Answer:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
Explanation:
Coulomb’s law, mathematical description of the electric force between charged objects. Formulated by the 18th-century French physicist Charles-Augustin de Coulomb, it is analogous to Isaac Newton’s law of gravity.
Both gravitational and electric forces decrease with the square of the distance between the objects, and both forces act along a line between them. In Coulomb’s law, however, the magnitude and sign of the electric force are determined by the electric charge, rather than the mass, of an object. Thus, charge determines how electromagnetism influences the motion of charged objects. Charge is a basic property of matter. Every constituent of matter has an electric charge with a value that can be positive, negative, or zero.
Coulomb's Law says that the force between 2 charges is proportional to the product of the quantities of charge on each and inversely proportional to the square of the distance between them. The formula for Coulomb's Law is [tex]F=k\frac{q_{1}q_{2} }{r^{2} }[/tex].
[tex]F[/tex] is the force.
[tex]k[/tex] is the Coulomb's constant ([tex]8.987*10^{9} \frac{Nm^{2} }{C^{2} }[/tex]).
[tex]q_{1}[/tex] is the electric charge of object 1.
[tex]q_{2}[/tex] is the electric charge of object 2.
[tex]r[/tex] is the distance between the two charges.
Electric force is inversely proportional to ([tex]r^{2}[/tex]) instead of ([tex]r[/tex]). As the distance between charges increases, the electric force decreases by a factor of [tex]\frac{1}{r^{2} }[/tex].
When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be ________
Answer: Oblique impact
Explanation:
When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be oblique impact.
On the other hand, when the directions of motion of the two colliding particles are moving along a line of impact, then it's refered to as central impact.
A system consists of multiple objects connected by ropes. How many equations need to be written to solve this problem?
A) two for each object
B) one or two for each object
C) one for each object
D) two for the system
Answer:
the correct answer is B
Explanation:
To solve the system they must have the same amount of unknowns as equations,
a) If the system does not have friction, we must write the x-axis equation for each body, therefore we need to write N equations
b) if the system has friction, two equations are needed for each particle
therefore the correct answer is B
Which statement best describes how pigments affect what colors humans
see?
Answer:
the component of light reflected by that object
Explanation:
What is the size of the force acting on a copper wire with a magnetic flux density of 3.6 x 10-2 T acting at
right angles to the wire of length 24 m and current of C:048 A? Give your answer to an appropriate
number of significant figures.
Answer:
F = 0.414 N
Explanation:
Given that,
Magnetic flux density,[tex]B=3.6\times 10^{-2}\ T[/tex]
The length of the wire, l = 24 m
Current, I = 0.48 A
We need to find the force acting on the wire. The formula for the force is given by:
[tex]F=ILB[/tex]
Put all the values,
[tex]F=0.48\times 24\times 3.6\times 10^{-2}\\\\F=0.414\ N[/tex]
So, the force acting on the copper wire is equal to 0.414 N.
The magnetic force of the copper wire is 41.472 N.
Magnetic force of the copper wire
The magnetic force of the copper wire is calculated by applying the following equation.
F = BIL x sinθ
Where;
θ is the inclination of the magnetic fieldI is the currentL is the length of the wireB is the magnetic field strength = flux densityF = (3.6 x 10⁻²) x (48) x 24 x sin(90)
F = 41.472 N
Thus, the magnetic force of the copper wire is 41.472 N.
Learn more about magnetic force here: https://brainly.com/question/13277365
Each tire on a car has a radius of 0.330 m and is rotating with an angular speed of 11.7 revolutions/s. Find the linear speed v of the car, assuming that the tires are not slipping against the ground. v
Answer:
The linear speed of the car, v, is 24.26 m/s
Explanation:
Given;
radius of the car's tire, r = 0.330 m
angular speed of the car, ω = 11.7 revolutions/s
The angular speed of the car in radian per second:
[tex]\omega = 11.7 \ \frac{rev}{s} \times \frac{2\pi \ rad}{1 \ rev} \\\\\omega = 73.523 \ rad/s[/tex]
The linear speed of the car, v, is calculated as;
v = ωr
v = 73.523 rad/s x 0.33 m
v = 24.26 m/s
Therefore, the linear speed of the car, v, is 24.26 m/s
How much energy has 4×10^10m^3 of water collected in a reservoir at a hight of 100 m from the power house ?What kind of energy is that?
