If you are driving down to the sleep downgrade and you have reached the speed of 40 mph , you would apply the setrvice break until your speed dropped to below_____mph.

Answers

Answer 1

Answer:

35 miles

Explanation:

When you are driving a truck that has an air brake system you have to keep in mind that when driving down a steep downgrade, the truck will automatically accelerate due to the inclination of the road, so in order to keep the speed to a controllable situation, you need to activate the service brake until you've reached the 35 miles per hour mark.


Related Questions

Match the test to the property it measures.

a. Rockwell
b. Inston
c. Charpy
d. Fatigue
e. Brinell
f. Izod

1. impact strength
2. stress vs strain
3. hardness
4. Endurance Limit

Answers

Answer:

a. Rockwell              3. hardness

b. Instron                 2. stress vs strain

c. Charpy                 1. impact strength

d. Fatigue                4. Endurance Limit

e. Brinell                  3. hardness

f. Izod                      1. impact strength

Explanation:

Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.

Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.

Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.

Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.

A 5.74 kg rock is thrown upwards with a force of 317 N at a location where the local gravitational acceleration is 9.81 m/s^2. What is the net acceleration of the rock?

Answers

Answer:

[tex]a=45.31m/s^2[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=5.74[/tex]

Force [tex]F=317N[/tex]

Gravitational Acceleration [tex]g=9.81m/s^2[/tex]

Generally the equation for Force is mathematically given by

 [tex]F-mg=ma[/tex]

 [tex]317-5.74*9.81=5.74 a[/tex]

 [tex]a=\frac{260.7}{5.74}[/tex]

 [tex]a=45.31m/s^2[/tex]

bending stress distribution is a.rectangle b.parabolic c.curve d.i section​

Answers

B parabolic

Hope this helps :))))))))))

Reinforced concrete is a raw material that has always been available, but it was unappreciated by architects until the nineteenth century.

a. True
b. False

Answers

Answer: False

Explanation:

Reinforced concrete is simply a combination of the traditional cement concrete with the steel bars which are the reinforcements.

Reinforced concrete is utilized for construction purpose mostly on a large scale. The reinforced concrete was invented by French gardener Joseph in 1849 therefore, it has always been available and appreciated by architects before the 19th century.

a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive voice rather than any human agents at the request of the instructor.) Student Lab Report Identical tensile test procedures were performed on all test specimens. Each of the metal specimens ____1____ [have] an indentation near the center to ensure that the fracture point would occur in this region. Tension tests ____2____ [conduct] as follows. Two pieces of reflective tape ____3____ [place] approximately 1 inch apart in the center of the specimen where the indentation 4 [locate]. The width and the thickness of the specimen at this location _____5_____ [measure] using a Vernier caliper. Then the specimen _____6____ [secure] in the MTS Load Frame. A laser extensometer _____7_____ [place] into position to measure the deformation of the specimen. The laser extensometer ______8_ __ [use] to measure the original distance between the pieces of reflective tape. The MTS ________9____ [set] to elongate the specimen one tenth of an inch every minute.

Answers

Answer:

Each of the metal specimens HAS an indentation near the center to ensure that the fracture point would occur in this region. Tension tests WERE CONDUCTED as follows. Two pieces of reflective tape WERE PLACED approximately 1 inch apart in the center of the specimen where the indentation 4 WAS LOCATED. The width and the thickness of the specimen at this location WAS MEASURED using a Vernier caliper. Then the specimen WAS SECURED in the MTS Load Frame. A laser extensometer WAS PLACED into position to measure the deformation of the specimen. The laser extensometer WAS USED to measure the original distance between the pieces of reflective tape. The MTS WAS SET to elongate the specimen one tenth of an inch every minute.

WILL MARK BRAINLIST I need help on this asap thanks
Determine the dimensions for T if T = M V^2 A / L^3 where M is a mass, V is a velocity, A is an area, and L is a length.


