Find m angle JRQ if m angle SRQ=166^ and m angle SRJ=110^

Find M Angle JRQ If M Angle SRQ=166^ And M Angle SRJ=110^

Answers

Answer 1

Answer:

[tex] \large{ \tt{❃ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]

[tex] \large{ \tt{❉ \: m \: \angle \:SRQ = m \: \angle \: SRJ\: + \: m \: \angle \:JRQ}}[/tex]

[tex] \large{ \tt{⟼ \: 166 \degree = 110 \degree + m \: \angle \: JRQ}}[/tex]

[tex] \large{ \tt{⟼ \: 166 \degree - 110 \degree = m \: \angle \: JRQ}}[/tex]

[tex] \boxed{ \large{ \tt{⟼ \: 56 \degree = m \: \angle \: JRQ}}}[/tex]

Our final answer is 56° . Hope I helped! Let me know if you have any questions regarding my answer! :)

Related Questions

Solve the equation 2sin^2(x) = 1 for x ∈ [-π,π], expressing all solutions as exact values. please help its urgent !!

Answers

Answer:

2sin.2(x) sd s

Step-by-step explanation:


Which statement is true regarding the functions on the
graph?

f(6) = g(3)
f(3) = g(3)
f(3) = g(6)
f(6) = g(6)

Answers

Answer:

f(3) = g(3)

Step-by-step explanation:

on the graph the only point, where both lines cross (both functions create the same functional value) is at x=3.

since both lines have the same y-value there, we express this in math by the "=" sign. and both functions have the same input value (x=3) there.

Last year, Manuel deposited $7000 into an account that paid 11% interest per year and $1000 into an account that paid 5% interest per year. No withdrawals were made from the accounts. Answer the questions below. Do not do any rounding. (a) What was the total interest earned at the end of year? (b) What was the percent interest for the total deposited?

Answers

Answer:

The total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.

Step-by-step explanation:

Given that last year, Manuel deposited $ 7000 into an account that paid 11% interest per year and $ 1000 into an account that paid 5% interest per year, and no withdrawals were made from the accounts, to determine what was the total interest earned at the end of year and what was the percent interest for the total deposited, the following calculations must be performed:

7000 x 0.11 + 1000 x 0.05 = X

770 + 50 = X

820 = X

8000 = 100

820 = X

820 x 100/8000 = X

82,000 / 8,000 = X

10.25 = X

Therefore, the total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.

If f(1) =160 and f(n+1)=-2f(n),
What is f(4)?

Answers

Answer:

f(n+1=-2f(n)

f(x)=-2f(n)

f(4)

f(4)=-2f(4)

Answer:

f(4) = - 1280

Step-by-step explanation:

Using the recursive rule and f(1) = 60 , then

f(2) = - 2f(1) = - 2 × 160 = - 320

f(3) = - 2f(2) = - 2 × - 320 = 640

f(4) = - 2f(3) = - 2 × 640 = - 1280

Two balls are drawn with replacement from a bag containing 12 red,3 white and 1 blue balls.what is the probability that both are red?​

Answers

The probability that both the balls are red = [tex]\bold{\frac{11}{20}}[/tex]

What is probability?

"Probability is a branch of mathematics which deals with finding out the likelihood of the occurrence of an event."

Formula of the probability of an event A is:

P(A) = n(A)/n(S)

where,  n(A) is the number of favorable outcomes, n(S) is the total number of events in the sample space.

What is the formula of combination?

"[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]"

For given question,

a bag contains 12 red, 3 white and 1 blue balls.

Total balls = 12 + 3 + 1

Total = 16

Two balls are drawn from a bag.

The number of possible ways of drawing 2 balls from the bag are:

Using combination formula,

[tex]^{16}C_2\\\\=\frac{16!}{2!(16-2)!}\\\\ =\frac{16!}{2!\times 12!}\\\\ =120[/tex]

So, n(S) = 120

Two balls are drawn with replacement from a bag.

We need to find the probability that both are red.