Answer:
PE = 3.92x10^16J
potential energy
Explanation:
PE = m*g*h
mass of water = 1000kg/m³
(4*10^10m³)*1000kg = 4*10^13kg
PE = (4*10^13kg)*(9.81m/s²)*(100m)
PE = 3.92x10^16J
Hey, I'm a Turk. What language do you speak? I'm very curious.
Answer:
What languages do i sqeak?
English, Korean and Filipino
Uhh why are you asking it?
The picture below shows a person swinging a yo-yo in a circle. Which vector shows the velocity of the yo-yo at this moment?
A. B
B. A
C. C
D. D
What happens to the electric force between two particles if the distance
between them is doubled?
A. It decreases to half the original force.
B. It increases to twice the original force.
C. It increases to 4 times the original force.
D. It decreases to 1/4 of the original force.
Answer:
D.
Explanation:
Force and distance are inversely related, so a greater distance results in a weaker force.
A plane is flying a circular path at a speed of 55.0 m/ s, with a radius of 18.3 m. The centripetal force needed to maintain this motion is 3000 N. What is the plane's mass?
The plane has a centripetal acceleration a of
a = v ²/r
where v is the plane's tangential speed and r is the radius of the circle. By Newton's second law,
F = mv ²/r
Solve for the mass m :
m = Fr/v ² = (3000 N) (18.3 m) / (55.0 m/s)² ≈ 18.1 kg
how much of the electro magnetic spectrum is visible to us
Answer:
The entire rainbow of radiation observable to the human eye only makes up a tiny portion of the electromagnetic spectrum – about 0.0035 percent. This range of wavelengths is known as visible light.
Explanation:
Please Mark me brainliest
(Serious Please) patulong
Answer:
a. Potential energy is highest at Part A
The kinetic energy is highest at Part C and Part D
b. The potential energy is lowest at Part C and Part D
c. The roller coater has equal amount of potential and kinetic energy at Part B, Part D and part F
2) Yes, the mechanical energy is the same from point A to F according to the first law of thermodynamics
Explanation:
The total mechanical energy is constant where the roller coaster moves by only the initial velocity, and the the force of gravity
Total mechanical energy, M.E. = Kinetic energy, K.E. + Potential energy, P.E.
M.E. = K.E. + P.E. = Constant
Therefore, we have;
a. Potential energy is the energy stored in a body, due to its position or elevation, state or arrangement
The higher the elevation, the higher the potential energy, therefore, the highest amount of potential energy is gained when the roller coaster is at the highest point in the motion = Part A
From M.E. = K.E. + P.E. = Constant, the highest kinetic energy is given at the point the roller coaster has the lowest potential energy, which corresponds with the lowest points = Part C and Part D
b. Potential energy, which is the energy of body due to its position or state is lowest at the lowest points = Part C and Part D
c. The value of potential energy, P.E. due to elevation, can be found as follows
P.E. = Mas, m × Gravity, g × Height, h
Therefore, the potential energy will be half the maximum value where the height, h = (Maximum height)/2 and given that M.E. = K.E. + P.E., the kinetic energy, will increase by the same amount, and we have;
K.E. = P.E. at the half the maximum height of the track = Part B, Part D and part F
2) The mechanical energy is the input energy, which according to the first law of thermodynamics cannot be created and destroyed an it is therefore, constant and it is the same from point A to F
A spherical cell has a radius of 2.3 μm , and the phospholipid bilayer that constitutes its membrane has a thickness of 3.75 nm . At its normal resting state, the outer membrane is at a voltage of 0V, and the inner membrane is at a voltage of -70mV. The dielectric constant of the cell membrane is roughly 9.0. What is the capacitance of the cell? (Note: the surface area of a sphere is 4πr2)
Answer:
Explanation:
The cell is acting like a shell .
Capacity of a shell is given by the following expression.
C= 4πk ε₀ x ab / (b-a )
k is dielectric constant , b and a are outer and inner radius ε₀ is a constant .
Here a = 2.3 x 10⁻⁶ m
b = 2.3 x 10⁻⁶ + .00375 x 10⁻⁶
= 2.30375 x 10⁻⁶ m
b -a = 3.75 x 10⁻⁹ m .
k = 9
4π ε₀ = 1 / 9 x 10⁹ = .111 x 10⁻⁹
C= .111 x 10⁻⁹ x 9 x 2.3 x 10⁻⁶ x 2.30375 x 10⁻⁶ / 3.75 x 10⁻⁹
= 1.41 x 10⁻¹² F
= 1.41 pF .
What kind of waves are present during an earthquake?