L / T


M


M L / T^2


M / (L T^2)


No dimensions

Answers

Explanation:

ask your dad please and use your brain

A venturimeter of 400 mm × 200 mm is provided in a vertical pipeline carrying oil of specific gravity 0.82, flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 300 mm. The differential U-tube mercury manometer shows a gauge deflection of 300 mm. Calculate: (i) The discharge of oil, and (ii) The pressure difference between the entrance section and the throat section.Take the coefficient of meter as 0.98 and specific gravity of mercury as 13.6

Answers

Answer:

the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s

Explanation:

Given:

Diameter of the pipe = 100mm = 0.1m

Contraction ratio = 0.5

thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m

The formula for discharge through a venturimeter is given as:

Where,

is the coefficient of discharge = 0.97 (given)

A₁ = Area of the pipe

A₁ =  

A₂ = Area at the throat

A₂ =  

g = acceleration due to gravity = 9.8m/s²

Now,

The gauge pressure at throat = Absolute pressure - The atmospheric pressure

⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)

Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m

Substituting the values in the discharge formula we get

or

or

Q = 29.28 ×10⁻³ m³/s

Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s

Hope This Helps :D

Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.

Answers

Answer: Your mums gay

Explanation: Your mums gay

Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 seconds. In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 2 seconds (i.e., Eager Mode execution time is 60% of Lazy Mode execution time).

After finishing computation, the app sends some data to the cloud, regardless of the mode it’s in. The data size sent to the cloud is 600 MB. The bandwidth of communication is 15 MBps for WiFi and 5 MBps for 4G. Assume that the communication radio is idle during the computation time. Assume that the communication radio for WiFi has a power consumption of 75 mW when active and 15 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization). A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.

Required:
What is the average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G?

Answers

N didn’t do it for you toroeriot everyone wwas wowowowoww

The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.

Why reducing leads to increasing wages?

Reducing such a need to move in between multiple tabs, the split-screen has been valuable for increasing wages. In the several instances running a two or more desktop system will allow different programs to run throughout multiple devices. That works with the same process on both PC and laptop monitors.

Just display them side by side, instead of the switching among both the apps that has been used frequently. In this phase, an app that the snap to either left or right occupies a third of the display, and yet another app holds the two-thirds remaining. It refers to Split-Screen Mode.

Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization.

Therefore, The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.

Learn more about average power on:

https://brainly.com/question/14831024

#SPJ2

In low speed subsonic wind tunnels, the value of test section velocity can be controlled by adjusting the pressure difference between the inlet and test-section for a fixed ratio of inlet-to-test section cross-sectional area.
a. True
b. false

Answers

Answer:

Hence the given statement is false.

Explanation:

For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.

The speed within the test section is decided by the planning of the tunnel.  

Thus by adjusting the pressure difference won't change the worth of test section velocity.

Answer:

The given statement is false .

g The inside surface of a 17 mm inner diameter tube with a 2.4 mm thick wall indicates a temperature of 46 deg C. The outside temperature is 43 deg C. The tube is 5 m long. If the tube material has a conductivity of 0.15 W/m/K, estimate the heat transfer rate through the tube wall assuming SS 1D conduction. Indicate the direction of heat transfer with a or - sign ( meaning outward and vice versa). Express your answer using two significant digits in W.

Answers

Answer:

-50 W

Explanation:

The heat transfer rate Q = kA(T₂ - T₁)/d where k = thermal conductivity of material = 0.15 W/m-K, A = surface area of tube = πdL where d = diameter of tube = 17 mm = 0.017 m and L = length of tube = 5 m, T₁ = inside temperature = 46 °C, T₂ = outside temperature = 43 °C and d = thickness of tube = 2.4 mm = 0.0024 m

Since Q = kA(T₂ - T₁)/d ,

Q = kπdL(T₂ - T₁)/d

substituting the values of the variables into the equation, we have

Q = 0.15 W/m-K × π × 0.017 m × 5 m(43 °C  - 46 °C )/0.0024 m

Q = 0.01275π Wm/K(-3 K )/0.0024 m

Q = -0.03825π Wm/0.0024 m

Q = -0.1202 Wm/0.0024 m

Q = -50.07 W

Q = -50 W

So, the heat transfer rate is -50 W meaning heat transfer out of the tube.

how does load transfer of space needle​

Answers

Answer:

The Space Needle is a cut away with minimal residual deflection due to load transfer.

Identify the first step in preparing a spectrophotometer for use.
A. Make sure all samples and the blank are ready for measurement.
B. Prepare a calibration curve.
C. Measure the absorbance of the blank.
D. Turn on the light source and the spectrophotometer.

