Answer:
See attached picture.
Explanation:
Hello.
As you can see on the attached picture, this Lewis structure requires all the elements to attain eight electrons after bonding, that is why the phosphorous is bonded with the two carbon atoms via a single bond with the carbon having the three fluorine atoms and a double bond with the carbon having the two carbon atoms.
Such arrangement is due to the fact that:
- P gets eight electrons by obtaining three from the two sided carbon atoms.
- The first carbon gets eight electrons from its initial four, three provided by each surrounding fluorine and one from the central phosphorous.
- Each fluorine gets eight valence electrons from their initial seven and one from the available carbon atoms.
Best regards.
Oxides of sulfur are important in atmospheric pollution, arising particularly from burning coal. Use the thermodynamic data at 25 C given in the appendix to answer the following questions. a. In air, the oxidation of SO2 can occur: 1 2O2(g) SO2(g) S SO3(g). Calculate rG 298
Answer:
-70.87 kJ
Explanation:
Let's consider the following balanced equation.
1/2 O₂(g) + SO₂(g) ⇄ SO₃(g)
We can calculate the standard Gibbs free energy of reaction (ΔG°r) from the standard Gibbs free energies of formation (ΔG°f) using the following expression.
ΔG°r = 1 mol × ΔG°f(SO₃(g)) - 1/2 mol × ΔG°f(O₂(g) - 1 mol × ΔG°f(SO₂(g))
ΔG°r = 1 mol × (-371.06 kJ/mol) - 1/2 mol × 0 kJ/mol - 1 mol × (-300.194 kJ/mol)
ΔG°r = -70.87 kJ
pls help me with this!!
Answer:
B. 65
Explanation:
arrange your numbers as:
63,64,66,69
add 64 and 66 together to get 130 then divide by 2
-or just think about what number is between 64 and 66
What is the Theoretical yeild of CaCO3 from 2 g of CaCl2 and 2.5 g of K2CO3
Answer:
Theoretical yield of CaCO₃ is 2.002 g.
Explanation:
Given data:
Mass of K₂CO₃ = 2.5 g
Mass of CaCl₂ = 2 g
Theoretical yield of CaCO₃ = ?
Solution:
Chemical equation:
K₂CO₃ + CaCl₂ → CaCO₃ + 2KCl
Number of moles of K₂CO₃:
Number of moles = mass/molar mass
Number of moles = 2.5 g/ 138.205 g/mol
Number of moles = 0.02 mol
Number of moles of CaCl₂:
Number of moles = mass/molar mass
Number of moles = 2 g/ 110.98 g/mol
Number of moles = 0.02 mol
Now we will compare the moles of CaCO₃ with K₂CO₃ and CaCl₂.
CaCl₂ : CaCO₃
1 : 1
0.02 : 0.02
K₂CO₃ : CaCO₃
1 : 1
0.02 : 0.02
Theoretical yield of CaCO₃:
Mass = number of moles × molar mass
Mass = 0.02 mol × 100.1 g/mol
Mass = 2.002 g
Theoretical yield of CaCO₃ is 2.002 g.
An atom has 9 electrons and 9 protons at the start. If it loses 2 electrons, the net charge on the atom will be
If it loses 2 electrons, the net charge on the atom will be 2. You should first see if the question is already answered next time.
how much calcium chloride is required to make 1 Liter of a .10M solution?
Answer:
110.91 g of CaCl2
Explanation:
11.9 grams of CaCl₂ is required to make 1 Liter of 0.1M solution.
Calculating the amount of CaCl₂ required:
We first need to calculate the molecular weight of calcium chloride CaCl₂.
The atomic weight of Ca = 40.01
and the atomic weight of Cl₂ = 2×35.45 = 70.90
So, the molecular weight of CaCl₂ = 40.01 + 70.90 = 110.91
This means that 110.91 g of CaCl₂ mixed with enough water will produce 1Liter of 1M solution.