Let event A: both the balls are red

[tex]\Rightarrow n(A)=^{12}C_2[/tex]

Using combination formula,

[tex]^{12}C_2\\\\=\frac{12!}{2!\times (12-2)!}\\\\= \frac{12!}{2!\times 10!}\\\\ =66[/tex]

Using probability formula,

[tex]\Rightarrow P(A)=\frac{n(A)}{n(S)}\\\\\Rightarrow P(A)=\frac{66}{120}\\\\\Rightarrow P(A)=\frac{11}{20}[/tex]

Therefore, the probability that both the balls are red = [tex]\bold{\frac{11}{20}}[/tex]

Learn more about probability here:

brainly.com/question/11234923

#SPJ2

Your EZ Pass account begins with $80. It costs you $4/day. Write an equation
for the amount in your account (A) in terms of the number of days (D).

Answers

Answer:

The equation is [tex]A(d) = 80 - 4d[/tex]

Step-by-step explanation:

Linear function:

A linear function for the amount of money in an account after t days is given by:

[tex]A(d) = A(0) - md[/tex]

In which A(0) is the initial value and m is the daily cost.

Your EZ Pass account begins with $80. It costs you $4/day.

This means that [tex]A(0) = 80, m = 4[/tex]

So

[tex]A(d) = A(0) - md[/tex]

[tex]A(d) = 80 - 4d[/tex]

Starting from point A, a boat sales due south for 4 miles, then due east for 5 miles, then due south again for 6 miles. How far is the boat from point A?​

Answers

Answer:

17 miles

By adding the miles they have traveled, you get you total distance.

Multiply m and 6. Then, add 8.

Answers

Answer:

6m + 8 is the answer.

Step-by-step explanation:

( m x 6 ) + 8

= 6m + 8

Nikola thinks that the model that reflects the growth of smartphones shipped from manufacturers to stores around the world may be logistic rather than exponential. Do you agree with Nikola

Answers

Answer:

When most people have a smartphone, that is, the variable starts getting closer to its capacity, the demand will start to have a slight decrease, until it stabilizes, so yes, Nikola is correct.

Step-by-step explanation:

Exponential model:

The variable keeps growing consistently, at a fixed rate.

Logistic model:

The variable starts growing, but as it approaches a limit, for example, the carry capacity of an environment, the growth rate starts to decrease, until the variable stabilizes at a fixed value.

Growth of smartphones shipped from manufacturers to stores around the world.

When most people have a smartphone, that is, the variable starts getting closer to its capacity, the demand will start to have a slight decrease, until it stabilizes, so yes, Nikola is correct.

A robot that makes _/6 of a boat per day will make 5 boats in 6 days

Answers

For what I understand, if a robot was to make 5/6 of a boat per day, in 6 days it will have made 5 boats. The answer is 5

The triangles are similar by:
the ASA similarity theorem.
the SSS similarity theorem.
the AAS similarity theorem.
the AA similarity postulate.
the SAS similarity theorem.

Answers

Answer:

E. by the SAS similarity theorem.

Step-by-step explanation:

Included angle x° in ∆ ABC ≅ included angle x° in ∆EDC (vertical angles are equal)

DC/BC = 240/150 = 1.6

EC/AC = 320/200 = 1.6

This implies that the ratio of two corresponding sides of both triangles are the same.

Two triangles are considered similar to each other by the SAS similarity theorem of they have a corresponding included angle that is equal and two corresponding sides that are congruent to each other. Therefore, both triangles are similar by the SAS similarity theorem.

Use the probability distribution for the random variable x to answer the question. x 0 1 2 3 4 p(x) 0.12 0.2 0.2 0.36 0.12 Calculate the population mean, variance, and standard deviation. (Round your standard deviation to three decimal places.)

