Answer:
See Explanation
Step-by-step explanation:
According to the Question,
We have A small radio transmitter that broadcasts in a 69-mile radius. If you drive along a straight line from a city 93 miles north of the transmitter to a second city 78 miles east of the transmitter.Thus,
The distance that you get reception is the length of the chord created by the intersection of the circle defining the edge of transmission and the line defining the car trip.
x2 + y2 = 69² this is the circleAnd,
The Transmitter at the origin
City to the north at (0,93) & City to the east at (78,0)
the Slope is M=(-93/78)
Intercept is B= y - mx ⇒ 93 - (-93/78)(0) = 93
The equation of the line between the cities is y = (-93/78)x + 93
y = -93x/78 + 93 this is the lineNow, Solve the above two Equations
The intersection is gotten from the picture or solving:
x^2 + [(-93/78)*x + 93]^2 = 69^2
on solving we get, the points approximately are: (67.952,11.98 ) and (23.6277, 64.82)Now,
From the Pythagorean theorem the total distance of the trip is:
d1 = √(93^2 + 78^2) ≈ 121.37miles
And the distance when the signal is picked up is:
d2 =√ [(67.952-23.627)^2 + (64.82 - 11.98)^2] ≈ 68.96 miles
You will pick up a signal from the transmitter in (d2/d1)*100 = 56% of the drive.
1. Which of the following ARE integers? (choose ALL that are integers
a. 35%,
b.-10,
c. 34,
d. 0.25,
e. 3105.
2. Which integer is between -3 and 4? (choose ONE answer)
a. 10
b. 3.14
c. O
Answer:
(1) -10, 34 and 3105
(2) 0
Step-by-step explanation:
Solving (a): Select all integers
The integers are numbers without decimal.
So, we have: -10, 34 and 3105
Other options are not integers
Solving (b): Select all integers between -3 and 4
Using the same explanation in (1) but with the range of -3 and 4. the integer is 0.
Other options are not integers
match the description in column a to its corresponding word in column b.
help me plsssss
Answer:
1-a
2-h
3-g
4-d
5-c
6-j
7-f
8-k
9-b
10-i
numbers are column A and alphabets are column B!
The product of 2 integers is 72. One number is two less than five times the other. Which equation can be used?
Answer:
should be (5y-2)y = 72
Step-by-step explanation:
since the product of the two is 72, it's true that xy = 72. and it is also true that x is equal to five times y minus 2, so you can rewrite x as 5y-2. plug that in for x in the first equation, and you're set. hope this helps :)
What is the domain of D(t) as it applies in this situation?
Answer:
t could be all real numbers.
Step-by-step explanation:
The function D(t) is given by:
[tex]D(t)=-1.5t+12[/tex]
The domain is all the posible x-values for which the function is defined.
In our case, t could be all real numbers.
The answer is the first option.
I hope it helps you!
What is the inequality shown?
Answer:
2<X ,this is because opened and facing towards x
and
–3≤X this is because the circle is closed and also facing towards x
A student ran out of time on a multiple choice exam and randomly guessed the answers for two problems. Each problem had 5 answer choices - a, b, c, d, e- and only one correct answer. What is the probability that she answered neither of the problems correctly? Do not round your answer. (If necessary, consult a list of formulas.)
Answer:
there is a 64% chance that the student got both problems wrong
a 32% chance that they got only 1 correct
and a 4% chance that they got both correct
Step-by-step explanation:
There are 25 total possible combinations of answers, with 8 possible combinations where the student would get 1 answer right, and 1 combination where the student would get both answers correct.
[tex]25-9=16[/tex]
[tex]\frac{16}{25} =\frac{x}{100}[/tex]
[tex]\frac{64}{100}[/tex]
[tex]64[/tex]%
[tex]\frac{8}{25} =\frac{y}{100}[/tex]
[tex]\frac{32}{100}[/tex]
[tex]32[/tex]%
[tex]\frac{1}{25} =\frac{z}{100}[/tex]
[tex]\frac{4}{100}[/tex]
[tex]4[/tex]%
Martina made$391for17hours of work. At the same rate, how many hours would she have to work to make$253? a 11 hours b 9 hours c 22 hours d 33 hours
Answer:
11 hours is right answer i hope it will help you
A bottle maker believes that 23% of his bottles are defective.If the bottle maker is accurate, what is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%? Round your answer to four decimal places.
Answer:
The appropriate answer is "0.9803".