Now, to calculate the amount of CaCl₂ required to make 1 Liter of 0.1M solution we use:
grams of chemical = (molarity of solution in mole/liter) x (MW of chemical in g/mole) x (ml of solution) ÷ 1000 ml/liter
= 0.1 × 110.91 × 1000 ÷ 1000
= 11.09 grams
So, 11.09 grams of CaCl₂ will be used.
Learn more about molarity:
https://brainly.com/question/12127540?referrer=searchResults
What are the physical properties of chlorine?
Answer:
The Physical Properties of Chlorine are as follows:
Color: Greenish-yellow.
Phase: Gas.
Odor: Disagreeable, suffocating smell.
Density: About two and one-half times as dense as air.
Solubility: Is soluble in water. ...
Boiling Point: The boiling point of chlorine is –34.05°C.
Melting Point: The melting point is –101°C.
Explanation:
Please mark me as the brainliest answer and please follow me for more answers
Match the term with the definition. (4 points)
Column A
1.
Liquid
:
Liquid
2.
Plasma
:
Plasma
3.
Solid
:
Solid
4.
Gas
:
Gas
Column B
a.
has lots of space between the charged particles
b.
has lots of space between particles and is easily compressible
c.
flows easily but is difficult to compress
d.
does not flow easily and is difficult to compress
Answer:
1 - does not flow easily and is difficult to compress
2 -does not flow easily and is difficult to compress.
3 -has lots of space between the charged particles.
4-flows easily but is difficult to compress.
Explanation:
Define matrer?
a)Electrical conductivity
b)Anything that takes Iness and space
c) Something that doesn't take up space.
Answer:
if you are asking matter then
Explanation:
Matter is defined as anything that has mass and takes up space (it has volume).
The principal quantum number for the outermost electrons in a Cl atom in the ground state is ________.
Answer:
The principal quantum number for the outermost electrons in a Cl atom in the ground state is 3.
Explanation:
By using the Pauling distribution the chlorine atom has an electronic set of [tex]3s1^{2}[/tex]
With n=3 for an orbital S, l = 0 , ml = 0 and ms = ± 1/2
Therefore the final answer is 3
Why is the wavelength of 633 nm used to analyze the standard solutions and drink samples?
Group of answer choices
The lower the wavelength, the blue solutions will absorb more light.
Corresponding with orange light, is the wavelength that blue solutions absorb the most.
Corresponding with blue light, is the wavelength that blue solutions absorb the most.
The higher the wavelength, the blue solutions will absorb more light.
Answer:
Corresponding with orange light, is the wavelength that blue solutions absorb the most.
Explanation:
When light is passed through a solution of a particular color, light of other wavelength or color, is absorbed and disappears, whereas the wavelength of light corresponding to the color of that solution is transmitted. The color of light absorbed the most is that which is complementary (opposite it in the color wheel) to the light which is transmitted. In a color wheel, blue is complementary to orange color, red is complementary to green and yellow is complementary to violet.
Therefore, in a blue substance (as in the blue solutions), there would be a strong absorbance of the complementary color of light, orange. Since the wavelength of orange color of light is between 600 - 640 nm, with maximum absorbance of orange light occurring around 633 nm, the wavelength of 633 nm is used to analyze the standard solutions and drink samples.
Calculate the density of the following material: 500 kg gold with a volume of 0.026 m³.
Answer:
The answer is 19230.8 kg/m³Explanation:
The density of a substance can be found by using the formula
[tex]density = \frac{mass}{volume} \\[/tex]
From the question
mass = 500 kg
volume = 0.026 m³
We have
[tex]density = \frac{500}{0.026} \\ = 19230.769230...[/tex]
We have the final answer as
19230.8 kg/m³Hope this helps you
What are differences between Jupiter and Saturn’s moons
Answer: Well one difference is that Jupiter's moons are large and are closer to each other. Also Jupiter has more moons than Saturn.