Answer:
There are four main types of earthquake waves:
P-waves S-waves (which are body waves), Rayleigh waves Love waves (which are surface waves).HOPE IT HELPS!!
No me sale este problema :c, plano inclinado
Answer:
i didn't understand,
Explanation:
sorry
Calculate the percent error of the distanc
A space shuttle was launched from the Earth to the
moon. The average, or accepted, value of the distance
of the Earth to the moon is 238,857 miles, but the
shuttle crew recorded that their trip took 226,316 miles
5.25%
07.15%
3.75%
4.45%
Answer:
5.25%
Explanation:
From the question given above, the following data were obtained:
Accepted value = 238857 miles
Measured value = 226316 miles
Percentage error =.?
Next, we shall determine the absolute error. This can be obtained as follow:
Accepted value = 238857 miles
Measured value = 226316 miles
Absolute Error =?
Absolute Error = |Measured – Accepted|
Absolute Error = |226316 – 238857|
Absolute Error = 12541
Finally, we shall determine the percentage error. This can be obtained as follow:
Accepted value = 238857 miles
Absolute Error = 12541
Percentage error =.?
Percentage error = absolute error / accepted value × 100
Percentage error
= 12541 / 238857 × 100
= 1254100 / 238857
= 5.25%
Therefore, the percentage error is 5.25%.
a vehicle starts from rest and has an acceleration of 2 metre per second square how long does it take to gain the speed of 20 metre per second
Answer:
x,y
jjoffos
fif
hofdhDJiyfuID pork chop it off the bus to school today I am not a mixture of my favorite thing in life that is the best of the day before
If a planet has the same mass as the earth, but has twice the radius, how does the surface gravity, g, compare to g on the surface of the earth
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:
[tex]g=G\frac{m}{r^{2}}[/tex]
So the gravity of both the earth and the planet is written in terms of their own radius, so we get:
[tex]g_{E}=G\frac{m}{r_{E}^{2}}[/tex]
[tex]g_{P}=G\frac{m}{r_{P}^{2}}[/tex]
The problem tells us the radius of the planet is twice that of the radius on earth, so:
[tex]r_{P}=2r_{E}[/tex]
If we substituted that into the gravity of the planet equation we would end up with the following formula:
[tex]g_{P}=G\frac{m}{(2r_{E})^{2}}[/tex]
Which yields:
[tex]g_{P}=G\frac{m}{4r_{E}^{2}}[/tex]
So we can now compare the two gravities:
[tex]\frac{g_{P}}{g_{E}}=\frac{G\frac{m}{4r_{E}^{2}}}{G\frac{m}{r_{E}^{2}}}[/tex]
When simplifying the ratio we end up with:
[tex]\frac{g_{P}}{g_{E}}=\frac{1}{4}[/tex]
So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.
what is gama rays an it's uses
Answer:
GAMMA RAYS:
A photon emitted spontaneously by a radioactive substance also : a photon of higher energy than that of an X-ray.
USES OF GAMMA RAYS:
Gamma rays are used in medicine (radiotherapy), industry (sterilization and disinfection), and the nuclear industry. Shielding against gamma rays is essential because they can cause diseases to skin or blood, eye disorders, and cancers.
In 'coin on card' experiment a smooth card is used.
Answer:
In coin card experiment smooth card is used so that the card can slide easily from glass
In a science museum, a 130 kg brass pendulum bob swings at the end of a 14.4 m -long wire. The pendulum is started at exactly 8:00 a.m. every morning by pulling it 1.7 m to the side and releasing it. Because of its compact shape and smooth surface, the pendulum's damping constant is only 0.010kg/s. You may want to review (Pages 405 - 407) . Part A At exactly 12:00 noon, how many oscillations will the pendulum have completed
Answer:
The time in which the pendulum does a complete revolution is called the period of the pendulum.
Remember that the period of a pendulum is written as:
T = 2*pi*√(L/g)
where:
L = length of the pendulum
pi = 3.14
g = 9.8 m/s^2
Here we know that L = 14.4m
Then the period of the pendulum will be:
T = 2*3.14*√(14.4m/9.8m/s^2) = 7.61s
So one complete oscillation takes 7.61 seconds.
We know that the pendulum starts moving at 8:00 am
We want to know 12:00 noon, which is four hours after the pendulum starts moving.
So, we want to know how many complete oscillations happen in a timelapse of 4 hours.
Each oscillation takes 7.61 seconds.
The total number of oscillations will be the quotient between the total time (4 hours) and the period.
