If a1 = 6 and an
-5an-1 + 4 then find the value of a4.

Answers

Answer 1

9514 1404 393

Answer:

  a4 = -666

Step-by-step explanation:

Use the recursive definition repeatedly.

  a1 = 6

  a2 = -5(6) +4 = -26

  a3 = -5(-26) +4 = 134

  a4 = -5(134) +4 = -666


Related Questions

21(2-y)+12y=44 find y​

Answers

Answer: y= -2/9
Explanation:
21(2-y)+12y=44
42-21y+12y=44
42-9y=44
-9y=2
y=-2/9

Answer:

[tex]\textbf{HELLO!!}[/tex]

[tex]21\left(2-y\right)+12y=44[/tex]

[tex]42-21y+12y=44[/tex]

[tex]~add ~similar\:elements[/tex]

[tex]42-9y=44[/tex]

[tex]Subtract~42~from~both~sides[/tex]

[tex]42-9y-42=44-42[/tex]

[tex]-9y=2[/tex]

[tex]Divide\:both\:sides\:by\:}-9[/tex]

[tex]\frac{-9y}{-9}=\frac{2}{-9}[/tex]

[tex]y=-\frac{2}{9}[/tex]

----------------------

hope it helps...

have a great day!

If f(x) = 3x⁴ - 13x, find f(-2)​

Answers

Answer:

answer is

74....................

On a coordinate plane, a line goes through (negative 3, negative 3) and (negative 1, 5). What is the equation of the line parallel to the given line with an x-intercept of 4?

Answers

y = mx + c

m = gradient

gradient of line:
[5 - (-3)]/[(-1) - (-3)]
= 8/2
= 4

y = mx + c
subsitute (4, 0)
0 = (4)(4) + c
0 = 16 + c
c = -16

equation of the line:

y = 4x - 16

hope this helped :)



Answer:

4, -16

Step-by-step explanation:

please help me look at the photo!

Answers

First of all multiply both sides by the power of 3 to cancel out the cube roots.

So you will be left out with:

X+4 > -x

Now simplify:

4 > -x-x

4> -2x

4/-2 > -2x/-2

-2 > x

Final answer:

It’s C , x < -2

Good luck and best of wishes!!

in which quadrant or axis will the poit lie if...​

Answers

Step-by-step explanation:

a.fourth quadrent

b.third quadrent.

What is cos(A)? please explain

Answers

Answer:

cos(A) = adjacent side / hypotenuse

= 4/5

Answer:

[tex] \small \sf \: cos ( A ) = \green{ \frac{ 4}{ 5}} \\ [/tex]

Step-by-step explanation:

[tex] \small \sf \: cos ( A ) = \frac{ adjacent \: side }{ Hypotenuse} \\ [/tex]

Where, we have given

adjacent side is 4 Hypotenuse is 5

substitute the values that are given

[tex] \small \sf \: cos ( A ) = \green{ \frac{ 4}{ 5}} \\ [/tex]

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

Answers

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

A cyclist travels 3 miles in 15 minutes and then a further 7 miles in 25 minutes without stopping.
Calculate the cyclist's average speed in mph.

Answers

Answer:

v = 15 mph

Step-by-step explanation:

Given that,

A cyclist travels 3 miles in 15 minutes and then a further 7 miles in 25 minutes without stopping.

Total distance, d = 3 + 7 = 10 miles

Total time, t = 15 + 25 = 40 minutes = 0.6667 hours

Average speed,

[tex]v=\dfrac{d}{t}[/tex]

Put all the value,

[tex]v=\dfrac{10}{0.6667}\\\\= $$14.99\ mph[/tex]

or

v = 15 mph

So, the required average speed is equal to 15 mph.

d= (r+c)t
how do i solve for t?

Answers

Answer:

[tex] { \tt{d = (r + c)t}}[/tex]

Divide ( r+c ) on both sides:

[tex]{ \tt{t = { \frac{d}{(r + c)} }}}[/tex]

Answer:

d / ( r + c) = t

Step-by-step explanation:

d = ( r + c ) t

Divide each side by ( r + c)

d / (r + c ) = ( r + c ) t / ( r + c)

d / ( r + c) = t

A cube with side lengths of 4 cm has a density of 3 grams/cubic centimeters. The mass of the cube is _____ grams?

Answers

9514 1404 393

Answer:

  21 1/3 grams

Step-by-step explanation:

The mass is the product of the volume and the density. The volume of a cube is the cube of its edge dimension.

