helopppppppppppp meeeeeeee

Helopppppppppppp Meeeeeeee

Answers

Answer 1

Answer:

The answer is B

Step-by-step explanation:


Related Questions

Help plz dis is a lil importatnete

Answers

Following order of operations:

3^2 = 9

(10-2) = 8

Now you have :

9 + 8 x 5 -4

Multiplication is next:

9 + 40 -4

Now just add and subtract from left to right:

9 + 40 = 49

49-4 = 45

The answer is 45

Step-by-step explanation:

So first you solve whats inside of the parenthesis 10 -2 aand get 8 then you figure 3^2 which is 9 then multiplie 8 times 5 and get 40. 9 + 40 - 4 is what it is so far then add 9 to 40 which is 49 then subtract 4 and get 45!

How many digits are there in the​ Hindu-Arabic form of 44,350•1019​?

Answers

Answer:

25 digits

Step-by-step explanation:

add 5 digits in the 44,350 then add 20 digits from the 10^19 = 25 digits

Hindu-Arabic numerals are a decimal, or base-ten, place-value number system with the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as fundamental building blocks. Each digit in a number has a place value depending on its position.

Lamar is saving money to buy a game. So far he has saved $6, which is two-thirds of the total cost of the game. How much does the game cost?

Answers

Step-by-step explanation:

$9 because 1 third of 3 third would be $3

Pls help I need the answer fast

Answers

Answer:

2 2/9

hope it's helpful ❤❤❤

THANK YOU.❤

Multiplying by which number is equivalent to a decrease of 8.2%?

Answers

1 - 0.082 = 0.918
Multiply by 0.918

1-Un balón de fútbol tiene un precio de $125 + IVA

1. ¿Cuánto es el IVA del balón?

A) 125 b) 200 c) 245

Answers

Answer:

b) 200

Step-by-step explanation:

The correct answer is b) 200

1) El IVA del balón es de $ 20.

2) El precio final del balón es $ 145.

1) El Impuesto al Valor Agregado (IVA) es un impuesto indirecto que se aplica sobre el precio de compra del artículo comprado, es decir, se trata de un impuesto indirecto al consumo.

El porcentaje por concepto del impuesto varía de país en país. No obstante, el valor más común en países hispanoparlantes se ubica en torno al 16 % del precio de compra del artículo.

El IVA del balón se determina mediante la siguiente operación aritmética:

[tex]\Delta C = 0.16\cdot (125)[/tex]

[tex]\Delta C = 20[/tex]

El IVA del balón es de $ 20.

2) El precio final del producto es la suma del precio de compra y el IVA, es decir:

[tex]C = 125 + 20[/tex]

[tex]C = 145[/tex]

El precio final del balón es $ 145.  

Para aprender más sobre impuestos, invitamos cordialmente a ver esta pregunta verificada: https://brainly.com/question/24907444

Nota - El enunciado reporta numerosos errores tipográficos y está incompleto, el enunciado correcto y completo es el siguiente:

Un balón de fútbol tiene un precio de $ 125 + IVA.

1) ¿Cuánto es el IVA del balón? a) 20, b) 145, c) 325

2) ¿Cuál es el precio final con IVA del balón? a) 125, b) 200, c) 145

Given a point translated from A(1,2) to B(4,4). If a point C at (0,0) is translated in the same way, what will be its new endpoints?
A.(−3,−2)

B.(3,2)

C.(2,2)

D.(3,3)
please help

Answers

Answer:

B. (3,2)

Step-by-step explanation:

Step 1) When shifting from A(1,2) to B(4,4), the point shifted 3 units to the right (which means x=3) and 2 units upwards (which means y=2).

Step 2) So when you apply the same movements to point C(0,0), the new point will be (3,2).

See the diagram below. Step 1 is the graph on the left. Step 2 is the graph on the right. The movement is colored in green. Hope this helps!

Estimate The Product of 62.375 and 9 (I Need A Clear Answer, DO NOT PUT "SORRY I DONT KNOW BLAH BLAH BLAH I NEED A NICE AND CLEAR QUESTION )

Answers

Sorry don’t know
Joking so i will round to 1 sig fig
So 60 and 10 product is times
60x10=600
when estimating say what you are rounding to

What is the common difference for this arithmetic sequence?
31, 48, 65, 82, ...

Answers

Answer:

d = 17

Step-by-step explanation:

The given arithmetic sequence is :

31, 48, 65, 82, ...

We need to find the common difference for this sequence.