Answers

Answer:

D. Turn on the light source and the spectrophotometer.

Explanation:

A spectrophotometer is a machine used to measure the presence of any light-absorbing particle in a solution as well as its concentration. To prepare a spectrophotometer for use, the first step is to turn on the spectrophotometer and allow it to warm up for at least 15 minutes. After this is done, the next step will be to ensure that the samples and blank are ready. Next, an appropriate wavelength is set for the solute being determined. Finally, the absorbance is measured of both the blank and samples.

what type of slab and beam used in construction of space neddle​

Answers

jrjrkeekkekekkwkkakkllalllalallalllalalaallalalaalalalalalallallallllallalalallaaallalallllllallllllllalaalalalaaaaalalaaaaaaalgjgiejxpwunfifjruritiririirieoeowowowowowowowowooeowowowoeeoeowowowowowowowoowowwowowowoozoeisiaokseekxidjdkdjfidjfjdjfjfjrifjrifjdirjdjrjfjrjfjrjfjrfuejwwuxmaneanfjkaosndjxieneamalhaqzeeshanvhorahfuensiwjakaksjdhfhfnfhfndjxnxmakaalalalwlwlwwow

Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing again once scandal dies down. As long as the controversy fades, is there anything unethical about such a strategy?

Answers

Answer:

Explanation:

Tech Social Media giant FB is one of those companies. Not long ago the ceo was brought to court to accusations that his company was selling user data. Turns out this is true and they are selling their users private data to companies all over the word. Once the news turned to something else, people focused on something new but the company still continues to sell it's users data the same as before. This is completely unethical as the information belongs to the user and they are not getting anything while the corporation is profiting.

How much energy does it take to boil water for pasta? For a one-pound box of pasta
you would need four quarts of water, which requires 15.8 kJ of energy for every degree
Celsius (°C) of temperature increase. Your thermometer measures the starting
temperature as 48°F. Water boils at 212°F.
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?

Answers

Answer:

a.  164 °F b. 91.11 °C c. 1439.54 kJ

Explanation:

a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?

Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.

So, Δ°F = 212 °F - 48 °F = 164 °F

b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?

To find the degree change in Celsius, we convert the initial and final temperature to Celsius.

°C = 5(°F - 32)/9

So, 48 °F in Celsius is

°C₁ = 5(48 - 32)/9

°C₁ = 5(16)/9

°C₁ = 80/9

°C₁ = 8.89 °C

Also, 212 °F in Celsius is

°C₂ = 5(212 - 32)/9

°C₂ = 5(180)/9

°C₂ = 5(20)

°C₂ = 100 °C

So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.

So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C

c. [2 pts] How much energy is required to heat the four quarts of water from

48°F to 212°F (boiling)?

Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise =  15.8 kJ/°C × 91.11 °C = 1439.54 kJ

A flow inside a centrifuge can be approximated by a combination of a central cylinder and a radial line source flow, giving the following potential function:
Ø= a2/r -cosØ + aßlnr = r
Where a is the radius of the central base of the centrifuge and ß is a constant.
a) Provide expressions for the velocities Vr and vo .
b) Find the expression for the stream function.

Answers

Answer:

a)  Vr = - a^2/r cosθ  + aß / r

    Vθ = 1/r [ -a^2/r * sinθ ]

b) attached below

Explanation:

potential function

Ø= a^2 /r  cosØ + aßlnr ----- ( 1 )

a = radius ,  ß = constant

a) Expressions for Vr and Vθ

Vr =  dØ / dr  ----- ( 2 )

hence expression : Vr = - a^2/r cosθ  + aß / r

Vθ = 1/r dØ / dθ ------ ( 3 )

back to equation 1

dØ / dr = - a^2/r sinθ + 0  --- ( 4 )

Resolving equations 3 and 4

Vθ = 1/r [ -a^2/r * sinθ ]

b) expression for stream function

attached below

A levee will be constructed to provide some flood protection for a residential area. The residences are willing to accept a one-in-five chance that the levee will be overtopped in the next 15 years. Assuming that the annual peak streamflow follows a lognormal distribution with a log10(Q[ft3/s]) mean and standard deviation of 1.835 and 0.65 respectively, what is the design flow in ft3/s?