Answers

Answer:

[tex]\mu =2.16[/tex] --- Mean

[tex]\sigma^2 = 1.4944[/tex] -- Variance

[tex]\sigma = 1.222[/tex] --- Standard deviation

Step-by-step explanation:

Given

[tex]\begin{array}{cccccc}x & {0} & {1} & {2} & {3} & {4} \ \\ P(x) & {0.12} & {0.2} & {0.2} & {0.36} & {0.12} \ \end{array}[/tex]

Solving (a): The population mean

This is calculated as:

[tex]\mu = \sum x * P(x)[/tex]

So, we have:

[tex]\mu =0*0.12 + 1 * 0.2 + 2 * 0.2 + 3 * 0.36 + 4 * 0.12[/tex]

[tex]\mu =2.16[/tex]

Solving (b): The population variance

First, calculate:

[tex]E(x^2)[/tex] using:

[tex]E(x^2) = \sum x^2 * P(x)[/tex]

So, we have:

[tex]E(x^2) = 0^2*0.12 + 1^2 * 0.2 + 2^2 * 0.2 + 3^2 * 0.36 + 4^2 * 0.12[/tex]

[tex]E(x^2) =6.160[/tex]

So, the population variance is:

[tex]\sigma^2 = E(x^2) - \mu^2[/tex]

[tex]\sigma^2 = 6.16 - 2.160^2[/tex]

[tex]\sigma^2 = 6.160 - 4.6656[/tex]

[tex]\sigma^2 = 1.4944[/tex]

Solving (c): The population standard deviation

This is calculated as:

[tex]\sigma = \sqrt{\sigma^2}[/tex]

[tex]\sigma = \sqrt{1.4944}[/tex]

[tex]\sigma = 1.222[/tex]

Suppose the mean income of firms in the industry for a year is 95 million dollars with a standard deviation of 11 million dollars. If incomes for the industry are distributed normally, what is the probability that a randomly selected firm will earn less than 114 million dollars

Answers

Answer:

95.73%

Step-by-step explanation:

Given data:

mean μ= 95

standard deviation, σ = 11

to calculate, the probability that a randomly selected firm will earn less than 114 million dollars;

Use normal distribution formula

[tex]P(X<114)=P(Z<\frac{X-\mu}{\sigma} )[/tex]

Substitute the required values in the above equation;

[tex]P(X<114)=P(Z<\frac{114-95}{11} )\\P(X<114)=P(Z<1.7272)\\P(X<114)=0.9573[/tex]

Therefore, the probability that a randomly selected firm will earn less than 114 million dollars = 95.73%

Which operation will solve the following word problem? Andrea's class has 20 students and half of the students are studying math, half of these are studying word problems. How many are studying word problems?


Addition


Subtraction


Division


Multiplication

Answers

divide .2÷20 =10 10 students are Studing word problems

Which descriptions from the list below accurately describe the relationship
between AABC and ADEF? Check all that apply.
E
37
B
10
8
5 37
4
534 D
A 3 C
53°
D
6
F
A. Same area
O B. Same size
C. Congruent
D. None of the above
Hi

Answers

Answer:

D. None of the above

Step-by-step explanation:

Both triangles have the same shape but different size. Their area cannot be the same. Also, the ratio of their corresponding side lengths are the same.

Thus:

8/4 = 10/5 = 6/3 = 2

This implies that both triangles are similar.

Therefore, both triangles cannot have the same area, they are not of the same size and cannot be congruent to each other.

the volume of a rectangular pyramid with a length of 7 feet, a width of 6 feet, and a height of 4.5 feet.

Answers

Answer:

Volume = 63 feet

Step-by-step explanation:

To find the volume of a cube or a rectangular prism, the formula is

(L x W x H)/3. In other words, it is the length of the prism, times the width of the prism, times the height of the prism, whole divided by three, since it has a "triangular shape."

Let's substitute in values for these letters, L, W, and H. You said the length was 7, the width was 6, and the height was 4.5. Therefore, it will result in

(7 x 6 x 4.5)/3. That results in 189/3, which is 63.

