Answer:
31.2 g of Ag₂SO₄
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2AgNO₃(aq) + H₂SO₄ (aq) → Ag₂SO₄ (s) + 2HNO₃ (aq)
From the balanced equation above,
2 moles of AgNO₃ reacted with 1 mole of H₂SO₄ to produce 1 mole of Ag₂SO₄ and 2 moles of HNO₃.
Next, we shall determine the limiting reactant.
This can obtained as follow:
From the balanced equation above,
2 moles of AgNO₃ reacted with 1 mole of H₂SO₄.
Therefore, 0.2 moles of AgNO₃ will react with = (0.2 x 1)/2 = 0.1 mole of H₂SO₄.
From the calculations made above, only 0.1 mole out of 0.155 mole of H₂SO₄ given is needed to react completely with 0.2 mole of AgNO₃. Therefore, AgNO₃ is the limiting reactant.
Next,, we shall determine the number of mole of Ag₂SO₄ produced from the reaction.
In this case we shall use the limiting reactant because it will give the maximum yield of Ag₂SO₄ as all of it is consumed in the reaction.
The limiting reactant is AgNO₃ and the number of mole of Ag₂SO₄ produced can be obtained as follow:
From the balanced equation above,
2 moles of AgNO₃ reacted to produce 1 mole of Ag₂SO₄.
Therefore, 0.2 moles of AgNO₃ will react to produce = (0.2 x 1)/2 = 0.1 mole of Ag₂SO₄.
Therefore, 0.1 mole of Ag₂SO₄ is produced from the reaction.
Finally, we shall convert 0.1 mole of Ag₂SO₄ to grams.
This can be obtained as follow:
Molar mass of Ag₂SO₄ = (2x108) + 32 + (16x4) = 312 g/mol
Mole of Ag₂SO₄ = 0.1
Mass of Ag₂SO₄ =?
Mole = mass /Molar mass
0.1 = Mass of Ag₂SO₄ /312
Cross multiply
Mass of Ag₂SO₄ = 0.1 x 312
Mass of Ag₂SO₄ = 31.2 g
Therefore, 31.2 g of Ag₂SO₄ were obtained from the reaction.
Taking into account the definition of reaction stoichiometry and limiting reagent, the mass of Ag₂SO₄ that could be formed is 31.18 grams.
First of all, the balanced reaction is:
2 AgNO₃ + H₂SO₄ → Ag₂SO₄ + 2 HNO₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
AgNO₃: 2 moles H₂SO₄: 1 mole Ag₂SO₄: 1 mole HNO₃: 2 molesThe limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, you can use a simple rule of three as follows: if by stoichiometry 1 mole of H₂SO₄ reacts with 2 moles of AgNO₃, 0.155 moles of H₂SO₄ react with how many moles of AgNO₃?
[tex]amount of moles of AgNO_{3} =\frac{0.155 moles of H_{2}SO_{4} x 2 moles of AgNO_{3} }{1 mole of H_{2}SO_{4} }[/tex]
moles of AgNO₃= 0.31 moles
But 0.31 moles of AgNO₃ are not available, 0.200 moles are available. Since you have less moles than you need to react with 0.155 moles of H₂SO₄, AgNO₃ will be the limiting reagent.
Then, it is possible to determine the amount of moles of Ag₂SO₄ produced by another rule of three, using the limiting reagent: if by stoichiometry 2 moles of AgNO₃ produce 1 mole of Ag₂SO₄, 0.200 moles of AgNO₃ how many moles of Ag₂SO₄ will be formed?
[tex]amount of moles of Ag_{2} SO_{4} =\frac{1 mole of Ag_{2} SO_{4} x 0.200 moles of AgNO_{3} }{2 moles of AgNO_{3} }[/tex]
amount of moles of Ag₂SO₄ =0.100 moles
Finally, with 311.8 g/mole being the molar mass of Ag₂SO₄, then the mass produced of the compound can be calculated as:
[tex]0.100 molesx311.8 \frac{g}{mole} = 31.18 grams[/tex]
In summary, the mass of Ag₂SO₄ that could be formed is 31.18 grams.