First term, a₁ = 31

Second term, a₂ = 48

Common difference = a₂-a₁

= 48-31

= 17

So, the common difference for this arithmetic sequence is equal to 17.

Find the product. 4 X 0.23

Answers

Answer:

0.92

Step-by-step explanation:

1

0.23

x. 4

———

0.92

Hope it helps

Here is a circle.
The diameter of the circle is 9 cm.
Work out the circumference of this circle.
Give your answer correct to 3 significant figures.
12.11%2S:

Answers

Radius is half d so r us 4.5
Formula is 2x pi x r
So 28.3 to 3 s.f.

A bullet is fired straight upward with an initial speed of 720 ft/s. It’s path is modeled by the equation h=-16t^2 + 720t, where h is the height of the bullet t seconds after it was fired. When does the bullet reach a height of 4,000 feet?

Answers

Answer:

The bullet reaches a height of 4000 feet after 6.49 seconds, and then, coming back down, after 38.5 seconds.

Step-by-step explanation:

Solving a quadratic equation:

Given a second order polynomial expressed by the following equation:

[tex]ax^{2} + bx + c, a\neq0[/tex].

This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

The height of the bullet after t seconds is given by:

[tex]h(t) = -16t^2 + 720t[/tex]

When does the bullet reach a height of 4,000 feet?

This is t for which [tex]h(t) = 4000[/tex]. So

[tex]4000 = -16t^2 + 720t[/tex]

[tex]16t^2 - 720t + 4000 = 0[/tex]

Dividing by 16

[tex]t^2 - 45t + 250 = 0[/tex]

So [tex]a = 1, b = -45, c = 250[/tex]

[tex]\bigtriangleup = b^{2} - 4ac = (-45)^2 - 4(1)(250) = 1025[/tex]

[tex]t_{1} = \frac{-(-45) + \sqrt{1025}}{2} = 38.5[/tex]

[tex]t_{2} = \frac{-(-45) - \sqrt{1025}}{2} = 6.49[/tex]

The bullet reaches a height of 4000 feet after 6.49 seconds, and then, coming back down, after 38.5 seconds.

Write these numbers in standard form.
seven hundred and forty thousand

Answers

Answer:

740,000

Step-by-step explanation:

that is standered form yuh

Standard form 7.4*10^5

Write these numbers in order, starting with the smallest.
0.78
0.607
5.6
0.098
4.003

Answers

Answer:

0.098-0.607-0.78-4.003-5.6

Step-by-step explanation:

The numbers in orders that starting with the smallest should be considered as the 0.098-0.607-0.78-4.003-5.6.

Calculation of the listing numbers:

Since the list of the number should be like

0.78

0.607

5.6

0.098

4.003

So here we sequence the numbers from the smallest to the largest

So it should be like 0.098-0.607-0.78-4.003-5.6.

Hence, The numbers in orders that starting with the smallest should be considered as the 0.098-0.607-0.78-4.003-5.6.

Learn more about numbers here: https://brainly.com/question/24571514

asking for the “x” in simplest form please help!!

Answers

Answer:

x = -0.441 and x = -2.359

Step-by-step explanation:

The given equation is :

[tex]2(5x+7)^2-13=33[/tex]

Adding 13 to both sides of the equation.

[tex]2(5x+7)^2-13+13=33+13\\\\2(5x+7)^2=46\\\\(5x+7)^2=23[/tex]

So,

[tex]5x+7=\sqrt{23}\\\\5x+7=\pm4.795\\\\5x=4.795-7, 5x=-4.795-7\\\\5x=-2.205, 5x = -11.795\\\\x=-0.441, x=-2.359[/tex]

So, the solution of the given equation is x = -0.441 and x = -2.359.

The dry cleaning fee for three pairs of pants is $18. How much will it cost to clean 11 pairs of pants?

Answers

Answer: Constant of proportionality is $6 for one pair and cost of dry cleaning 11 pairs of pants is $66.
11 pairs of pants would equal $66

$18/3=6
$6 per one pair of pants
6 times 11= 66
$66

Hope this helps! Have a great day :)

John was adding Rational Numbers. He showed his work below. What was John's error?

Explain to John how to solve it correctly.

Adding Rational Numbers Error.

Answers

Answer:

-5 3/5

Step-by-step explanation:

John's error was in adding the whole number and fractional portions separately, the fractions must be converted to improper fractions with common denominators to be added or subtracted properly so

(-7 4/5) + (2 1/5), convert to improper fractions

-39/5 + 11/5, both fractions have common denominator so we can continue

-39 + 11 = -28, so -39/5 + 11/5 = -28/5, convert back to proper fractions

-28/5 = (-25/5) + (-3/5) = -5 3/5

Find the next three terms: −14,−17,−20,−23,...