Answers

Answer:

1709.07 ft^3/s

Explanation:

Annual peak streamflow = Log10(Q [ft^3/s] )

mean = 1.835

standard deviation = 0.65

Probability of levee been overtopped in the next 15 years = 1/5

Determine the design flow ins ft^3/s

P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2

                         ∴  T = 67.72 years

Q₁₅ = 1 - 0.2 = 0.8

Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )

K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )

    = 2.1504

back to equation 1

Zt = 1.835 + ( 2.1504 * 0.65 )  = 3.23276

hence:

Log₁₀ ( Qt(ft^3/s) ) = Zt  = 3.23276

hence ; Qt = 10^3.23276

                  = 1709.07 ft^3/s

Your shifts productivity is Slow because one person is not pulling his share. The rest of the team is Getting upset.

Answers

Answer:

you are right but then you ddnt ask a question

The heat transfer surface area of a fin is equal to the sum of all surfaces of the fin exposed to the surrounding medium, including the surface area of the fin tip. Under what conditions can we neglect heat transfer from the fin tip?

Answers

Answer:

The explanation according to the given query is summarized in the explanation segment below.

Explanation:

If somehow the fin has become too lengthy, this same fin tip temperature approaches the temperature gradient and maybe we'll ignore heat transmission out from end tips.Additionally, effective heat transmission as well from the tip could be ignored unless the end tip surface is relatively tiny throughout comparison to its overall surface.

The temperature gradient in a spherical (or cylindrical) wall at steady state will always decrease (in magnitude) with increasing distance from the center (line), i.e. radial distance.
A. True
B. False

Answers

Answer:

True

Explanation:

Yes it is true that the Temperature gradient would also decrease with magnitude just as the distances rise from the centre line.

We have this cylinder equation as

[T1-T2 / ln(r1-r2)]2πKL

The radial distance is r2-r1

The gradient of temperature is T1-T2

From the equation,

The temperature gradient has a direct and proportional relationship to radial distance

T1-T2 ∝ ln(r2-r1)

1/T1-T2 = k(r2-r1)

This inverse relationship above confirms that the statement is true

Using 1.5 V batteries, a switch, and three lamps, devise a circuit to apply 4.5 V across eitherone lamp, two lamps in series, or three lamps in series with a single-control switch. Draw theschematic.

Answers

Answer: the attached picture is the answer.

Explanation:

Assuming:

the switch position connect to 1, hence 4.5V exist at across lamp1

the switch position connects to 2 hence 4.5 V exist across lamp 1 and lamp 2

the switch position connects to 3, hence, 4.5 V exist across lamp 1, lamp 2 and lamp 3.

Suppose a causal CT LTI system has bilateral Laplace transform H(s) 2s - 2 $2 + (10/3)s + 1 (8)
(a) Write the linear constant coefficient differential equation (LCCDE) relating a general input x(t) to its corresponding output y(t) of the system corresponding to this transfer function in equation (8).
(b) Suppose the input x(t) = e-tu(t). Find the output y(t). In part (c), the output signal can be expressed as y(t) = - e-(1/3)t u(t) + e-tu(t) e-3tu(t), - 019 Where a, b, and care positive integers. What are they? a = b = C=

Answers

Solution :

Given :

[tex]$H(S) =\frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

Transfer function, [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

[tex]$Y(S) \left(S^2+\frac{10}{3}S+1\right) = (2S-2) \times (S)$[/tex]

[tex]$S^2Y(S) + \frac{10}{3}(SY(S)) + Y(S) = 2(S \times (S)) - 2 \times (S)$[/tex]

Apply Inverse Laplace Transforms,

[tex]$\frac{d^2y(t)}{dt^2} + \frac{10}{3} \frac{dy(t)}{dt} + y(t)=2 \frac{dx(t)}{dt} - 2x(t)$[/tex]

The above equation represents the differential equation of transfer function.

Given : [tex]$x(t)=e^{-t} u(t) \Rightarrow X(S) = \frac{1}{S+1}$[/tex]

We have : [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

[tex]$Y(S) = X(S) \times \frac{6S-6}{3S^2+10 S + 3} = \frac{6S-6}{(S+1)(3S+1)(S+3)}$[/tex]

[tex]$Y(S) = \frac{A}{S+1}+\frac{B}{3S+1} + \frac{C}{S+3}[/tex]

[tex]$A = Lt_{S \to -1} (S+1)Y(S)=\frac{6S-6}{(3S+1)(S+3)} = \frac{-6-6}{(-3+1)(-1+3)} = 3$[/tex]