Hope this helped!!!

rotation 90 degrees counterclockwise about the origin​

Answers

Answer:

Point W = (-3, 3)Point X = (-3, 2)Point V = (-2, 3)

The rotation rule states that rotation 90° counterclockwise means (x, y) = (-y, x)

The new points would be equal to:

Point W' = (-3, -3)Point X' = (-2, -3)Point V' = (-3, -2)

Try graphing it to see if the new points make sense(because I'm not too sure :\)

can someone tell me where i can get a graph that shows this:
Weight Not Over (lbs.) Price
0 $0
1 $2.69
2 $3.17
3 $3.65
4 $4.13
5 $4.61
6 $5.09
7 $5.57
8 $6.03
9 $6.49
10 $6.95

Answers

Answer:

Note: See the attached photo for the graph showing Weight Not Over (lbs.) vs Price($). The attached excel file also shows the same graph with the data used to draw it in the excel.

Step-by-step explanation:

In the attached graph, Weight Not Over (lbs.) is on the horizontal axis while Price ($) is on the vertical axis.

From the attached, it can be observed that the graph shows an upward trend. That implies that there is a positive relation between Weight Not Over (lbs.) and Price. That is, as Weight Not Over (lbs.) rises, the Price also rises.

Use implicit differentiation to find an equation of the tangent line to the curve at the given point. x2 + 6xy + 12y2 = 28, (2, 1) (ellipse)

Answers

Answer:

The equation of the tangent line is [tex]y = -\frac{5}{18}\cdot x +\frac{14}{9}[/tex].

Step-by-step explanation:

Firstly, we obtain the equation for the slope of the tangent line by implicit differentiation:

[tex]2\cdot x + 6\cdot y + 6\cdot x \cdot y' + 24\cdot y \cdot y' = 0[/tex]

[tex]2\cdot (x + 3\cdot y) + 6\cdot (x + 4\cdot y) \cdot y' = 0[/tex]

[tex]6\cdot (x + 4\cdot y) \cdot y' = -2\cdot (x+3\cdot y)[/tex]

[tex]y' = -\frac{1}{3}\cdot \left(\frac{x + 3\cdot y}{x + 4\cdot y} \right)[/tex] (1)

If we know that [tex](x,y) = (2, 1)[/tex], then the slope of the tangent line is:

[tex]y' = -\frac{1}{3}\cdot \left(\frac{2+3\cdot 1}{2 + 4\cdot 1} \right)[/tex]

[tex]y' =-\frac{5}{18}[/tex]

By definition of tangent line, we determine the intercept of the line ([tex]b[/tex]):

[tex]y = m\cdot x + b[/tex]

[tex]b = y - m\cdot x[/tex] (2)

If we know that [tex](x,y) = (2,1)[/tex] and [tex]m = -\frac{5}{18}[/tex], then the intercept of the tangent line is:

[tex]b = 1 - \left(-\frac{5}{18} \right)\cdot (2)[/tex]

[tex]b = \frac{14}{9}[/tex]

The equation of the tangent line is [tex]y = -\frac{5}{18}\cdot x +\frac{14}{9}[/tex].

Which of the following must be equal to 30% of x?
3x
(A)
1,000
3x
(B)
100
3x
(C)
10
(D) 3x

Answers

Answer:

You can go ahead with option D

Step-by-step explanation:

30% of x will be 3x

Suppose a large telephone manufacturer has a problem with excessive customer complaints and consequent returns of the phones for repair or replacement. The manufacturer wants to estimate the magnitude of the problem in order to design a quality control program. How many telephones should be sampled and checked in order to estimate the proportion defective to within 9 percentage points with 89% confidence

Answers

Answer:

80 telephones should be sampled

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is of:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

89% confidence level

So [tex]\alpha = 0.11[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.11}{2} = 0.945[/tex], so [tex]Z = 1.6[/tex].

