Answer:
B) sending end voltage : Vs-l-l = 345.8 ∠ 26.14⁰ kv
sending end current : Is = 1.241 ∠ 15.5⁰ KA
real power = 730.5 Mw
C) percent voltage regulation = 8.7%
D) Transmission line efficiency = 95.8%
Explanation:
attached is the detailed solution to the problem
Given data:
l = 200 km
z = 0.032 + j0.35 Ω/km
y = j4.2 * 10^-6 S/km
A) find the total series impedance and shunt admittance
B) sending end voltage : Vs-l-l = 345.8 ∠ 26.14⁰ kv
sending end current : Is = 1.241 ∠ 15.5⁰ KA
real power = 730.5 Mw
C) percent voltage regulation = 8.7%
D) Transmission line efficiency = 95.8%
Water of dynamic viscosity 1.12E-3 N*s/m2 flows in a pipe of 30 mm diameter. Calculate the largest flowrate for which laminar flow can be expected (in lpm). What is the corresponding flowrate if it is an air flow (1.8E-5 N*s/m2 )
Answer:
For water
Flow rate= 0.79128*10^-3 Ns
For Air
Flow rate =1.2717*10^-3 Ns
Explanation:
For the flow rate of water in pipe.
Area of the pipe= πd²/4
Diameter = 30/1000
Diameter= 0.03 m
Area= 3.14*(0.03)²/4
Area= 7.065*10^-4
Flow rate = 7.065*10^-4*1.12E-3
Flow rate= 0.79128*10^-3 Ns
For the flow rate of air in pipe.
Flow rate = 7.065*10^-4*1.8E-5
Flow rate =1.2717*10^-3 Ns
Give four effects of water hammer.
Explanation:
The hammer effect (or water hammer) can harm valves, pipes, and gauges in any water, oil, or gas application. It occurs when the liquid pressure is turned from an on position to an off position abruptly. When water or a liquid is flowing at full capacity there is a normal, even sound of the flow.