Learn more with this examples:
brainly.com/question/16487206?referrer=searchResults brainly.com/question/14446695?referrer=searchResults brainly.com/question/11564309?referrer=searchResults brainly.com/question/4025026?referrer=searchResults brainly.com/question/18650135?referrer=searchResults
What is the concentration in %m/v of a 0.617 M aqueous solution of methanol (MM = 32.04 g/mol)?
Answer:
The correct answer is 1.977 % m/v ≅ 2% m/v
Explanation:
We have:
0.617 M = 0.617 moles methanol/ 1 L solution
We need:
%m/v= grams of methanol/100 mL solution
So, first we convert the moles of methanol to grams by using the MM (32.04 g/mol). Then, we multiply by 0,1 to convert the volume in liters to 100 mL by using the ratio: 100 mL= 0.1 L:
0.617 mol / 1 L x 32.04 g/mol 0.1 L/100 mL= 1.977 g/100 mL= %m/v
The concentration in [tex]\%_{m/v}[/tex] of a 0.617 M aqueous solution of methanol is 1.98%.
To find the [tex]%_{m/v}[/tex] concentration of methanol we need to use the following equation:
[tex] \%_{m/v} = \frac{m_{s}}{V_{sol}} \times 100 [/tex] (1)
Where:
[tex] m_{s}[/tex]: is the mass of methanol in grams
[tex] V_{sol} [/tex]: is the volume of the solution in milliliters
The molar concentration of methanol is:
[tex] C = 0.617 M = 0.617 \:\frac{mol}{L} [/tex]
From this concentration, we can find the mass of methanol
[tex] m = n*MM [/tex] (2)
Where:
n: is the number of moles = C*V
MM: is the molar mass = 32.04 g/mol
Then, the mass of methanol is (eq 2):
[tex] m = n*MM = C*V*MM = 0.617 mol/L*1 L*32.04 g/mol = 19.77 g [/tex]
Knowing that 1 L = 1000 mL, the [tex]%_{m/v}[/tex] concentration is (eq 1):
[tex] \%_{m/v} = \frac{m_{s}}{V_{sol}} \times 100 = \frac{19.77 g}{1000 mL} \times 100 = 1.98 \% [/tex]
Therefore, the concentration in [tex]\%_{m/v}[/tex] is 1.98%.
Find more here:
https://brainly.com/question/24958554?referrer=searchResultshttps://brainly.com/question/1386691?referrer=searchResultsI hope it helps you!
Obtain a box of breakfast cereal and read the list of ingredients. What are four chemicals from the list? a. monoglycerides b. cocamide DEA c. folic acid d. iron e. chromium ion f. peroxide g. lauryl glucoside h. disodium phosphate
Answer:
B. cocamide DEA
C. folic acid
D. iron
G. lauryl glucoside
Which of the following is not a
trigonal planar molecule?
Select one:
a. AICI:
b. NH3
c. BF3
d. AlH3
Question 17
The potential of a voltaic cell (Ecell) is calculated based on several variables. Identify from the list below the values you would need to determine the cell potential.
a. number of electrons, n
b. density of metal, rho
c. coefficients from balanced redox equation (various)
d. temperature, T
e. Gibbs free energy change, ΔG
f. enthalpy change, ΔH
g. reduction potential, Ered
Answer:
number of electrons, n
Gibbs free energy change, ΔG
temperature, T
coefficients from balanced redox equation (various)
Explanation:
The standard electrode potential of a cell can be obtained from;
∆G°= -nFE°cell
Also;
E°cell= RTlnK/nF
Where;
∆G°= standard free energy of the cell
n= number of electrons transferred
F= Faraday constant
E°cell= standard cell potential
R= universal gas constant
T= temperature
K= equilibrium constant
43 milliliters of water weighs 43 g. what is the density of the water?
Answer:
[tex]\rho =1g/mL[/tex]
Explanation:
Hello,
In this case, since the density is defined as the ratio between the mass and the volume as shown below:
[tex]\rho =\frac{m}{V}[/tex]
We can compute the density of water for the given 43 g that occupy the volume of 43 mL:
[tex]\rho =\frac{43g}{43mL}=1g/mL[/tex]
Regards.
NH3 is a weak alkali that does not dissociate fully into its solution. Which of the following is true about NH3?