How many telephones should be sampled and checked in order to estimate the proportion defective to within 9 percentage points with 89% confidence?

n telephones should be sampled, an n is found when M = 0.09. We have no estimate for the proportion, thus we use [tex]\pi = 0.5[/tex]

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.09 = 1.6\sqrt{\frac{0.5*0.5}{n}}[/tex]

[tex]0.09\sqrt{n} = 1.6*0.5[/tex]

[tex]\sqrt{n} = \frac{1.6*0.5}{0.09}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.6*0.5}{0.09})^2[/tex]

[tex]n = 79.01[/tex]

Rounding up(as 79 gives a margin of error slightly above the desired value).

80 telephones should be sampled

what was the original price of the car? MUST SHOW ALL STEPS OF THE PROCESS.

Answers

Answer:

19219.48

Step-by-step explanation:

16540x0.162+16540

The original price would be 100%

It was marked down 16.2%

100 % - 16.2% = 83.8%

The price you paid was 83.8% of the original price.

To find the original price divide the amount you paid by the percentage of the original price:

16,540 / 0.838 = 19.737.47

Original price: $19,737.47

if the mean of a random variable X is 45 what will be the mean of the sampling distribution of the sample mean?

Answers

Answer:

The mean of the sampling distribution is always equal to the mean of the population.

The mean of the sampling distribution of the sample mean is 45.

Given that,

The mean of the random variable X is 45.We need to find out the mean of the sampling distribution.

Based on the above information, the calculation is as follows:

= mean of the random variable X

= 45

As the sampling distribution mean should always be equivalent to the population mean.

Therefore we can conclude that the mean of the sampling distribution of the sample mean is 45.

Learn more: brainly.com/question/521501

Chloe is working two summer jobs, landscaping and clearing tables. She must work no less than 12 hours altogether between both jobs in a given week. Write an inequality that would represent the possible values for the number of hours landscaping, ll, and the number of hours clearing tables, cc, that Chloe can work in a given week.

Answers

Answer:

[tex] L + C \ge 12 [/tex]

Step-by-step explanation:

L = hours landscaping

C = hours clearing tables

The sum of the hours must be no less than 12, so it must be 12 or more.

[tex] L + C \ge 12 [/tex]

SCALCET8 3.10.025. Use a linear approximation (or differentials) to estimate the given number. (Round your answer to five decimal places.) 3 126

Answers

Answer:

[tex]f(126) \approx 5.01333[/tex]

Step-by-step explanation:

Given

[tex]\sqrt[3]{126}[/tex]

Required

Solve using differentials

In differentiation:

[tex]f(x+\triangle x) \approx f(x) + \triangle x \cdot f'(x)[/tex]

Express 126 as 125 + 1;

i.e.

[tex]x = 125; \triangle x = 1[/tex]

So, we have:

[tex]f(125+1) \approx f(125) + 1 \cdot f'(125)[/tex]

[tex]f(126) \approx f(125) + 1 \cdot f'(125)[/tex]

To calculate f(125), we have:

[tex]f(x) = \sqrt[3]{x}[/tex]

[tex]f(125) = \sqrt[3]{125}[/tex]

[tex]f(125) = 5[/tex]

So:

[tex]f(126) \approx f(125) + 1 \cdot f'(125)[/tex]

[tex]f(126) \approx 5 + 1 \cdot f'(125)[/tex]

[tex]f(126) \approx 5 + f'(125)[/tex]

Also:

[tex]f(x) = \sqrt[3]{x}[/tex]

Rewrite as:

[tex]f(x) = x^\frac{1}{3}[/tex]

Differentiate

[tex]f'(x) = \frac{1}{3}x^{\frac{1}{3} - 1}\\[/tex]

Using law of indices, we have:

[tex]f'(x) = \frac{x^\frac{1}{3}}{3x}[/tex]

So:

[tex]f'(125) = \frac{125^\frac{1}{3}}{3*125}[/tex]

[tex]f'(125) = \frac{5}{375}[/tex]

[tex]f'(125) = \frac{1}{75}[/tex]

So, we have:

[tex]f(126) \approx 5 + f'(125)[/tex]

[tex]f(126) \approx 5 + \frac{1}{75}[/tex]

[tex]f(126) \approx 5 + 0.01333[/tex]

[tex]f(126) \approx 5.01333[/tex]

If f(x) = 4^x-8 and g(x) = 5x+6, find (f + g)(x)
A. (F+g)(x) = -4^x - 5x + 2
B.(F+g)(x) = 4^x + 5x - 2
C.(F+g)(x) = 4^x - 3x + 6
D.(F+g)(x) = 9x - 2

Answers

Hey there!