  M = Vρ

  M = (4 cm)³×(3 g/cm³) = 64/3 g

The mass of the cube is 64/3 = 21 1/3 grams.

For the following right triangle find the side length x

Answers

Step-by-step explanation:

everything can be found in the picture

Answer:

x=15

Step-by-step explanation:

Hi there!

We're given a right triangle with the measures of the 2 legs (sides that make up the right angle). We're also given the measure of the hypotenuse (the side opposite to the right angle) as x

We need to find x

The Pythagorean Theorem states that if a and b are the legs and c is the hypotenuse, then a²+b²=c²

Let's label the values of a, b, and c to avoid any confusion first

a=12

b=9

c=x

now substitute into the theorem

12²+9²=x²

raise everything to the second power

144+81=x²

add 144 and 81 together

225=x²

take the square root of 225

15=x (note: -15=x is technically also an answer, but since lengths cannot be negative, it's an extraneous solution in this case)

Therefore, the side length of x is 15

Hope this helps! :)

PLEASE HELP! I'm lost. :(

In 2005, 1,475,623 students heading to college took the SAT. The distribution of scores in the math section of the SAT follows a normal distribution with mean
µ = 520 and population standard deviation = 115.

What math SAT score is 1.5 standard deviations above the mean? Round answer to a whole number.

Answers

Answer:

A math SAT score of 693 is 1.5 standard deviations above the mean

Step-by-step explanation:

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Mean µ = 520 and population standard deviation = 115.

This means that [tex]\mu = 520, \sigma = 115[/tex]

What math SAT score is 1.5 standard deviations above the mean?

This is X when [tex]Z = 1.5[/tex]. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.5 = \frac{X - 520}{115}[/tex]

[tex]X - 520 = 1.5*115[/tex]

[tex]X = 693[/tex]

A math SAT score of 693 is 1.5 standard deviations above the mean

Please answer the following.

Answers

Answer:

[tex] \sqrt{4 \times 5 + \sqrt{4 \times 9} } [/tex]

Nikki grows 20 tomato plants.
She measures their heights to the nearest centimeter and writes them down.
15 14 12 17 18
11 16 14 21 19
10 16 16 13 17
9 15 20 19 9
Complete the frequency table.

Answers

Answer:

I found answer

Step-by-step explanation:

1) 9

2) 12

3)15

4)20

A pile of 15 boxes is 3 metres high. What is the depth of each box?
5 m
0.002 km
200 cm
200 mm

pls help

Answers

A I seen it on the test

Find all solutions to the equation.
cos^2 x +2cosx+1=0

Answers

[tex]x= \pi[/tex]

Step-by-step explanation:

[tex]\cos^2x+\cos x+1=0[/tex]

Let [tex]u= \cos x[/tex]

Then [tex]u^2+2u+1=(u+1)^2=0[/tex]

or

[tex]\cos x = -1[/tex]

This gives us [tex]x= \pi[/tex] or all integer multiples of [tex]\pi (n \pi)[/tex]

According to records, the amount of precipitation in a certain city on a November day has a mean of inches, with a standard deviation of inches. What is the probability that the mean daily precipitation will be inches or less for a random sample of November days (taken over many years)

Answers

Answer:

The probability that the mean daily precipitation will be of X inches or less for a random sample of n November days is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is mean amount of inches of rain and [tex]\sigma[/tex] is the standard deviation.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

Mean [tex]\mu[/tex], standard deviation [tex]\sigma[/tex]

n days:

This means that [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

Applying the Central Limit Theorem to the z-score formula.

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

What is the probability that the mean daily precipitation will be of X inches or less for a random sample of November days?

The probability that the mean daily precipitation will be of X inches or less for a random sample of n November days is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is mean amount of inches of rain and [tex]\sigma[/tex] is the standard deviation.

write 145,567 in expanded notation​

Answers

Answer:

100000+45000+500+60+7


A jet travels 5192 miles against a jetstream in 8 hours and 6072 miles with the jetstream in the same amount of time. What
is the rate of the jet in still air and what is the rate of the jetstream?