A. It has a very low pH.
B. It's dissociation is a reversible reaction.
C. It has a high H+ concentration.
D. It will release all of its OH- ions.
Answer:
Answer:
B. It's dissociation is a reversible reaction
Explanation:
NH3 is a weak alkali that does not dissociate fully into its solution. Only parts of the ammonia takes part in the dissociation process.
NH3 + H20 —> NH4+ + OH-
This dissociation is reversible which means the reactants can be formed from the product gotten from the dissociation
It has a high pH due to its basic nature. It also has a Low concentration of H+ ions and not all the OH- ions are released.
When solid sodium hydroxide (NaOH) pellets are dissolved in water, the temperature of the water and beaker rises. The formation of an aqueous solution of sodium hydroxide is
Answer:
Exothermic
Explanation:
A reaction is said to be exothermic when heat is evolved in the process. The evolution of heat implies that the energy of reactants is greater than that of the products, hence energy is given off when the products are formed.
If you dissolve sodium hydroxide in water, the vessel feels hot when touched. This signifies that energy is given off during the process. Hence the formation of an aqueous solution of sodium hydroxide is exothermic.
In a concentration cell, the reaction is driven by: Select the correct answer below:
a. K
b. Q
c. E*cell
d. all of above
Answer:
b. Q
Explanation:
Equilibrium constant K is a measure of the ratio of the equilibrium concentration of the products of a reaction to the equilibrium concentration of the reactants with each concentration raised to the power corresponding to the coefficient in the balanced equation of the reaction.
On the other hand , the [tex]E^\theta_{cell}[/tex] is the standard electrode potential of the right-hand electrode minus the standard electrode potential of the left hand electrode, Thus, [tex]E^\theta_{cell}[/tex] will be zero if concentration cell in the two electrodes appears to be the same.
The Nernst equation correlates the cell E.M.F to a standard value E and the activities of the species that takes places in the cell reaction. Thus in a concentration cell, the reaction is driven by Q
Why is the pH scale important in science? Give several examples of scientific applications.
Answer:
See the answer below
Explanation:
The pH scale is important in science because it gives an indication of how acidic or basic a solution is. The scale ranges from 0 - 14 with 0 being the most acidic and 14 being the most basic while a pH of 7 is a neutral pH.
The pH scale is widely applicable in several scientific applications such as in medicine/health, agricultural processes, industrial processes, environmental monitoring, research and development, etc.
In medicine, the pH of the stomach is monitored in order to make some diagnosis. The normal pH of the human stomach ranges from 1.5 - 3.5 and a major deviation from this range can give an indication of wrong health.
In agriculture, the pH condition of the soil on which crops are grown is quite important. While some crops require slightly acidic soil, some will only do well in alkaline soil. Hence, the pH condition of the soil must be monitored to ensure the optimal yield of crops.
Several industrial processes require the monitoring of pH in order to ensure product's quality or monitor some important reactions. In food industries, for example, monitoring the pH of reactions is necessary in order to prevent contamination by pathogens or ensure a good organoleptic quality of the final product. It is also necessary to monitor the pH of industrial wastewaters in order to avoid polluting the environment.
Monitoring pH is also important for environmental monitoring, The pH of various water bodies or soil can give an indication of the level of pollution in the water or the soil.
The pH can be defined as the concentration of the hydrogen ions in the sample. The determination of pH helps in the designing of the study and investigating the reactions.
Some of the examples for the scientific application of pH has been:
The pH has application in medicines where it has been used for the determination of the pH of the stomach to test acidity, pH of the blood, pH of the urine for pathological investigations.The pH has been used in agriculture, for the determination of the soil sample, and the strength of the sample resulting in the crop analysis to be grown.The pH scale has application in the industrial process for the analysis of the compound formed and the reaction process.The pH scale in the environmental analysis helps for the analysis of the quality of the air, and other parameters study.For more information about the pH importance, refer to the link:
https://brainly.com/question/146774
Explain what would happen if only 1 mole of oxygen gas were available to interact with naphthalene in this reaction.
Answer:
This question is incomplete but the completed question is below
a) Identify the chemical equation that represents what would occur if naphthalene (C₁₀H₈) is burned in the presence of O₂
b) Identify how many moles of carbon dioxide would be released from the equation in (a) if 25.0 g of naphthalene were burned in the presence of excess oxygen.
c) Explain what would happen if only 1 mole of oxygen gas were available to interact with naphthalene in this reaction.