Answers

Answer:

-26, -29, -32

Have a great day!

Step-by-step explanation:

The period between two numerals is identified as a decimal point. true or false?

Answers

Answer: TRUE!

Step-by-step explanation: Hope this helps!

Answer: True

Step-by-step explanation:

what is the equation​

Answers

Answer:

n = -7

Step-by-step explanation:

3n-27-2n-8=6n

n-35=6n

-35=5n

n=-7

11
A blue dress is marked down 15%. What is the sale price of the dress if the
regular price is $150?
Type your answer...

Answers

Answer:

45 dollar's ezzzzzzzzzzzzz

Please help me, thanks!!!!

Answers

What kind of math is this?

In a city election, 5,000 people voted for mayor. If the new mayor received 60% of the votes, how many people voted for the new mayor? Show how you know.

Answers

Answer:

3000

Step-by-step explanation:

100%-> 5000

60%->3000

Does this expression represent the sum 13.76 + 2.8?

fourteen and four hundredths

Answers

Answer:

False

Step-by-step explanation:

ir doesn't add up from what i saw

1/3 divided by what equals 1/12

Answers

Answer:

You cannot get a positive answer for this, nor can you divide. You could however divide 1/12 by 1/4 to get 1/3.

Step-by-step explanation

The number whose 1/3 is 1/12 is 4.

What is Division?

The fractional bar is a horizontal bar that divides the numerator and denominator of every fraction into these two halves.

The number of parts into which the whole has been divided is shown by the denominator. It is positioned in the fraction's lower portion, below the fractional bar.How many sections of the fraction are displayed or chosen is shown in the numerator. It is positioned above the fractional bar in the upper portion of the fraction.

Given:

let 1/3 divided by x equals 1/12.

So, 1/3 ÷ x = 1/12

and, 1/3 (1/x) = 1/12

1/x = 3/12

1/x = 1/4

x = 4

So, the required number is 4.

Learn more about Fraction here:

https://brainly.com/question/10354322

#SPJ2

GO ON
Page 4
Book 1
o
Which sentence from the article best explains why stunt performers are willing to do
such a dangerous job?

Answers

Answer:

for stunt performers and this is lady's work ( paragraph 6)

Can someone answer the question ??

Answers

Answer:
Faris' arrival time = 3:30 pm + 3 h 54 mnt = 7:24 pm
Step-by-step explanation:
Driving distance between Manchester to London = 195 miles
Coach left Manchester = 3.30 pm
Average speed of coach = 50 mph
Total time taken by the coach to reach the Manchester to London = 195÷50 = 3.9 h
0.9 h = 0.9×60 mnt = 54 mnt
Now,
3.9 h = 3 h 54 mnt
Hence Faris' arrival time in London = 3.30 pm + 3 h 54 mnt = 7.24 pm

Please help me......

Answers

Answer:

<BAC=1/2 <BOC=1/2 X=X/2(INSCRIBED ANGLE IS HALF OF CENTRAL ANGLE)

Round number 245-320

Answers

Answer:

300

Step-by-step explanation:

if you mean, 245.320

How do I evaluate this using trigonometric substitution?

∫dx/(81x^2+4)^2

Answers

Answer:

[tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]

General Formulas and Concepts:

Alg I

Terms/CoefficientsFactorExponential Rule [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]

Pre-Calc

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

a is a legb is a legc is hypotenuse

Trigonometric Ratio: [tex]\displaystyle sec(\theta) = \frac{1}{cos(\theta)}[/tex]

Trigonometric Identity: [tex]\displaystyle tan^2\theta + 1 = sec^2\theta[/tex]

TI: [tex]\displaystyle sin(2x) = 2sin(x)cos(x)[/tex]

TI: [tex]\displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}[/tex]

Calc

Integration Rule [Reverse Power Rule]:                                                                [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

IP [Addition/Subtraction]:                                                             [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

U-Substitution

U-Trig Substitution: x² + a²x = atanθ

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}[/tex]

Step 2: Identify Sub Variables Pt.1

Rewrite integral [factor expression]:

[tex]\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}[/tex]

Identify u-trig sub:

[tex]\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta[/tex]

Later, back-sub θ (integrate w/ respect to x):

[tex]\displaystyle tan\theta = \frac{9x}{2} \rightarrow \theta = arctan(\frac{9x}{2})[/tex]

