _{IV} = 360º + 290º\\\alpha + \beta _{IV} = 70º\\[/tex]
De todas, as etapas dessa resolução essa é a mais importante de entendermos os pontos que definimos. Eu refiz ela várias vezes porque não fiz isso antes.
Mas, veja, quando a gente dobra a folha, pegamos um formato qualquer e destacamos do resto dela.
Isso quer dizer que o formato que ficou dobrado é o mesmo que falta na folha. Do contrário, estaríamos criando folha ou excluindo matéria, o que não é possível no caso de uma simples dobra.
Em outras palavras, os triângulos [tex]AGF[/tex] e [tex]EFG[/tex] são os mesmos. (Eu recomendo que você construa esse desenho e coloque as letras em cada ponto, pra visualizar melhor.)
Isso é o mesmo que dizer que os ângulos de um vão ser os ângulos do outro.
Portanto, os ângulos são equivalentes. (Mesmos ângulos para ambos os triângulos, mudando só de posição.)
Assim, você pode afirmar que [tex]\alpha[/tex] = [tex]\beta _{IV}[/tex]
Se subirmos um pouco a resolução, vamos lembrar que encontramos que [tex]\alpha + \beta _{IV} = 70º\\[/tex]
Se [tex]\alpha = \beta _{IV}[/tex]
Temos:
[tex]\alpha + \alpha = 70º\\2\alpha = 70º\\\alpha = \frac{70º}{2} \\[/tex]
e TCHARAAN!
[tex]\alpha = 35º[/tex]
-------------------------
Força, guerreiro(a). Sucesso e que Deus te abençoe nos estudos.
A motorcyclist starts from rest and reaches a speed of 6m/s after travelling with uniform acceleration for 3s .
the question is what is his acceleration?
by calculation
Acceleration = final speed - initial speed / time
Acceleration = 6 m/s - 0 / 3s
Acceleration = 6m/s / 3s
Acceleration = 2 m/s^2
Answer:
[tex]\Huge \boxed{\mathrm{2 \ m/s^2 }}[/tex]
Step-by-step explanation:
[tex]\displaystyle acceleration = \frac{final \ velocity - initial \ velocity}{elapsed \ time}[/tex]
[tex]\displaystyle A = \frac{V_f - V_i}{t}[/tex]
The initial velocity is 0 m/s.
The final velocity is 6 m/s.
The elapsed time is 3 s.
[tex]\displaystyle A = \frac{6 - 0}{3}[/tex]
[tex]\displaystyle A = \frac{6}{3}=2[/tex]
The acceleration is 2 m/s².
3/7 is it< or> then 3/5
Two ways of solving:
1. Convert the fractions to decimals:
3/7 = 0.42857
3/5 = 0.6
0.42857 < 0.6
So 3/7 < 3/5
Second way is to rewrite the fractions with a common denominator:
3/7 = 15/35
3/5 = 21/35
Now compare the numerators:
15 < 21 so 3/7 < 3/5
What is 0.658 rounded to 1 significant figure?
Answer: 0.07 calculatorsoup for significant rounding
If the principal is $350 and the interest rate is 3 percent, what is the simple interest earned in one year?
simple interest = Pxrxt
Answer:
The simple interest earned in one year is $10.5
Step-by-step explanation:
Simple interest = p × r × t
Where,
p = principal
r = interest rate
t = time
Principal= $350
Interest rate = 3%
=3/100
=0.03
Time= 1 year
Simple interest = p × r × t
= $350 × 0.03 × 1
= $10.5
The simple interest earned in one year is $10.5
In ΔKLM, the measure of ∠M=90°, the measure of ∠L=18°, and KL = 8.3 feet. Find the length of MK to the nearest tenth of a foot.
Answer:
2.6 ft
Step-by-step explanation:
8.3/sin 90 = MK/sin 18
MK = 8.3 sin 18 / sin 90
MK = 2.6 ft
Answer:
2.6
Step-by-step explanation:
pt 3 2-7 pleasee helpp
Answer:
-3x - 6 - 1
- 3x + 7
4x
Step-by-step explanation:
The quotient of a number and 7 is equal to 13
Answer:
91
Step-by-step explanation: 7*13 = 91
91/7 = 13
Alice works for a paint manufacturer. She is paid 3% commission on her first $20,000 of monthly sales and 8% commission on all sales over $20,000. In March her sales were $54,500; in April, her sales totaled $47,300. What were the total commissions she earned for the 2 months?
Answer: $6,144
Step-by-step explanation:
In March her commission was;
= 3% * 20,000 + 8% ( 54,500 - 20,000)
= $3,360
In April;
= 3% * 20,000 + 8% ( 47,300 - 20,000)
= $2,784
Total commission
= 3,360 + 2,784
= $6,144
In which set(s) of numbers would you find the number
67
Orational number
irrational number
O whole number
integer
O natural number
O real number
Answer:
Rational
Explanation: because it can be expressed in the quotient of two integers:67÷1
at a maximum speed an airplane travels 2100 miles against the wind in 6 hours. Flying with the wind, the plane travel the same distance in 4 hours. what is the speed of the plane with no wind?
Step-by-step explanation:
Let w be the speed of wind and v be speed of airplane without wind.
[tex]average \: speed = \frac{total \: distance }{total \: time} [/tex]
(A)
[tex]speed \: against \: wind( v - w) = \frac{2100}{6} = 350mph[/tex]
(B)
[tex]speed \: with \: wind(v + w) = \frac{2100}{4} = 525mph[/tex]
(C)
Adding equations A and B, we get :
(v - w) + (v + w) = 350 + 525
2v = 875
V = 437.5 mph
Find the value of the expression 63 - 21 + (3 x 11)
Answer: First solve the parentheses using order of operations. Then add and subtract from left to right.
Demo:
(3 * 11) = 33
Equation now looks like:
63 - 21 + 33
63 - 21 = 42
Equation now looks like:
42 + 33
42 + 33 = 75
The value of this expression is 75.
Answer:
Step-by-step explanation:
Is -4 a irrational number?
Answer:
No.
Step-by-step explanation:
Irrational numbers are numbers that you can't solve like 3 squared. See you can't find the end of 3 squared, the numbers will go on forever just like pi.
Answer:
No
Step-by-step explanation:
A rational number can be written as the ratio of integers
-4/-1 = -4
This is a rational number
Recall that a reinforcement beam will extend from one strut to the other when the two struts are 2 feet apart. Algebraically determine the x-value of where the beam should be placed. Explain where to place the beam.
Answer:
Graph the two struts on the model of the roller coaster. Take a screenshot of your graph and paste the image below, or sketch a graph by hand. (5 points)
Recall that a reinforcement beam will extend from one strut to the other when the two struts are 2 feet apart.
•
• Algebraically determine the x -value of where the beam should be placed. (15 points)
root(x + 8) = 2 + rootx − 4)
x + 8 = 4 + 4root(x − 4) + x − 4
8 = 4root(x − 4)
2 = root(x − 4)
x − 4 = 4
x = 8
• Explain where to place the beam. (10 points)
The beam should be places 8 feet apart.
Step-by-step explanation:
I don't have a graph. Correct on E2020
Hope that this helps. If someone finds a graph i have a question on my page that needs it
Peace and love
Answer:
Here is the missing graph.