Explanation:
Answer:
The difference are :
jupiter moon saturn moon
1.jupitor moon has 4 1.saturn moon
moon has 7 moon
which of the substances created a chemical change
Answer:
It is one and two
Explanation:
When you burn something it lights up
Which of the following terms best reflects the process by which humans store memories ?
Answer:
there are no term
Explanation:
what are the term
7. Baking soda is a common household chemical compound. The chemical formula
NaHCO3 represents the matter needed to produce baking soda. Baking soda is
considered a compound because. WILL GIVE BRAINLIST
Students want to gather evidence for the claim that the number of atoms present before a chemical reaction is equal to the number of atoms present after the chemical reaction. They decide to react vinegar and baking soda in a sealed plastic bag. Which of the following would provide evidence the students need
Answer:
The mass of the plastic bag, baking soda, and vinegar before the reaction was equal to the mass after the reaction.
Explanation:
The two main postulates that was given by Antoine Lavoisier are, oxygen play an important role in combustion and the other is mass of the reactant and product is conserved. Therefore, the reaction shows the law of conservation of mass.
What is law of conservation of mass?According to Law of conservation of mass, mass can neither be created nor be destroyed. Mass can only be transformed from one form to another. The law of conservation of mass was given by Antoine Lavoisier.
Every reaction in nature follow the law given by Antoine Lavoisier that is mass is always conserved. The mass of the plastic bag, baking soda, and vinegar before the reaction was equal to the mass after the reaction.
Therefore, the reaction shows the law of conservation of mass.
To know more about law of conservation of mass, here:
https://brainly.com/question/28711001
#SPJ2
Which locations are likely to have subatomic particles that are constantly in motion:
A) 1 and 2
B) 2 and 3
C) 1 and 3
D) 2 and 4
The answer is "2 and 4"
Location 2 and 4 are likely to have subatomic particles that are constantly in motion,thus the correct option is D.
In physics, a subatomic particle is a particle smaller than an atom.According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a proton, neutron, or meson), or an elementary particle, which is not composed of other particles Particle physics and nuclear physics study these particles and how they interact.
Experiments show that light could behave like a stream of particles (called photons) as well as exhibiting wave-like properties. This led to the concept of wave–particle duality to reflect that quantum-scale particles behave like both particles and waves; they are sometimes called wavicles to reflect this.
Thus, the correct option is D.
Learn more about subatomic particles,here:
https://brainly.com/question/1527888
#SPJ4
Enter the cycle number, n, in the x column and the number of radioactive atoms in the y column. When you finish, resize the window.
(02.03 MC)
An electron moved from a lower energy level to a higher energy level. What most
likely happened during the transition? (5 points)
1) A random amount of light was released.
2) A fixed amount of energy was absorbed.
-
3) A fixed amount of energy was released.
1
4) A random amount of light was absorbed.
An electron moved from a lower energy level to a higher energy level, and during the transition, a random amount of light was released. Option A
What exactly are these electrons?
An electron is a kind of subatomic particle that has a negative charge. It is possible for it to be free (meaning that it is not associated with the nucleus of any atom) or it may be tied to the nucleus of an atom.
Electrons are sub-atomic particles that may be found in each atom of any chemical element and can occupy different energy levels. These electrons are capable of transitioning between different energy levels.
Electrons may transition from a state with a lower energy level, also known as the ground state, to a state with a higher energy level, also known as an excited state. Alternatively, electrons can transition from a state with a higher energy level to a state with a lower energy level.
When an electron goes from a lower energy level to a higher energy level, the atom takes in more energy, but when the electron moves from a higher energy level to a lower energy level, the additional energy is expelled mostly in the form of light.
Discover more about electrons by reading the following:
https://brainly.com/question/3461108
#SPJ1
The water around you is in three different phases of matter: Select three.
gas
air
solid
liquid
PLEASE HELP IMMEDIATELY
Which statement best describes how nearly all rock is formed?