Answers

the answer is in the picture

according to a salad recipe each serving requires 4 teaspoons of vegetable oil and 12 teaspoons of vinegar. if 14 teaspoons of vegetable oil were used how many teaspoons of vinegar should be used

Answers

Answer:

42 teaspoons of vinegar

Step-by-step explanation:

Given

[tex]x \to vegertable[/tex]

[tex]y \to vinegar[/tex]

[tex]x : y = 4 :12[/tex]

Required

Find y when [tex]x = 14[/tex]

[tex]x : y = 4 :12[/tex] implies that:

[tex]14 : y = 4 : 12[/tex]

Express as fraction

[tex]\frac{y}{14} = \frac{12}{4}[/tex]

[tex]\frac{y}{14} = 3[/tex]

Multiply by 3

[tex]y = 14* 3[/tex]

[tex]y = 42[/tex]

Mass of a proton: 1.007825 units
Mass of a neutron: 1.008665 units
Calculate the mass Defect of 214 N has actual mass of 14.0031 u.

Answers

Given:-

mass of proton = 1.007825 umass of neuron = 2.008625 u .Actual mass = 14.0031 u

To find:-

The mass defect.

Answer:-

Mass defect arises when the mass of the atom differs from the sum of masses of nucleons . As we know that the nucleus of an atom is made up of neutrons(n) and protons (p) , and the total mass of a atom is the mass of nucleons ( protons and neutrons ) as electrons have mass very low as compared to that of n or p .

If we denote mass number by [tex]\green{A}[/tex] , then ;

[tex]\implies A = n_{\rm neutrons} + n_{\rm protons} [/tex]

Let [tex] Z[/tex] be the atomic number, then ;

[tex]\implies n_p = Z [/tex]

So, the number of neutrons will be;

[tex]\implies n_n = (A-Z) [/tex]

Therefore total mass would be ;

[tex]\implies M = m_pZ +m_n (A-Z) [/tex]

Then the mass defect would be ,

[tex]\implies\underline{\underline{\green{ \Delta M = [Zm_p + (A-Z)m_n - M ] }}} [/tex]

where ,

[tex]Z [/tex] = atomic number[tex] A[/tex] = mass number[tex] m_p [/tex] = mass of a proton[tex] m_n [/tex] = mass of a neutron

_______________________________________

Now we know that the Atomic number of Nitrogen is 7(Z) and its mass number is 14(A) .

Now substitute the respective values,

[tex]\implies \Delta M = 7(1.007825) + (14-7)1.008665 - 14.0031 \\ [/tex]

[tex]\implies \Delta M = 7.054775 + 7(1.008665) - 14.00 31 [/tex]

[tex]\implies \Delta M = 7.054775 + 7.060655 - 14.0031 [/tex]

[tex]\implies \Delta M = 14.11543 - 14.0031 [/tex]

[tex]\implies \underline{\underline{\green{ \Delta M = 0.11233 \ u }}}[/tex]

Hence the mass defect is 0.11233 u .

Also this mass defect appears as energy which is responsible for the binding of nucleons together.

and we are done!

Use the digits 0 - 9 to fill in the blank.
[tex]243 \frac{1}{5} = blank[/tex]

Answers

Answer:

use 0-9 to fill in blanks

Step-by-step explanation:

When traveling to work, Cherise averages 60 miles per hour.Because of heavy traffic in the evening, she averages only 40 miles per hour. If the distance from home to work is 80 miles, how much longer does it take Cherise to make the drive home?

Answers

Answer:  40 minutes

============================================================

Explanation:

The distance traveled is d = 80 miles.

When going to work, her speed is r = 60 mph. She takes t = d/r = 80/60 = 4/3 hours which converts to 80 minutes. Multiply by 60 to go from hours to minutes.

Notice how the '80' shows up twice (in "80 miles" and "80 minutes"). This is because traveling 60 mph is the same as traveling 1 mile per minute.

-----------------

Now as she's coming home, her speed becomes r = 40 and she takes t = d/r = 80/40 = 2 hours = 120 minutes.

The difference in time values is 120 - 80 = 40 minutes.

Her commute back home takes 40 more minutes compared to the morning drive to work.

Write as many observations as you can for 5k + 23 - 4

Answers

Answer:

5k+19

Step-by-step explanation:

Subtract 4 from 23

PLEASE HELP ME WITH THIS ONE QUESTION
If Linda is at the store and can buy any two fruits (the store sells apples, oranges, pears, bananas, and kiwis), how many combinations of fruit can she choose?
A) 25
B) 3
C) 10
D) 15

Answers

Answer:

option C

Step-by-step explanation:

Total number of items = 5

Number of items to choose = 2

Therefore, the number of combinations is

                                                       [tex]5C_2 = \frac{5 \times 4}{1 \times 2} = 10[/tex]

Which best explains whether or not ABC = LMN?