We are given two functions - one is Exponential while the another one is Linear.

[tex] \large{ \begin{cases} f(x) = {4}^{x} - 8 \\ g(x) = 5x + 6 \end{cases}}[/tex]

1. Operation of Function

(f+g)(x) is a factored form of f(x)+g(x). We can common factor out x. Therefore:

[tex] \large{(f + g)(x) = f(x) + g(x)}[/tex]

2. Substitution

Next, we substitute f(x) = 4^x+8 and g(x) = 5x+6.

[tex] \large{(f + g)(x) = ( {4}^{x} - 8) + (5x + 6)}[/tex]

3. Evaluate/Simplify

Cancel out the brackets and combine like terms.

[tex] \large{(f + g)(x) = {4}^{x} - 8 + 5x + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 8 + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 2}[/tex]

4. Final Answer

(f+g)(x) = 4^x+5x-2

Which of the following rational functions is graphed below?

Answers

Answer:

the answer is d

Step-by-step explanation:

because when we put-1 from x the equation hasn't any value

What is the equation of the line that is perpendicular to
and has the same y-intercept as the given line?
(0,0)
(5,0)
O y = x+1
O y = x+5
o y = 5x + 1
O y = 5x + 5
-6 -5 -4 -3 -2 -1
23
4 5 6
Mark this and return
Save and Exit
Nyt
Submit

Answers

Answer:

y = 5x + 1

Step-by-step explanation:

Given the coordinate points (0,1) and (5,0)

First, get the slope

Slope m =(0-1)/5-0

m = -1/5

Since the required line is perpendicular, then the required slope is;

M = -1/(-1/5)

M = 5

Since 1the y intecept id (0,1) i.e. 1

Required equation is y = mx+b

y = 5x + 1

This gives the required equation

Note that the coordinate (0,1) was used instead os (0,0)

The accompanying data represent the homework scores for material for a random sample of students in a college algebra course.
36
47
54
58
60
66
66
68
69
70
72
75
77
77
78
78
78
79
79
79
79
79
80
82
84
85
86
86
86
87
89
89
91
92
92
93
93
94
96
99
​(a) Construct a relative frequency distribution with a lower class limit of the first class equal to 30 and a class width of 10.
(b) What is the probability a randomly selected student fails the homework​ (scores less than​ 70)? (The standard deviation is 13.64)
Simplify your answer to two decimal​ places.

Answers

Answer:

[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]

[tex]P(x < 70) = 0.225[/tex]

Step-by-step explanation:

Given

[tex]Lower = 30[/tex]

[tex]Width = 10[/tex]

Solving (a): The relative frequency table

First, we construct the frequency table using the given parameters.

[tex]\begin{array}{cc}{Class} & {Frequency} &{30-39} & {1} & {40-49} & {1} & {50 - 59} & {2} & {60 - 69} & {5} & {70 - 79} & {13} & {80 - 89} & {10} & {90 - 99} & {8} & {Total} & {40}\ \end{array}[/tex]

The relative frequency (RF) is calculated as:

[tex]RF = \frac{Frequency}{Total}[/tex]

Using the above formula to calculate the relative frequency, the relative frequency table is:

[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]

Solving (b): [tex]P(x < 70)[/tex]

To do this, we add up the relative frequencies of classes less than 70.

i.e.