Step 3: Integrate Pt.1

[Int] Sub u-trig variables:                                                                                 [tex]\displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]:                                                                           [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex][Int] Evaluate exponents:                                                                                [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta[/tex][Int] Factor:                                                                                                      [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta[/tex][Int] Rewrite [TI]:                                                                                              [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta[/tex][Int] Evaluate exponents:                                                                                [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]:                                                                          [tex]\displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta[/tex][Int] Divide [ER - D]:                                                                                         [tex]\displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta[/tex][Int] Rewrite [TR]:                                                                                            [tex]\displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta[/tex][Int] Rewrite [TI]:                                                                                              [tex]\displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]:                                                                          [tex]\displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta[/tex][Int] Rewrite [Int Prop - A/S]:                                                                          [tex]\displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta][/tex]  

Step 4: Identify Sub Variables Pt.2

Determine u-sub for trig int:

u = 2θ

du = 2dθ

Step 5: Integrate Pt.2

[Ints] Rewrite [Int Prop - MC]:                                                                       [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta][/tex][Int] U-Sub:                                                                                                     [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta][/tex][Ints] Integrate [Trig/Int Rule - RPR]:                                                             [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C][/tex][Expression] Back Sub:                                                                                 [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C][/tex][Exp] Rewrite [TI]:                                                                                           [tex]\displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C][/tex][Exp] Multiply:                                                                                                 [tex]\displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C][/tex][Exp] Back Sub:                                                                                             [tex]\displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C][/tex]

Step 6: Triangle

Find trig values:

[tex]\displaystyle tan\theta = \frac{9x}{2}[/tex]

[tex]\displaystyle \theta = arctan(\frac{9x}{2})[/tex]

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg a = 2

Leg b = 9x

Leg c = ?

Sub variables [PT]:                                                                                         [tex]\displaystyle 2^2 + (9x)^2 = c^2[/tex]Evaluate exponents:                                                                                      [tex]\displaystyle 4 + 81x^2 = c^2[/tex][Equality Property] Square root both sides:                                                  [tex]\displaystyle \sqrt{4 + 81x^2} = c[/tex]Rewrite:                                                                                                           [tex]c = \sqrt{81x^2 + 4}[/tex]

Substitute into trig ratios:

[tex]\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}[/tex]

[tex]\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}[/tex]

Step 7: Integrate Pt.3

[Exp] Sub variables [TR]:                                                                               [tex]\displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C][/tex][Exp] Multiply:                                                                                                 [tex]\displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C][/tex][Exp] Distribute:                                                                                             [tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]
Other Questions
Which phrase completes the diagram ?1. The Red Scare . 1919-1920 2. Outcomes of Demobilization. 1919-19213.Reasons for the Great Depression of the 1930s4. Reasons for the Stock Market Crash of 1929 What are some of the challenges facing the Southern states in terms of rebuilding their infrastructure? Find the perimeter of the rectangle. 11. 13 cm Area = 52 cm2 f/5 = -8I don't know what this means and it is really confusing me The difference between 3 times a number x and 2 is 19. What is the value of x? If y varies inversely as x, and y =23 when x=8, find y when x=4 . How does Crevecoeur contradict his own observations about America's diversity and equality? Select all that apply. plssss help - (( 2x+8=x+12)) Answer the question quickly please 3y=24 Which word in the sentence below is spelled incorrectly? Check the calander; what day of the week does the second fall on? What was Japan's original name Combine like terms.y +2+8(y + 8) =Please i need this for now Tobias bought four video games for $34. 10, $25.50, $13.25, and $9.99,dileTobias spend?How much moneyA. $172.75B. $99.40C. $82.84OD. $61.74 I will mark as brainliest if anyone could help me, :) How did the oil industry alter Louisianas environment? Angie's rotation maps triangle XYZ to triangle X'Y'Z'. X(3,6) maps to X'(-3, 6) Y(1, -2) maps to Y'(-1, 2) Z(-1,-5) maps to Z (1,5) Which describes the rotation? 180 rotation O 270 clockwise rotation 90 counterclockwise rotation 90 clockwise rotation You jog 3 kilometers in 12 minutes. At this rate, how long will it take you to complete a 7-kilometer race? Before the 1st century AD, Buddhist art relied onO A. symbolismOB. Chinese materialsC. Buddha statuesO D. Greek styles Having fun with friends most impacts your social health. solve this problem. -16r=272