[tex]$B = Lt_{S \to -1/3} (3S+1)Y(S)=\frac{6S-6}{(S+1)(S+3)} = \frac{-6/3-6}{(1/3+1)(-1/3+3)} = \frac{-9}{2}$[/tex]

[tex]$C = Lt_{S \to -3} (S+3)Y(S)=\frac{6S-6}{(S+1)(3S+1)} = \frac{-18-6}{(-3+1)(-9+1)} = \frac{-3}{2}$[/tex]

So,

[tex]$Y(S) = \frac{3}{S+1} - \frac{9/2}{3S+1} - \frac{3/2}{S+3}$[/tex]

        [tex]$=\frac{3}{S+1} - \frac{3/2}{S+1/3} - \frac{3/2}{S+3}$[/tex]

Applying Inverse Laplace Transform,

[tex]$y(t) = 3e^{-t}u(t)-\frac{3}{2}e^{-t/3}u(t) - \frac{3}{2}e^{-3t} u(t)$[/tex]

       [tex]$=\frac{-3}{2}e^{-\frac{1}{3}t}u(t) + \frac{3}{1}e^{-t}u(t)-\frac{3}{2}e^{-3t} u(t)$[/tex]

where, a = 2

            b = 1

            c= 2

Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.

Answers

Answer:

(a) the reversible power output of turbine is 5810 kw

(b) The second-law efficiency of he turbine = 86.05%

Explanation:

In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.

h1 = 3658 kJ/kg s1=7.167 kJ/kgK

In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state

h2 = 2682kl/kg S2= 7.694 kJ/kg

Assuming that the energy balance equation given  

Wout=m [h1-h2+(v1²-v2²) /2]

Let

W =5 MW

V1= 80 m/s  V2= 140 m/s

h1 = 3658kJ/kg  h2 = 2682 kJ/kg

∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)

m = 5.158kg/s

Consider the energy balance equation given  

Wrev,out =Wout-mT0(s1-s2)

Substitute Wout =5 MW m = 5.158kg/s 7

s1=  7.167 kJ/kg-K            s2= 7.694kJ/kg-K and 25°C .

Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)

= 5810 kW

(a) Therefore, the reversible power output of turbine is 5810 kw.

The given values of quantities were substituted and the reversible power output are calculated.

(b) Calculating the second law efficiency of the turbine:  

η=Wout/W rev,out

Let Wout =  5 MW and Wrev,out = 5810 kW  

η=(5 MW x 1000 kW)/(1 MW *5810)  

η= 86.05%

Bainite has finer grains because the transformation takes place at a lower temperature where the nucleation rate is high relative to the growth rate. True or False

Answers

Answer:

False

Explanation:

Bainite is a type of steel. It is formed by the decomposition of austenite. This happens at a temperature above MS but given that MS temperature is below the one where fine pearlite is formed.

In other words, when iron goes through a metastable crystallization phase Bainite is formed. It takes the rapid cooling, or quenching, of austenite for that to happen.

Metastability is the phenomenon where matter remains in an apparent state of equilibrium or stability even though it can achieve a more stable state. It can also be referred to as the condition of remaining in that pseudo unstable state for a very protracted period of time.

Bainite steel is used for the construction of components that require frequent usage and where plasticity, or tendency for deformity, as well as wear, cannot be tolerated.

Cheers

CO2 enters an adiabatic nozzle, operating at steady state, at 200 kPa, 1500 K, 5 m/s and exits at 100 kPa, 1400 K. The exit area of the nozzle is 10 cm2. Using the PG model, determine the exit velocity

Answers

Answer:

[tex]v_2=549.2 m/s\\[/tex]

Explanation:

Given:

[tex]P_1=2500kPa\\T_1=1500 k\\V_1=5 m/s\\P_2=100 kPa\\T_2=1400 k\\A_2=10 cm^2[/tex]

Solution:

For [tex]Co_2[/tex] y=1.4

Since Nozzle is adiababic

So,

[tex]h_1+\frac{V_1^2}{2}=h_2+\frac{V_2^2}{2}\\\frac{v_2^2}{2}=(h_2-h_2)+\frac{r^2}{2}\\v_2^2=2(h_1-h_2)+v_1^2\\v_2=\sqrt{2(h_1-h_2)+v_1^2}[/tex]

Now,

[tex]h_1-h_2=Cp_1T_1-CP_2T_2\\h_1-h_2=(1989-1838.2)*10^3\\ =150.8 * 10^3\\Cp for co_2\\C_{p1}=1.326 kj/kg\\C_{p2}=1.313 kj/kg\\v_2=\sqrt{301600+25}\\ =549.2 m/s[/tex]

what are some quality assurance systems

Answers

Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.