A. Soil gradually hardens beneath Earth's surface
B. A different type of rock is broken down or changes in
in some way
C. Fire, water, or air cools into layers of rock
D. A mixture of minerals separates into several pure minerals.
Answer:
B
Explanation:
The rock cycle is a series of processes that create and transform the types of rocks in Earth’s crust. A different type of rock is broken down or changes in some way. The correct option is B.
What are types of rocks?Sedimentary, igneous, and metamorphic rocks are the three main categories of rocks. Each of these rocks is the result of physical processes that are a part of the rock cycle, such as melting, cooling, eroding, compacting, or deforming.
Rock fragments from other types of existing rocks or organic material are used to create sedimentary rocks. Clastic, organic (biological), and chemical sedimentary rocks are the three different types of sedimentary rocks.
Rocks that have undergone extreme heat or pressure and changed from their initial state are known as metamorphic rocks. When molten, heated material cools and solidifies, igneous rocks are created (their name is derived from the Latin word for fire).
Thus the correct option is B.
To know more about rock, visit;
https://brainly.com/question/29775588
#SPJ2
A protein was previously determined to contain 16.2 wt% nitrogen. A 691 μL aliquot of a solution containing the protein was digested in boiling sulfuric acid. The solution was made basic and the liberated NH3 was collected in 10.00 mL of 0.0390 M HCl . A volume of 4.16 mL of 0.0155 M NaOH was required to react with the excess, unreacted HCl . Calculate the protein concentration of the solution in units of milligrams per milliliter.
Answer:
6.60mg N / mL
Explanation:
All nitrogen is converted in NH₃ that react with the HCl, thus:
NH₃ + HCl → NH₄⁺ + Cl⁻
In the problem, the excess of HCl reacts with NaOH, thus:
HCl + NaOH → NaCl + H₂O
The moles of NaOH = Moles of HCl in excess is:
4.16mL = 4.16x10⁻³L * (0.0155mol / L) = 6.448x10⁻⁵mol HCl in excess
Initial moles of HCl are:
10x10⁻³L * (0.0390mol / L) = 3.9x10⁻⁴moles HCl
That means the moles of HCl that reacts = Moles of NH3 = Moles of N are:
3.9x10⁻⁴ moles - 6.448x10⁻⁵moles = 3.2552x10⁻⁴ moles N.
To convert these moles to grams we need to use molar mass of N = 14.01g/mol:
3.2552x10⁻⁴ moles N * (14.01g/mol) = 4.56x10⁻³g * (1000mg / g) =
4.56mg of N
And volume in mL is:
691 μL * (1mL / 1000μL) = 0.691mL
Concentration in milligrams per mililiter is:
4.56mg N / 0.691mL =
6.60mg N / mL(a) At what substrate concentration would an enzyme with a kcat of 30.0 s−1 and a Km of 0.0050 M operate at one-quarter of its maximum rate? (b) Determine the fraction of Vmax that would be obtained at the following substrate concentrations [S]: ½Km, 2Km, and 10Km. (c) An enzyme that catalyzes the reaction X ⇌ Y is isolated from two bacterial species. The enzymes have the same Vmax but different Km values for the substrate X. Enzyme A has a Km of 2.0 μM, and enzyme B has a Km of 0.5 μM. The plot below shows the kinetics of reactions carried out with the same concentration of each enzyme and with [X] = 1 μM. Which curve corresponds to which enzyme?
The missing graph is in the attachment.
Answer: (a) [S] = 0.0016M
(b) Vmax = 3V; Vmax = [tex]\frac{3V}{2}[/tex]; Vmax = [tex]\frac{11V}{10}[/tex]
(c) Enzyme A: black graph; Enzyme B = red graph
Explanation: Enzyme is a protein-based molecule that speed up the rate of a reaction. Enzyme Kinetics studies the reaction rates of it.