First we need to write both of these in the same units, we know that 1 hour = 3600 seconds
then:
4 hours = 4*(3600 seconds) = 14,400 s
The total number of oscillations in that time frame is:
N = 14,400s/7.61s = 1,892.25
Rounding to the next whole number, we have:
N = 1,892
The pendulum does 1,892 oscillations between 8:00 am and 12:00 noon.
Velocity is vector quantity because??
Velocity is vector quantity because it has both magnitude and direction.
Explanation:
velocity is a vector quantity because the person always returns to the original position,the motion would never result in a change in a position.
The standard metric unit of volume is the _____.
cubic centimeter
liter
milliliter
cubic meter
Answer:
. The SI unit of volume is the cubic meter (m3), which is a derived unit.
Liter (L) is a special name for the cubic decimeter (dm3).
In a softball game a batter hits at the velocity of 28 and an angle shown 45 below . What is the maximum range of the ball
Answer:
80 m
Explanation:
Given :
Initial Velocity, U = 28 m/s
θ = 45°
The maximum range occurs at angle, θ = 45°
The maximum range, R is given by ;
R = U²sin2θ / g
g = acceleration due to gravity = 9.8 m/s²
Plugging in the values :
R = [28² * sin2(45)] / 9.8
R = [28² * sin90] / 9.8
R = 784 / 9.8
R = 80 m
An inquisitive physics student and mountian climber climbs a 43.6 m cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.35 s apart and observes that they cause a single splash. The first stone has an initial velocity of 1.8 m/s. How long after release of the first stone do the two stones hit the water
Answer:
Explanation:
What we are basically looking for here is how long it takes the first stone to hit the water. We have everything we need to figure that out. We will use the equation
Δx = . Filling in, we will solve for t, the time is takes the first stone to hit the water (which is the same for both since they both hit the water at the same time):
which is a quadratic that we will have to factor. Get it into standard form, setting it equal to 0:
and factor to get that
t = 3.2 s and t = -2.8 s
Since time can't ever be negative, it takes 3.2 s for the stones to hit the water.
scientists are seen very busy in designing the solar power equipments, why?
Answer:
it is because solar energy is the perpetual source of energy and by using it non renewable sources of energy can be conserved for the future
The Displacement is 5m. We found that using the
Pythagorean Theorem.
Vector Quantities require both a Displacement and a
Direction.
What direction is this Vector?
South
Northeast
West
Answer:
A vector can be written as:
(R, θ)
Where R is the magnitude, in this case, we know that the magnitude of the displacement is 5m
Then:
R = 5m
and θ defines the direction, it's an angle measured from the positive x-axis.
(In the image, θ would be the angle located at the point A)
Now, if you look at the image, you can see a triangle rectangle.
Where the adjacent cathetus has a length of 4,
the opposite cathetus has a length of 3 units
the hypotenuse has a length of 5 units.
So we can use any trigonometric rule to find the value of θ, like:
sin(θ) = (opposite cathetus)/hypotenuse
Then:
sin(θ) = 3m/5m
Now we can use the inverse sin function, Asin(x), in both sides
Asin( sin(θ)) = θ = Asin( 3/5) = 36.87°
then the vector is:
(5m, 36.87°)
Now, if we define the positive y-axis as the North, and the positive x-axis as the East.
This vector would point at 36.87° North of East.
(or almost Northeast)
explain what characterises a sound as noise or music
Explanation:
Noise is sound with a continuous structure. Music is composed of sounds with a fundamental frequency and overtones. Noise is composed of sounds with frequencies that range continuously in value from as low as you can hear to as high as you can hear — not necessarily at equal intensity, however.
Unlike hard disks, which use magnetic charges to represent 1s and 0s, _____ use reflected light.
Answer:
Unlike hard disks, which use magnetic charges to represent 1s and 0s, Compact Disks, DVD's or Blue Rays use reflected light.
Explanation:
The way CD's work is that they are hit by a laser beam which is reflected on the surface of the disc. These disks have some valleys and mountains that reflect light differently so the CD player will interpret these differences in reflection as data which will then be turned into music, videos or computer files.
A gas at a pressure p is compressed to half it original volume and twice its original temperature. The new pressure is
Answer:
4p
Explanation:
If you halve the volume the pressure will double as they are inversely proportional. If you double the temperature the particles have double the kinetic energy so the pressure will double again.
So:
p×2×2 = 4p
Answer:
P V = n R T
P2 V2 / (P1 V1) = T2 / T1
P2 = (T2 / T1) (V1 / V2) P1 = 2 * 2 = 4