In a CNC machining operation, the has to be moved from point (5, 4) to point(7, 2)along a circular path with center at (7,2). Before starting operation, the tool is at (5, 4).The correct G and M code for this motion is

Answers

Answer: hello your question is incomplete below is the complete question

answer:

N010 GO2 X7.0 Y2.0 15.0 J2.0  ( option 1 )

Explanation:

Given that the NC machining has to be moved from point ( 5,4 ) to point ( 7,2 ) along a circular path

GO2 = circular interpolation in a clockwise path

G91 = incremental dimension

hence the correct option is :

N010 GO2 X7.0 Y2.0 15.0 J2.0  

what is the best glide speed for your training airplane

Answers

1.5 nautical miles per 1,000 feet

In a true Brayton cycle, the pressure ratio is 9. Air input temperature to the cycle 300 K pressure is 100 kPa. The maximum temperature in the cycle is 1300 K. Compressor and turbine their yields are equal to each other. Net work obtained from the cycle is 225 kJ / kg. Accordingly, the cycle find the overall yield. The specific temperatures are variable.

Answers

Answer:

i did not known answer but anobody help you

Other Questions
This standard library function returns a random floating-point number in the range of 0.0 up to 1.0 (but not including 1.0).a. random.b. randint.c. random_integer.d. uniform. please help it's due i will give brainly Other comprehensive income includes: (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect.) check all that apply unrealized gains on available-for-sale securities.unanswered owner investments.unanswered unrealized losses from available-for-sale securities.unanswered foreign currency translation adjustments.unanswered dividends. How were slaves and women factored into the Declaration of Independence? A saline solution has a weight of 1.12 kg per liter. What is the weight of the saline solution of 0.75 l? My science teacher explained how the weather cycle works using an illustration.Which is the best revision of this sentence?A) My science teacher explained how the weather cycle, using an illustration, works.B) Using an illustration, my science teacher explained how the weather cycle works.C) Using an illustration, how the weather cycle works, explained my science teacher.D) My science teacher explained using an illustration how the weather cycle works. Using your strategy to overcome your obstacle.Finally, now that you have both your obstacle and your success strategy in mind, take some time to write how you would actually use this strategy to help you overcome your obstacle. Be specific! The more specific you are, the more likely you will be to actually implement this success strategy. Write how you would use this strategy in the box below: American history by judith ortiz cofer What were yourthoughts aboutElena and heremotions at the endof the story?ComprWhestory Samson Company reported total manufacturing costs of $320000, manufacturing overhead totaling $52000, and direct materials totaling $64000. How much is direct labor cost translate They will know into spanish by filling in the missing letters Please hurry I will mark you brainliest Mis amigos y yo (hacer/ir) un crucero H Solve the following questions.| Mrs Liya cut a cake into 10 parts and give it out to her 3 children. Liza got the largest parts while Lina got the smallest parts. The difference between the number of parts Liza had and the number ofparts Lina had is equal to the number of parts Lini had. How manyparts did each of them have? help sdfghrthfbfdve aahhhhhhhh In an exothermic chemical reaction:____.A. The mass of the products is greater than the mass of the reactants.B. The mass of the products is less then the mass of the reactants.C. Heat is released as the reaction proceeds.D. Heat is absorbed as the reaction proceeds. what is a mirror site? The ages of Raju and Ravi are in the ratio 3:4 .Four years from now the ratio of their ages will be 4:5 . Find their present ages. What is one reason that Thomas Paine thinks the colonies stand a goodchance against the British?A. The population of the colonies is extremely high.B. The king will refuse to send more British soldiers to the colonies.C. The colonists know the British military's secrets.D. The British army is notoriously weak. What is the best way to describe a counter-claim?an opposing viewpointa restated viewpointanother view of the argumentan unrealistic way to look at an argument Nika earns a gross pay of $73,000. Her total employee benefits are 22% of her gross pay and she has no job expenses. If Nika gets an increase in pay of $5,000, what will her total employment compensation be