The answers to the questions are below
Explanation:
a) The chemical reaction here will be a combustion reaction. A combustion reaction involves the burning of a substance (in this case an organic compound) in excess oxygen to produce carbon dioxide and water.
The balanced equation below shows what will happen when naphthalene (C₁₀H₈) is burned in the presence of O₂
C₁₀H₈ + 10O₂ ⇒ 10CO₂ + 4H₂O
b) The mass of naphthalene (C₁₀H₈) from the equation above is
when C= 12 and H = 1; C₁₀H₈ = (10 × 12) + (1 × 8) = 128 g
Mass of C₁₀H₈ from the equation in (a) above is 128 g
If 128g of C₁₀H₈ ⇒ 10 moles of CO₂
25g of C₁₀H₈ ⇒ X moles of CO₂
where X is the unknown
X = 25 × 10/128
X = 1.95 moles of CO₂
1.95 moles of CO₂ would be released from the equation in (a) if 25.0 g of naphthalene were burned in the presence of excess oxygen
(c) If just 1 mole of oxygen gas was available for the reaction in (a) above, the reaction would have been an incomplete combustion. An incomplete combustion is the process in which a substance burns in insufficient oxygen to produce carbon monoxide (CO) and water.
If a chemical has a pH of 3, how could you alter its pH value to be more basic?
Answer; If a chemical has a pH of 3, how could you change its pH value to be more basic? Adding water to a chemical will dilute the acid, thus lowering the pH value to more basic.
If a chemical has a pH of 3, that means it is strong acid.To alter its pH value to be more basic, we have add strong base in excess.
First, neutralization reaction occur. After adding excess strong base, the solution becomes basic and pH become more basic.
What is neutralization reaction?The reaction between strong acid and base to form salt and water is called neutralization reaction.
Example: HCl + NaOH → NaCl + H2O
To learn more about neutralization reaction here.
https://brainly.com/question/20038776
#SPJ3
Write a net ionic equation to show that triethylamine, (C2H5)3N, behaves as a Bronsted-Lowry base in water.
Answer:
[tex](C_2H_5)_3N~+~H_2O~->~(C_2H_5)_3NH^+~+~OH^-[/tex]
Explanation:
For this question, we have to remember that definition of acid and base in the Bronsted-Lowry theory:
Acid
A substance with the ability to produce a hydronium ion ([tex]H^+[/tex]).
[tex]HA~->~H^+~+~A^-[/tex]
Base
A substance with the ability to accepts a hydronium ion ([tex]H^+[/tex]).
[tex]B~+~H^+->BH^+[/tex]
If we check the reaction mechanism (figure 1). We can see that the lone pair of electrons in the "N" atom will remove an "H" from the water molecule producing a positive charge in the nitrogen and a hydroxyl group ([tex]OH^-[/tex]).
With all this in mind, the net ionic equation would be:
[tex](C_2H_5)_3N~+~H_2O~->~(C_2H_5)_3NH^+~+~OH^-[/tex]
I hope it helps!
Given the following equation and bond energies, determine which statement is true. N2+02 2NO N-N triple bond: 941 kJ/mol O-O double bond: 495 kJ/mol N-O bond: 201 kJ/mol
A. The reaction is exothermid
B. A nitrogen-oxygen bond is broken
C. The products have more energy than the reactants.
D. A triple bond between nitrogen atoms is formed
Answer:
The reaction is exothermic
Explanation:
If we look at this reaction system closely, we will discover that the energy of reactants is greater than that of the product. The excess energy possessed by the reactants must be given off at the end of the reaction.
Since ∆Hrxn = ∆Hproducts - ∆Hreactants and ∆Hreactants > ∆Hproducts hence ∆Hrxn is negative and the reaction is exothermic, hence the answer.
If the same amount of heat is added to 50.0 g samples of each of the metals which are all at the same temperature, which metal will reach the highest temperature?