Answers

Answer:

If I've done it right the answer should be A, the figures are congruent because a 270 rotation about the origin a d a reflection of the x-axis

what percentage is the following 3 upon 4 of 3 upon 8​

Answers

Step-by-step explanation:

the answer is in the image above

Step-by-step explanation:

3/4×3/8

9/32

9/32×100

~28%

pls help! show your work!
(3sqrt4)/(3sqrt5)

Answers

Answer:

3sqaure root 100/5

Step-by-step explanation:

It would look like this picture Below

Rafael ate one-fourth of a pizza and Rocco ate one-third of it. What fraction of the pizza did they eat?

They ate

Answers

Answer:

7/12

Step-by-step explanation:

They ate  1/4  and 1/3

1/4 +1/3

Get a common denominator

1/4 *3/3 + 1/3 *4/4

3/12 + 4/12

7/12

A trailer is 22 feet long. 9 feet wide,
and 7 feet high. What is the volume of
the trailer?

Answers

Answer:

1386

Step-by-step explanation:

22 × 9 × 7 = 1386 cubic feet

V= L x W x H = 22x9x7 = 1386
Other Questions
in which quadrant or axis will the poit lie if... Put these numbers in order from greatest to least.3/10, 0.6 and 0.7 What did the Colonization Law of 1823 do for Stephen Austin?a.It gave him 640 acres of land in Texas.b.It allowed him to buy land in Texas for $1.25 per acre.c.It made him empresario over 100,000 acres of land in Texas.d.It allowed him to overthrow the governor of Texas and take his land. Read the following excerpt from "The Cask of Amontillado" and answer question.THE thousand injuries of Fortunato I had borne as I best could, but when he ventured upon insult I vowedrevenge. You, who so well know the nature of my soul, will not suppose, however, that gave utterance to athreat. At length I would be avenged; this was a point definitely, settled --but the very definitiveness withwhich it was resolved precluded the idea of risk. I must not only punish, but punish with impunity. A wrong isunredressed when retribution overtakes its redresser. It is equally unredressed when the avenger fails tomake himself felt as such to him who has done the wrong.It must be understood that neither by word nor deed had I given Fortunato cause to doubt my good will. Icontinued, as was my in to smile in his face, and he did not perceive that my smile now was at the thought ofhis immolation.In1What type of irony is evident in the excerpt above?2dramatic ironysituational IronyO verbal ironyO none of the above An angle that measures between 90 and 180 is called? Which best explains whether or not ABC = LMN? Determine the values of m and n when the following average magnetic field strength of the Earth is written in scientific notation: 0.0000451 T. Enter m and n, separated by commas. A cube with side lengths of 4 cm has a density of 3 grams/cubic centimeters. The mass of the cube is _____ grams? PLEASE HELP ME ANSWER THIS!!!! At the quantity of 682 orders of Crispy Chicken Sandwich Tacos from Taco Bell, the marginal social benefit of a Crispy Chicken Sandwich Taco is $3.45 and the marginal social cost is $2.60. To produce the efficient quantity of Crispy Chicken Sandwich Tacos:_________a. fewer Crispy Chicken Sandwich Tacos should be produced.b. there should be no change in the amount of Crispy Chicken Sandwich Tacos produced.c. More information on production costs is needed to determine the efficient level of Crispy Chicken Sandwich Tacos.d. more Crispy Chicken Sandwich Tacos should be produced. S kin to nn bc ngot xoay chuyn cc din ca chin tranh th gii th hai vi u th thuc v ph ng minh l Given StartLayout Enlarged left-brace First-row StartFraction x cubed minus 1 Over x squared minus 1 EndFraction, for x less-than 1 second row StartFraction 3 Over x minus 1 EndFraction, for x greater-than-or-equal-to 1 EndLayout. What is Limit of f (x) as x approaches 1 minus?Negative three-halves0Three-halvesDNE What is cos(A)? please explain d= (r+c)t how do i solve for t? Explain the conflict that arises over Lavinia. What happens as a result of this? Who is killed and by whom? What was the killers justification? what is the area of a flower pot that have the shape of a semi circle and its diameter 2.8cm? What is the area please? Mass of a proton: 1.007825 unitsMass of a neutron: 1.008665 unitsCalculate the mass Defect of 214 N has actual mass of 14.0031 u. if x4 + 1/x4 = 4 find the value of x2+1/x2 On a coordinate plane, a line goes through (negative 3, negative 3) and (negative 1, 5). What is the equation of the line parallel to the given line with an x-intercept of 4?