The relationship between substrate and rate of reaction is determined by the Michaelis-Menten Equation:
[tex]V=\frac{V_{max}[S]}{K_{M}+[S]}[/tex]
in which:
V is initial velocity of reaction
Vmax is maximum rate of reaction when enzyme's active sites are saturated;
[S] is substrate concentration;
Km is measure of affinity between enzyme and its substrate;
(a) To determine concentration:
[tex]0.25V_{max}=\frac{V_{max}[S]}{0.005+[S]}[/tex]
[tex]0.25V_{max}(0.005+[S])=V_{max}[S][/tex]
[tex]0.00125+0.25[S]=[S][/tex]
0.75[S] = 0.00125
[S] = 0.0016M
For a Km of 0.005M, substrate's concentration is 0.0016M.
(b) Still using Michaelis-Menten:
[tex]V=\frac{V_{max}[S]}{K_{M}+[S]}[/tex]
Rearraging for Vmax:
[tex]V_{max}=\frac{V(K_{M}+[S])}{[S]}[/tex]
(b-I) for [S] = 1/2Km
[tex]V_{max}=\frac{V(K_{M}+0.5K_{M})}{0.5K_{M}}[/tex]
[tex]V_{max}=\frac{V(1.5K_{M})}{0.5K_{M}}[/tex]
[tex]V_{max}=[/tex] 3V
(b-II) for [S] = 2Km
[tex]V_{max}=\frac{V(K_{M}+2K_{M})}{2K_{M}}[/tex]
[tex]V_{max}=\frac{V(3K_M)}{2K_M}[/tex]
[tex]V_{max}=\frac{3V}{2}[/tex]
(b-III) for [S] = 10Km
[tex]V_{max}=\frac{V(K_{M}+10K_M)}{10K_M}[/tex]
[tex]V_{max}=\frac{V(11K_{M})}{10K_{M}}[/tex]
[tex]V_{max}=\frac{11V}{10}[/tex]
(c) Being the affinity between enzyme and substrate, the lower Km is the less substrate is needed to reach half of maximum velocity.
Km of enzyme A is 2μM and of enzyme B is 0.5μM.
Enzyme B has lower Km than enzyme A, which means the first will need a lower concnetration of substrate to reach half of Vmax.
Analyzing each plot, notice that the red-coloured graph reaches half at a lower concentration, therefore, red-coloured plot is for enzyme B, while black-coloured plot is for enzyme A
what is the measure of the average kinetic energies of all the molecules in substance?
Answer:
Kinetic theory of gases is a description of gas as a large number of non-stop random moving particles (atoms or molecules, generally without distinction in physics, are called molecules). Fast-moving molecules continuously collide with other molecules or the walls of the container. Molecular motion theory is to explain the macroscopic properties of gas, such as pressure, temperature, volume, etc., through the composition and motion of molecules. The theory of molecular motion believes that pressure does not come from static repulsion between molecules, as Newton’s conjecture, but from collisions between molecules that move thermally at different speeds.
The molecule is too small to be seen directly. The random movement of pollen particles or dust particles under the microscope-Brownian motion, is a direct result of molecular collisions. This can be used as evidence of the existence of the molecule.
Temperature is a measure of the average kinetic energy of the particles in a substance. Temperature of a volume of air represents the average kinetic energy of its molecules. Temperature is a measure of the average kinetic energy of a substance.
According to Kinetic Molecular Theory, the average kinetic energy of gas molecules is a function only of temperature. where T is the Kelvin temperature and k is Boltzmann's constant.
It takes 15.0 seconds to run 100.0 meters if you run .0500 how many meters will you run
Answer:
150 seconds
Explanation:
Using the new ordering system, can we change the Lead and Silver rule to simply:
"Lead and silver salts are generally insoluble?" Why or why not?