Copper 0.385 J/gºC
Magnesium 1.02 J/gºC
Mercury 0.138 J/g °C
Silver 0.237 J/g °C
Lead 0.129 J/gºC
a. Copper
b. Magnesium
c. Mercury
d. Silver
e. Lead
Answer:
e. Lead
Explanation:
Hello,
In this case, since the equation to compute the heat in a heating or a cooling process is:
[tex]Q=mCp(T_2-T_1)[/tex]
We can see that the lower the specific heat of the substance, the higher the reached temperature as they are in an inversely proportional relationship. In such a way, we can say that e. Lead will reach the higher temperature if the same heat is added to same mass of the other metals.
Regards.
Hydrogen reacts with an element to form a compound. Which element would have the most valence electrons and also be able to react with hydrogen? oxygen chlorine neon nitrogen
Answer:
Chlorine
Explanation:
Hello.
In this case, for the given elements, we are able to know that oxygen has 6 valence electrons, chlorine 7, nitrogen 5 and neon 8, therefore neon is not able to react as it already has 8 valence electrons. Besides, the element having the most valence electrons is chlorine and its reaction with hydrogen forms hydrogen chloride as shown below:
[tex]H_2(g)+Cl_2(g)\rightarrow 2HCl(g)[/tex]
Therefore, the required element is chlorine.
Regards.
Chlorine element would have the most valence electrons and also be able to react with hydrogen
The atomic number of hydrogen is 1 and its electronic configuration is [tex]1s^{1}[/tex] .
The atomic number of oxygen is 8 and its electronic configuration is [tex]1s^{2} 2s^{2} 2p^{4}[/tex]. The valence electron in oxgen is 6.
The atomic number of chlorine is 17 and its electronic configuration is [tex]1s^{2} 2s^{2} 2p^{6}3s^{2} 3p^{5}[/tex]. The valence electron in chlorine is 7.
The atomic number of neon is 10 and its electronic configuration is [tex]1s^{2} 2s^{2} 2p^{6}[/tex]. The valence electron in neon is 8.
The atomic number of nitrogen is 7 and its electronic configuration is [tex]1s^{2} 2s^{2} 2p^{3}[/tex]. The valence electron in nitrogen is 5.
Except Neon, all three atoms will react with hydrogen as the configuration of neon is a stable electronic configuration.
Chlorine has the greatest number of valence electrons after neon that is 7. So, chlorine would have the most valence electrons and also be able to react with hydrogen as follows:-
[tex]H_2+Cl_2\rightarrow2HCl[/tex]
Hence, the correct answer is chlorine.
To know more about:-
https://brainly.com/question/17221176
Which ONE of the following is an oxidation–reduction reaction? A) PbCO3(s) + 2 HNO3(aq) ––––> Pb(NO3)2(aq) + CO2(g) + H2O(l) B) Na2O(s) + H2O(l) –––> 2 NaOH(aq) C) SO3(g) + H2O(l) ––––> H2SO4(aq) D) CO2(g) + H2O(l) ––––> H2CO3(aq) E) C2H4(g) + H2(g) ––––> C2H6(g)
Answer:
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g)
Explanation:
Which ONE of the following is an oxidation–reduction reaction?
A) PbCO₃(s) + 2 HNO₃(aq) ⇒ Pb(NO₃)₂(aq) + CO₂(g) + H₂O(l). NO. All the elements keep the same oxidation numbers.
B) Na₂O(s) + H₂O(l) ⇒ 2 NaOH(aq). NO. All the elements keep the same oxidation numbers.
C) SO₃(g) + H₂O(l) ⇒ H₂SO₄(aq). NO. All the elements keep the same oxidation numbers.
D) CO₂(g) + H₂O(l) ⇒ H₂CO₃(aq). NO. All the elements keep the same oxidation numbers.
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g). YES. C is reduced and H is oxidized.
The product of the following reaction H2C=CH-CHO + NaBH4 /H2O is:
Answer:
H2C=CH-CH2OH
Explanation:
Aldehydes are reduced to primary alcohols.
The first step in the reaction sequence is that the nucleophilic Hydrogen atom in the hydride reagent attacks the electrophilic Carbon in the polar carbonyl group of the aldehyde, there will now be a shift of electrons from the carbonyl to the Oxygen atom creating an intermediate metal alkoxide complex.
The reaction sequence is completed by a simple addition of a proton to the alkoxide oxygen which creates the primary alcohol product from the intermediate complex.