Step-by-step explanation:
According to the question,
The probability of sample proportion differs from population proportion by les than 4% will be:
= [tex]P(-\frac{0.04}{\sqrt{\frac{0.23\times 0.77}{602} } }<z<\frac{0.04}{\sqrt{\frac{0.23\times 0.77}{602} } } )[/tex]
= [tex]P(-\frac{0.04}{\sqrt{\frac{0.1771}{602} } }<z<\frac{0.04}{\sqrt{\frac{0.1771}{602} } } )[/tex]
= [tex]P(-2.33<z<2.33)[/tex]
= [tex]0.9803[/tex]
Which is a stretch of an exponential decay function?
f(x) =4/5(5/4)
f(x) = 4/5(4/5)
f(x) =5/4(4/5)
fx) = 5/4(5/4)
Answer:
f(x) = 4/5(5/4)Step-by-step explanation:
correct me if I am wrong
pls help me and answer it correctly:)
Answer:
the biggest frequency is 6
and the least frequency is 4
Let Y1 and Y2 denote the proportions of time (out of one workday) during which employees I and II, respectively, perform their assigned tasks. The joint relative frequency behavior of Y1 and Y2 is modeled by the density function.
f (y 1,y2)=y 1+y 2 o<=y 1<=1, 0<=y2<=1(0 elsewhere)
a. Find P (Y1< 1/2,y2>1/4)
b. Find P(Y 1+Y2<=1)
Are Y1 and Y2 independent?
(a) The region Y₁ < 1/2 and Y₂ > 1/4 corresponds to the rectangle,
{(y₁, y₂) : 0 ≤ y₁ < 1/2 and 1/4 < y₂ ≤ 1}
Integrate the joint density over this region:
[tex]P\left(Y_1<\dfrac12,Y_2>\dfrac14\right) = \displaystyle\int_0^{\frac12}\int_{\frac14}^1 (y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac{21}{64}}[/tex]
(b) The line Y₁ + Y₂ = 1 cuts the support in half into a triangular region,
{(y₁, y₂) : 0 ≤ y₁ < 1 and 0 < y₂ ≤ 1 - y₁}
Integrate to get the probability:
[tex]P(Y_1+Y_2\le1) = \displaystyle\int_0^1\int_0^{1-y_1}(y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac13}[/tex]
Y₁ and Y₂ are not independent because
P(Y₁ = y₁, Y₂ = y₂) ≠ P(Y₁ = y₁) P(Y₂ = y₂)
To see this, compute the marginal densities of Y₁ and Y₂.
[tex]P(Y_1=y_1) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_2 = \begin{cases}\frac{2y_1+1}2&\text{if }0\le y_1\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]P(Y_2=y_2) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_1 = \begin{cases}\frac{2y_2+1}2&\text{if }0\le y_2\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]\implies P(Y_1=y_1)P(Y_2=y_2) = \begin{cases}\frac{(2y_1+1)(2y_2_1)}4&\text{if }0\le y_1\le1,0\ley_2\le1\\0&\text{otherwise}\end{cases}[/tex]
but this clearly does not match the joint density.
HELP
BELP
Identify the range of the function shown in the graph
Answer:
Range = -1 ≤ y ≤ 2
Step-by-step explanation:
The function's range is the y-values the function can have as its output. -1 is the minimum y-value and 2 is the maximum y-value.
2) There are 40 boys and 60 girls in a class of students. What is the ratio of girls to students
Answer:
60:100, 6/10, 3/5, 6 to 10, etc.
Step-by-step explanation:
You take the number of girls over total students which is boys + girls. Since there's 40 boys and 60 girls, it's 60 girls to 100 students which can be written in several ways.
Answer:
60:100 / 3:5
Step-by-step explanation:
You first add the total number of students which is (40boys + 60girls) which gives us 100 students.
Then arrange the ratio of girls to students as per the question that is 60:100, reduce it to its lowest term that is dividing the ratio by 20, and finally got 3:5
Find the domain and range of the relation.
the answer is in the picture above
If 3 3/4m of cloth was used for one suit, how many suits can be made with 30m cloth
Answer:
8 suits
Step-by-step explanation:
Divide 30 m by 3 [tex]\frac{3}{4}[/tex] m , or 30 ÷ 3.75 , then
30 ÷ 3.75 = 8
Then 8 suits can be made from 30 m of cloth
.Solve : 3 / 8 (x-5) = 11 -7x
Answer:
1.74 or [tex]\frac{103}{59}[/tex]
Step-by-step explanation:
3(x-5) = 8 (11-7x)
3x-15=88-56x
59x=103
x = 1.74
A person is standing close to the edge on a 56 foot building and throws the ball vertically upward. The quadratic function h(t)=-16^2+104t+56 models the balls height above the ground,h(t),in feet, T seconds after it was thrown
what is the maximum height of ball.=
How many seconds did it take to hit the ground=
Please help!
Answer:
Part 1)
225 feet.
Part 2)
7 seconds.
Step-by-step explanation:
The height h(t) of the ball above the ground after t seconds is modeled by the function:
[tex]h(t)=-16t^2+104t+56[/tex]
Part 1)
We want to determine the maximum height of the ball.