Answer:
No, we change the Lead and Silver
Explanation:
The freezing temperature of lead decreases around the curves of AO as pure silver is applied to the lead material. Thus, in the case of platinum, AO is the freezing temperature curve of lead. Strong lead is in balance with fluid melting along this gradient (silver in lead solution).
What is the mass of a single atom, which is approximately equal to the total mass of the protons and neutrons in an atom called?
Answer:
Mass number or relative atomic mass number.
Help me please answer this with solution....A piece of granite weighing 250g is heated in a boiling water to 100°C. When a granite is place in a calorimeter containing 400g water, the temperature of the water increases from 20°C to 28.5°C. What is the specific heat of the granite, assuming all the heat is transferred to the water?
The specific heat capacity of the granite is 0.796 J/gºC
We'll begin by calculating the heat absorbed by the water. This can be obtained as follow:
Mass of water (M) = 400 g
Initial temperature of water (T₁) = 20 °C
Final temperature (T₂) = 28.5 °C
Change in temperature (ΔT) = T₂ – T₁ = 28.5 – 20 = 8.5 °C
Specific heat capacity of water (C) = 4.184 J/gºC
Heat absorbed (Q) =?Q = MCΔT
Q = 400 × 4.184 × 8.5
Q = 14225.6 JThus, the heat absorbed by the water is 14225.6 J
Finally, we shall determine the specific heat capacity of the graniteHeat absorbed = Heat released
Heat absorbed = 14225.6 J
Heat released = –14225.6 JMass of granite (M) = 250 g
Initial temperature of granite (T₁) = 100 °C
Final temperature (T₂) = 28.5 °C
Change in temperature (ΔT) = T₂ – T₁ = 28.5 – 100 = –71.5 °C
Specific heat capacity of granite (C) =?Q = MCΔT
–14225.6 = 250 × C × –71.5
–14225.6 = –17875 × C
Divide both side by –17875
C = –14225.6 / –17875
C = 0.796 J/gºCTherefore, the specific heat capacity of the granite is 0.796 J/gºC
Learn more: https://brainly.com/question/21218237
helpppp in a chemical equation, in which direction does the "yields" arrow point, and what factor does it indicate?
It points to the left, toward the reactants.
It points to the left, toward the products.
It points to the right, toward the reactants.
It points to the right, toward the products.
Answer:
It points right, towards the reactants
Explanation:
In a chemical equation, the arrow indicating the yield is to the right towards the arrow. The reactants are written in the left side and the product are written in the right side.
What is a chemical equation?A chemical equation represents the reaction between two or more elements or compound. The reaction describes the chemical combination between atoms.
A general chemical equation representing a chemical reaction is written below:
A + B ⇒ C.
Here, A and B are reactants and C be the product.
The yield of a reaction is the amount of product obtained. The theoretical yield might differ from the actual yield. Therefore, the arrow of a reaction points to the right towards products.
Find more on chemical equation:
https://brainly.com/question/30087623
#SPJ2
Select the true statement(s) abut Polymers: Group of answer choices Thermoplastics have low melting temperature because of the week van der Waals bonds between their Long Chain Molecules Thermoplastics have low strength because of the week van der Waals bonds between their Long Chain Molecules Polymers have low densities because of the week van der Waals bonds between their Long Chain Molecules Polymer chains once synthesized they will remain stable in the environment because of the strong covalent bonds in the Long Chain Molecules
Answer:
Thermoplastics have low melting temperature because of the week van der Waals bonds between their Long Chain Molecules
Polymer chains once synthesized they will remain stable in the environment because of the strong covalent bonds in the Long Chain Molecules
Explanation:
Thermoplastics are polymers that are easily melted and changed to another shape as many times as possible. They become molten when they are heated and solidify when cooled. Examples of thermoplastics include; polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamides, polyesters, and polyurethanes.
Polymers are organic materials that consists of a long chain of atoms held together by strong covalent bonds. Polymers constitute an important environmental concern because most polymers are non biodegradable and remain in the environment almost indefinitely.