Which of the following describes what happens to the solubility of a slightly soluble ionic compound when a common ion is added to the solution?
a) The solubility of the ionic compound is reduced.
b) The ionic compound dissolves more rapidly.
c) The solubility of the ionic compound is increased.
d) There is no effect on the solubility of the ionic compound.
e) More of the ionic compound dissolves.
Answer:
a) The solubility of the ionic compound is reduced.
Explanation:
Let AB be the ionic compound . It will ionise as follows in solution .
AB ⇄ A⁺ + B⁻
In solution AB , A⁺ and B⁻ maintain a state of equilibrium . Now if we add A⁺ ion as common ion to the solution , the equilibrium will be shifted to the left ie less of AB will ionise to maintain equilibrium . Hence the solubility of AB will be reduced .
The solubility of an ionic compound reduces when any common ion is being added to any solution.
Solubility:
Solubility my be defined as the act of dissolving anything in it. It is the ability of a substance to dissolve a solvent in order to form a solution.Ionic compound :
Ionic compounds are chemical compounds.They are made up of ionic compounds which held them together.When some common ion adds into a solution, the solubility of a slightly soluble ionic compound gets reduced due to :
common ion effectreverse reaction to the ionization processLearn More :
https://brainly.com/question/24057916
1 how many moles of sodium bicarbonate are needed to neutralize 0.9ml of sulphuric acid at stp
Answer:
0.0338 moles of sodium bicarbonate are required to react with 0.9 mL 100% sulphuric acid solution
Explanation:
Equation of the reaction:
Na₂CO₃(aq) + H₂SO₄(aq) ---> Na₂SO₄(aq) + H₂O(l) + CO₂(g)
Since the concentration of the sulphuric acid is not given in the question, the assumption is made that the sulphuric acid solution is 100% sulphuric acid solution.
The density of 100% concentrated sulfuric acid is 1.839 g/mL.
Amount of acid in 0.9 mL solution = 0.9 mL * 1.839 g/mL = 1.655 g
Number of moles of acid in 1.655 g = mass/molar mass
Molar mass of H₂SO₄ = 98 g/mol
Number of moles of acid in 1.471 g = 1.655 g / 98 g/mol = 0.0169 moles
From the equation of reaction, 1 mole of H₂SO₄ reacts with 2 moles of Na₂CO₃
0.0169 moles of H₂SO₄ will react with 0.0169 * 2 moles of Na₂CO₃ = 0.0338 moles
Therefore, 0.0338 moles of sodium bicarbonate are required to react with 0.9 mL 100% sulphuric acid solution
Identify the polar solvent. Identify the polar solvent. toluene carbon tetrachloride diethyl ether acetone hexane
Answer:
Acetone.
Explanation:
Hello,
In this case, we can distinguish between polar solvent and nonpolar solvent by the nature of the bonds present in the compound. Thus, since the bonds C-Cl, C-C, C-H and C-O are nonpolar, which are contained in the toluene, carbon tetrachloride, diethyl ether and hexane, they are discarded as polar.
Nevertheless, since the carbonyl group contained in the acetone is a polar because of the formed positive and negative charges, it is actually the polar solvent, acting as an exception. This is substantiated by the fact the acetone is soluble in water whereas the other substances not,
Regards.
When the pH of the solution equals the pKa of an indicator, the solution will have an intermediate color. Estimate the pKa of bromocresol green, the indicator that made the transition in the acidic region of the titration.
Answer:
pKa bromocresol green is ≅4.5
Explanation:
The bromocresol green is a chemical indicator used in titrations with equivalence point at pH's between 3 and 5.
Is an indicator that, in acidic region is yellow, and in basicic region is blue. The intermediate color is green (at pH≅ 4.5).
As at the intermediate color of the indicator pKa = pH,
pKa bromocresol green is ≅4.5Whether or not the process is observed in nature, which of the following could account for the transformation of gallium-67 to zinc-67?
a) positron emission
b) alpha decay
c) electron capture
d) beta decay
Answer:
Option a: positron emission.
Explanation:
In the transformation we have:
⁶⁷Ga → ⁶⁷Zn
The reaction is:
[tex]^{67}_{Z}X \rightarrow ^{67}_{Z -1}Y[/tex]
For Ga to become Zn, the atom nucleus has to lose a proton, so in the given options, the reaction that involves the transformation of a proton is the option a, positron emission.