Notice that the function is a quadratic with a negative leading coefficient, so its maximum will be at its vertex point.
The vertex of a parabola is given by:
[tex]\displaystyle \text{Vertex} = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)[/tex]
In this case, a = -16, b = 104, and c = 56.
Find the x- (or rather t-) coordinate of the vertex. So:
[tex]\displaystyle t=-\frac{(104)}{2(-16)}=\frac{104}{32}=\frac{13}{4}=3.25\text{ seconds}[/tex]
In other words, the ball reaches its maximum height after 3.25 seconds.
To find the maximum height, substitute this value back into the function. Hence:
[tex]\displaystyle h(3.25)=-16(3.25)^2+104(3.25)+56=225\text{ feet}[/tex]
The maximum height of the ball is 225 feet in the air.
Part 2)
We want to find the amount of time it took for the ball to hit the ground.
When the ball hit the ground, its height above the ground is zero. Therefore, we can set h(t) to 0 and solve for t:
[tex]0=-16t^2+104t+56[/tex]
We can simplify a bit. Divide both sides by -8:
[tex]0=2t^2-13t-7[/tex]
We can factor. Find two numbers that multiply to 2(-7) = -14 and add to -13.
-14 and 1 works! Therefore, split the second term into -14 and 1:
[tex]\displaystyle 0=2t^2-14t+t-7[/tex]
Factor out a 2t from the first two terms and group the last two terms:
[tex]0=2t(t-7)+(t-7)[/tex]
Factor by grouping:
[tex]0=(2t+1)(t-7)[/tex]
Zero Product Property:
[tex]2t+1=0\text{ or } t-7=0[/tex]
Solve for each case:
[tex]\displaystyle t=-0.5\text{ or } t=7[/tex]
Since time cannot be negative, we can ignore the first case.
Therefore, it takes seven seconds for the ball to hit the ground.
If the angles (4x + 4)° and (6x – 4)° are the supplementary angles, find the value of x.
Answer:
18
Step-by-step explanation:
Supplementary angles means sum of angles is 180.
4x + 4 + 6x - 4 = 180
4x + 6x + 4 - 4 = 180
10x = 180
x = 180 / 10
x = 18
Answer:
x=18 degree
Step-by-step explanation:
If they are supplementary angles, then their sum = 180 degree
4x+4 + 6x-4 =180
4x+6x + 4-4 = 180
10x = 180
x=180/10
x=18
A law firm offers some services “pro bono”, which means that they work for clients free of charge. The legal firm accepted 2% of its cases pro bono last year. What is the total of cases they completed if they accepted 252 pro bono cases?
Answer:
ok so we have to find 2% or 252 so
252*0.02=5.04
So they completed 5 cases this year
Hope This Helps!!!
The last dividend paid by Wilden Corporation was $1.55. The dividend growth rate is expected to be constant at 1.5% for 2 years, after which dividends are expected to grow at a rate of 6.0% forever. The firm's required return (rs) is 12.0%. What is the best estimate of the current stock price?
Answer:
Net present value= $25.17
Step-by-step explanation:
We are told that The last dividend paid was $1.55 and that the dividend growth rate is constant at 1.5% for 2 years.
Thus;
1) After 1st year;
1.55 × (1 + 0.015) = 1.57325 Div1
After 2nd year;
1.57325 × (1 + 0.015) = 1.59685 Div2
After that 2 years it grows at 6% Constant rate forever;
1.59685 × (1 + 0.06) = 1.69266 Div3
Let's now use the dividend formula which grows in perpetuity at a rate of "g" since required return is 12%:
Thus;
V = 1.69266/(0.12 - 0.06) = 28.211
Thus; Div2 = 28.211 + 1.59685 ≈ 29.80785
Now, using the financial calculator of the Cash Flow function, we have:
Div0 = 0
Div1 = 1.57325
Div2 = 29.80785
i% = 12
Net present value = (1.57325/(1 + 0.12)) + ((1.59685 + 28.211)/(1 + 0.12)²)
Net present value= $25.17
Identify the transformation that occurs to create the graph of g(x). g(x)=f(x)-7
Answer:
g(x) is obtained by shift the function f(x) down 7 units by subtracting 7 units from f(x).
Step-by-step explanation:
We are given that
[tex]g(x)=f(x)-7[/tex]
We have to identify the transformation that occurs to create the graph of g(x).
To identify the transformation that occurs to create the graph of g(x)
We will subtract the 7 from f(x).
Let f(x) be any function
[tex]g(x)=f(x)-k[/tex]
It means g(x) obtained by shift the function f(x) down k units by subtracting k units from f(x).
Therefore, g(x) is obtained by shift the function f(x) down 7 units by subtracting 7 units from f(x).