[tex]P(x < 70) = [30 - 39] + [40 - 49] + [50 - 59] + [60 - 69][/tex]

So, we have:

[tex]P(x < 70) = 0.025 + 0.025 + 0.050 + 0.125[/tex]

[tex]P(x < 70) = 0.225[/tex]

Find the value of z such that 0.05 of the area lies to the right of z. Round your answer to two decimal places.

Answers

Answer:

[tex]z = 1.6[/tex]

Step-by-step explanation:

Given

[tex]Pr = 0.05[/tex]

Required

The z value to the right

The z value to the right is represented as:

[tex]P(Z > z)[/tex]

So, the probability is represented as:

[tex]P(Z > z) = 0.05[/tex]

From z table, the z value that satisfies the above probability is:

[tex]z = 1.645[/tex]

[tex]z = 1.6[/tex] --- approximated

Other Questions
True or false: Verbs that indicate movement or place of origin are typically used with a preposition. A car hurtles off a cliff and crashes on the canyon floor below. Identify the system in which the net momentum is zero during the crash. 41:41How many solutions does this linear system have?y=-6x+2.-12x - 2y = -4O one solution: (0,0)one solution: (1, -4)O no solutionO infinite number of solutionsAnswer is C Tu fiesta de cumpleaos es el domingo. Hay 30 amigos y amigas en la fiesta. Tu mam decide decides donde quieres la fiesta en la casa.Mam: Dnde quieres la fiesta en la casa?Lisa:En el garaje, hay ventanas y una puerta grande.O En el garaje, hay clsets y una puerta pequea.O En el dormitorio, hay ventanas y cortinas.En el dormitorio, hay una puerta grande. URGENTTTTTTTT!! HELP QUICK PLZZZZZZZZz Men in both the Chickasaw and Choctaw cultures were required to You own a portfolio equally invested in a risk-free asset and two stocks. One of the stocks has a beta of 1.25 and the total portfolio is equally as risky as the market. What must the beta be for the other stock in your portfolio? I mix together 50.0 mL of 0.100 M NaIO3, 50.00 mL of 0.100 M NaOH, and 10.0 mL of 0.100 M HIO3. What is the pH of the mixture A 56 year old woman is complaining of vaginal dryness and dyspareunia. She is prescribed this medicine with lesser side effects The blurring of lines between the state and a special interest group in which a close alliance develops is called Find x and yHelp me please Which of the following is the logical conclusion to the conditional statements below? a arrow b mb arrow c A car traveling 7/10 of a mile per minute will travel _ miles in 10 minutes In the cross section of the front pictured here A. cumuliform clouds tend to form with precipitation being relatively short-lived. B. cumuliform clouds tend to form with precipitation being of relatively long duration. C. stratiform clouds tend to form with precipitation being relatively short-lived. D. stratiform clouds tend to form with precipitation being of relatively long duration Gram-negative cell wall contains an outer membrane called the lipopolysaccharide (LPS). This LPS is found in the outer leaflet of the outer membrane. The innermost portion of the LPS is called Lipid A, which is an endotoxin. When are endotoxins released from a bacterial cell? IM TIMED HALP!!!Relationship A and Relationship B show the change in the temperature for a pot of water on the stove. Relationship B has a greater rate than Relationship A.This table represents Relationship A.Time (min) 2 3 7 9Temperature (C) 61.3 64.9 79.3 86.5What table could represent Relationship B?Time (min) 2 3 7 9Temperature (C) 61.0 64.6 79.0 86.2Time (min) 2 3 7 9Temperature (C) 60.6 64.3 79.1 86.5Time (min) 2 3 7 9Temperature (C) 61.0 64.4 78.0 84.8Time (min) 2 3 7 9Temperature (C) 61.8 65.3 79.3 86.3 vector A has a magnitude of 8 unit make an angle of 45 with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B? x + 2y when x = 1 and y = 4 Distribute an amount of Rs. 200 between Raheem and Usman such that Raheemgets RS 50 more than twice as much as Usman gets . THREE USES THAT CELLS MAKE OF THE ENERGY RELEASED BY ATP