In a positron emission, a proton becomes into a neutron and a positron:
[tex]^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y + ^{0}_{+1}e[/tex]
Therefore, the correct answer is option a: positron emission.
I hope it helps you!
If the toxic quantity is 1.5 g of ethylene glycol per 1000 g of body mass, what percentage of ethylene glycol is fatal
Answer:
[tex]\%m/m=0.15\%[/tex]
Explanation:
Hello,
In this case, we are asked to compute the by mass percent representing the toxicity of ethylene glycol in the body mass. In such a way, since the by mass percent is computed as follows:
[tex]\%m/m=\frac{m_{solute}}{m_{solute}+m_{solvent}} *100\%[/tex]
Whereas the solute is the ethylene glycol in the body mass, we obtain:
[tex]\%m/m=\frac{1.5g}{1.5g+1000g} *100\%\\\\\%m/m=0.15\%[/tex]
Best regards.
The percentage of ethylene glycol that is fatal would be 0.15%.
The toxic quantity is 1.5 g of ethylene glycol for 1000 g of body mass.
The percentage toxic quantity in relation to the body mass can be calculated as:
Percentage = mass of toxic quantity/body mass x 100%
= 1.5/1000 x 100%
= 0.15 %
Thus, the fatal level of ethylene glycol is 0.15% of body mass.
More on calculating percentages can be found here: https://brainly.com/question/1497956?referrer=searchResults
Cross aldol condensation reaction was carried out by reacting Acetone with Benzaldehyde in presence of sodium hydroxide. How many alpha carbon are present in acetone
Answer:
Carbons 1 and 3
Explanation:
We must remember that by definition alpha carbons are the carbon (or carbons) next to the carbon that contains the main group. In this case, the main group is the carbonyl group (C = O) in the middle of the molecule. In the acetone molecule, we have three carbons, the carbons neighboring the carbon of the carbonyl group (carbon two) will be the alpha carbons. (Red and blue carbons or carbons one and three)
See figure 1 for further explanations.
I hope it helps!
How much heat does it take to melt 5.0g solid copper?
Answer:
[tex]Q=1.04kJ[/tex]
Explanation:
Hello,
In this case, for latent heat (phase change) we need to consider the enthalpy associated with the involved process, here, melting or fusion; thus, the enthalpy of fusion of copper is 13.2 kJ/mol, therefore, the heat is computed as:
[tex]Q=m\Delta H_{fus}[/tex]
Nevertheless, since the given enthalpy is per mole of copper, we need to use its atomic mass to perform the correct calculation as follows:
[tex]Q=5.0g*\frac{1mol}{63.54}* 13.2\frac{kJ}{mol}\\ \\Q=1.04kJ[/tex]
Which is positive as it needs to be supplied to the system.
Best regards.
before using them on the grill wooden skewer should be
Answer:
Explanation:
Soak your wooden skewers in water for at least 30 minutes before using them to cook with. That way the skewers are water logged and won't catch on fire while you're cooking your soon-to-be delicious kebabs. Remember, only you can prevent kebab fires.
Which metal(s) can be oxidized with a Pb2+ solution but not with a Cd2+ solution? (Hint: The reactions are occurring under standard conditions.)
A. Cr
B. Ni
C. Zn
D. Sn
Answer:
B. Ni
D. Sn
Explanation:
Electrode Potential is the potential difference set up between an element and a solution of its ion. It is a measure of the tendency of an element to form ions.
The electrode potentials vary from one metal ion or metal system to another and the value depends on:
concentration of ions in the solution
the temperature at which the measurement is made , and
the overall energy change.
When two half-cells are joined together through a salt bridge, the e.m.f (electromotive force) of the cell formed is the algebraic difference between the two electrode potentials.
However, the set up in which chemical energy is converted to electrical energy is known as an Electrochemical cell. It consists of two half cells ;
an oxidation half-cell reaction
a reduction half cell reaction.
From the information given:
the standard reduction potential for each metal under standard conditions in the electrochemical series is as follows :
[tex]E^0 _{Pb} = -0.126 \ V[/tex]
[tex]E^0 _{Cr} = - 0.74 \ V[/tex]
[tex]E^0 _{Ni} =- 0.23 \ V[/tex]
[tex]E^0 _{Zn} =- 0.76 \ V[/tex]
[tex]E^0 _{Sn} = -0.13 \ V[/tex]
[tex]E^0 _{Cd} = - 0.40 \ V[/tex]
We will realize that Ni and Sn have reduction values in between Pb and Cd.