I am Your Crush boy you have never seen a boy like me if you will see me you will fall in my love. come zom Id- 6622308635 pas- 6UC3yE
Answer:
I don't know the answer to ur question. LOL
Answer:
stop being desperate
nobody is gonna fall in love with some desperate weirdo
Two trains leave the station at the same time, one heading east and the other west. The eastbound train travels at 95 miles per hour. The westbound train travels at 75 miles per hour. How long will it take for the two trains to be 238 miles apart? Do not do any rounding.
Answer:
They are going away from each other.
So add up their speed.
combined speed = x+x-16
=2x-16
Time = 2 hours
Distance = 400 miles
Distance = speed * time
(2x-16)* 2
4x-32=400
4x=400+32
4x=432
/12
x=108 mph west bound
east bound = 108 -16 = 92 mph
Can I get the answer for those
Answer:
1) 5.64
2) 17.321
1) [tex]\frac{21}{28}[/tex]
2) [tex]\frac{16}{34}[/tex]
3) [tex]\frac{28}{35}[/tex]
4) [tex]\frac{32}{24}[/tex]
Step-by-step explanation:
SOH - CAH - TOA
Sin = [tex]\frac{O}{H}[/tex] Cos = [tex]\frac{A}{H}[/tex] Tan = [tex]\frac{O}{A}[/tex]
O = opposite, A = adjacent, H = hypotenuse
First two, use Pythagorean Theorem
If you want to calculate the angle on the last 4, use inverse of function and put in the ratio.
For example :
1) Tan Z = [tex]\frac{21}{28}[/tex]
[tex]Tan^{-1}[/tex] ( [tex]\frac{21}{28}[/tex])
Z = 36.9°
What is the simplified value of the exponential expression 27 1/3 ?
O1/3
O1/9
O3
O9
Answer:
the correct answer is 3
hope it helps
have a nice day
A city has a population of 350,000 peopleSuppose that each year the population grows by 7.75%What will the population be after 6 years Use the calculator provided and round your answer to the nearest whole number
Answer:
547737
Step-by-step explanation:
So first when know that the equation for exponentinal growth is f(x)=a(1+r)^x
Then you need to substitue so it would be f(x)=350,000(1+0.0775)^6
So then you would add the 1 and 0.0775 to equal 1.0775
So now its f(x)=350,000(1.0775)^6
So after that following PEMDAS, you would basically do 1.0775 to the power of 6 and get 1.56496155465
After you would do 1.56496155465 times 350,000 and that would be 547736.544129 and since its to the nearest whole number the answer would be 547737
Hopefully, that helped. If I did end up making a mistake then just comment on my answer. :)
Is AFGH ~ AJKL? If so, identify the similarity postulate or theorem that
applies.
G
K
10
6
30°
30°
Н
A. Similar - SAS
B. Cannot be determined
C. Similar - SSS
D. Similar - AA
Answer: B. Cannot be determined
Explanation:
We can't use SAS since we don't have two pairs of proportional sides. We only know one pair of sides. This also rules out SSS as well since we'd need 3 pairs of proportional sides.
We can't use AA because we don't have two pairs of congruent angles.
Currently, we simply don't have enough information to determine if the triangles are similar or not.
Please help I don’t understand at all
Answer:
a
Step-by-step explanation:
1. Reduce the index of the radical and exponent with 2
√(a^2) = a
Basically square root is also can be represent as power of 1/2. Which is (a^2)^1/2. Then you can multiply both power. So you will get a^(2/2). solve it hence the solution is a^1 which is a. Hopefully this will help
A computer monitor is listed as being 22 inches. This distance is the diagonal distance across the screen. If the screen measures 12 inches in height, what is the actual width of the screen to the nearest inch?
22 inches
18.43 inches
25.05 inches
32.5 inches
Answer
The width of the screen is 18.43.
Explanation
Use the Pythagorean Theorem (a^2+b^2=c^2) to find the height.
In a right triangle, a and b are legs. In this instance, a and b would be the height and width of the computer monitor. Let's say the height is a and the width is b (you're trying to find b). The hypotenuse of a right triangle is c. For the computer monitor, c is the diagonal.
So put in everything you know to find b; 12^2+b^2=22^2.
12^2 is 144 and 22^2 is 484. Now you have 144+b^2=484. When you simplify, you get b^2=340. When you simplify again, you find that b is about 18.43.
What is the volume of the triangular prism shown below?
10
A. 100 cu. units
B. 200 cu. units
C. 400 cu. units
D. 300 cu. units
Answer:
B. 200 cu. units
Step-by-step explanation:
Volume of the triangular prism = ½*b*h*l
Where,
b = 8 units
h = 5 units
l = 10 units
Plug in the values
Volume of the prism = ½*8*5*10
= 4*5*10
= 200 cu. units