Thus , Ni can be oxidized by Pb2+ solution but not with a Cd2+ solution
The metal(s) that can be oxidized with a [tex]Pb^{2+}[/tex] solution
B. Ni
D. Sn
What is Electrode potential?It is the potential contrast set up between a component and an answer of its particle. It is a proportion of the inclination of a component to shape particles. The cathode possibilities shift from one metal particle or metal framework to another and the worth relies upon:
Centralization of particles in the arrangement, the temperature at which the estimation is made , and the general energy change.
Whenever two half-cells are combined through a salt scaffold, the e.m.f (electromotive power) of the cell shaped is the mathematical contrast between the two terminal possibilities.
However, the set up in which chemical energy is converted to electrical energy is known as an Electrochemical cell. It consists of two half cells ;
an oxidation half-cell reaction and a reduction half cell reaction.
On seeing the values of electrode potential from electrochemical series we observe that Ni and Sn have reduction values in between Pb and Cd.
Thus , Ni and Sn can be oxidized by [tex]Pb^{2+}[/tex] solution but not with a [tex]Cd^{2+}[/tex]solution.
Find more information about Electrochemical series here:
brainly.com/question/14652325
If the concentration of mercury in the water of a polluted lake is 0.250 μg (micrograms) per liter of water, what is the total mass of mercury in the lake, in kilograms, if the lake has a surface area of 18.5 square miles and an average depth of 39.0 feet?
Answer:
142.36 kg
Explanation:
volume of water in the lake = surface area x depth
= 18.5 x ( 1760 x 3 )² x 39 ft³
= 2.011 x 10¹⁰ ft³
= 2.011 x 10¹⁰ x 28.3168 liter .
= 56.945 x 10¹⁰ liter .
concentration of mercury = .25 x 10⁻⁶ g / liter
= 25 x 10⁻⁸ g / liter
= 25 x 10⁻¹¹ kg / liter
mass of mercury in the water of lake
= 25 x 10⁻¹¹ x 56.945 x 10¹⁰ kg
= 142.36 kg .
A 24.0 gram object has a volume of 6.0 mL. What is the density of the object?
Answer:
4 g/mL
Explanation:
The density of a object can be found using the following formula.
[tex]d=\frac{m}{v}[/tex]
where m is the mass and v is the volume.
We know that the mass of the object is 24.0 grams and the volume is 6.0 milliliters.
[tex]m= 24 g\\v=6 mL[/tex]
Substitute the values into the formula.
[tex]d= \frac{24g}{6mL}[/tex]
Divide 24 g by 6 mL.
[tex]d= 4 g/mL[/tex]
The density of the object is 4 grams per milliliter.
Answer:
4 g/mL
Explanation:
density = mass/volume
therefore, density = 24/6
ρ = 4 g/mL
A spontaneous galvanic cell consists of a Pb electrode in a 1.0 M Pb(NO3)2 solution and a Cd electrode in a 1.0 M Cd(NO3)2 solution. What is the standard cell potential for this galvanic cell
Answer:
The standard cell potential for this galvanic cell is 0.27 V.
Explanation:
The standard redox potentials, E° of the Pb and Cd are:
Pb²⁺(aq) + 2e⁻ → Pb E° = -0.13 V
Cd²⁺(aq) + 2e⁻ → Cd E° = -0.40 V
The standard cell potential for this galvanic cell can be calculated as follows:
[tex] E_{cell}^{0} = E^{0}_{c} - E^{0}_{a} [/tex] (1)
Where:
c: is for cathode
a: is for anode
As we can see in the standard redox potentials of Pb and Cd, the Pb is going to be reduced (cathode) and the Cd is going to be oxidated (anode).
By replacing the standard redox potentials of Pb and Cd into equation (1) we have:
[tex] E_{cell}^{0} = E^{0}_{c} - E^{0}_{a} = -0.13 V - (-0.40 V) = 0.27 V [/tex]
Therefore, the standard cell potential for this galvanic cell is 0.27 V.
I hope it helps you!