Answer:
The probability of observing between 43 and 64 successes=0.93132
Step-by-step explanation:
We are given that
n=100
p=0.50
We have to find the probability of observing between 43 and 64 successes.
Let X be the random variable which represent the success of population.
It follows binomial distribution .
Therefore,
Mean,[tex]\mu=np=100\times 0.50=50[/tex]
Standard deviation , [tex]\sigma=\sqrt{np(1-p)}[/tex]
[tex]\sigma=\sqrt{100\times 0.50(1-0.50)][/tex]
[tex]\sigma=5[/tex]
Now,
[tex]P(43\leq x\leq 64)=P(42.5\leq x\leq 64.5)[/tex]
[tex]P(42.5\leq x\leq 64.5)=P(\frac{42.5-50}{5}\leq Z\leq \frac{64.5-50}{5})[/tex]
[tex]=P(-1.5\leq Z\leq 2.9)[/tex]
[tex]P(42.5\leq x\leq 64.5)=P(Z\leq 2.9)-P(Z\leq- 1.5)[/tex]
[tex]P(42.5\leq x\leq 64.5)=0.99813-0.06681[/tex]
[tex]P(43\leq x\leq 64)=0.93132[/tex]
Hence, the probability of observing between 43 and 64 successes=0.93132
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
The perimeter of parallelogram WXYZ is 8 + 2√26 units
Perimeter of parallelogramIn order to determine the required perimeter of the parallelogram, we will use the distance formula as shown:
D= √(x2-x1)²+(y2-y1)²
Given the coordinate of the parallelogram shown as:
W(-2, 4)
X (2, 4)
Y(1, -1)
Z(-3, -1).
Since it is a parallelogram, the opposite sides are equal that is:
WX = YZ and XY = WZ
WX = YZ = √(x2-x1)²+(y2-y1)²
WX = YZ = √(2+2)²+(4-4)²
WX = YZ =√(4)²
WX = YZ = 4 units
Similarly
XY = WZ = √(2-1)²+(4+1)²
XY = WZ = √(1)²+(5)²
XY = WZ = √26
Perimeter = 2(4)+ 2(√26)
Perimeter = 8 + 2√26
Hence the perimeter of parallelogram WXYZ is 8 + 2√26 units
Learn more on perimeter of parallelogram here: https://brainly.com/question/11185474
a construction company built a scale
Answer:
There are no shortcuts to scaling successfully. It takes just as much — or more — work as it did to start the company in the first place. Take control of the transition. Get organized with tools that support your employees in their day-to-day roles, making it easier for them to get more done as the company grows.
1 point
What is the slope of a line perpendicular to 3x + 4y = -2?
Answer:
4/3
Step-by-step explanation:
In slope-intercept form [tex]y=mx+b[/tex], [tex]m[/tex] represents the slope of the line.
Let's write [tex]3x+4y=-2[/tex] in slope-intercept form by isolating [tex]y[/tex]:
[tex]3x+4y=-2,\\4y=-3x-2,\\y=-\frac{3}{4}x-\frac{1}{2}[/tex]
Therefore, the slope of this line is [tex]\frac{-3}{4}[/tex]. To find the slope of a line perpendicular to it, multiply the reciprocal of the slope by -1 (take the negative reciprocal).
Therefore, the slope of a line perpendicular to [tex]3x+4y=-2[/tex] is:
[tex]m_{perp}=-(-\frac{4}{3})=\boxed{\frac{4}{3}}[/tex]
Answer:
4/3
Given equation :-
3x + 4y = -2 4y = -3x - 2 y = (-3x - 2)/4 y = -3/4 x - 1/2Slope :-
m = -3/4Slope of perpendicular line :-
m' = -(1/m )m' = -( 1 ÷ -3/4 ) m' = -1 * -4/3 m = 4/3I need help with this
Answer:
Here,
Angle TUV + Angle NUV=TUV
By substituting the provided or given value ls in the question we obtain,
1+38x+66 Degree= 105x
1+66 Degree= 67x
67 Degree= 67x
1 Degree = x
x = 1 Degree
Therefore
Angle TUN=1+38x=39
Angle NUV=66 Degree
Therefore
1+38x+66 Degree= 105x
=39 Degree+66 Degree= 105 Degree
Therefore
Angle TUV=105 Degree
Exam grades: Scores on a statistics final in a large class were normally distributed with a mean of 75 and a standard deviation of 9. Use the TI-84 PLUS calculator to answer the following. Round the answers to at least two decimals. (a) Find the 41st percentile of the scores. (b) Find the 74th percentile of the scores. (c) The instructor wants to give an A to the students whose scores were in the top 8% of the class. What is the minimum score needed to get an A
Solution :
Using the TI-84 PLUS calculator
a). Area : 0.41
μ = 75
σ = 9
InvNorm(0.41,75,9)
= 72.95209525
Therefore, the 41st percentile of the scores is 72.95209525
b). Area : 0.74
μ = 75
σ = 9
InvNorm(0.74,75,9)
= 80.79010862
Therefore, the 74st percentile of the scores is 80.79010862
c). 8%
So, Area : 0.92
μ = 75
σ = 9
InvNorm(0.92,75,9)
= 87.64564405
Therefore, X = 80.79010862
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
If the two lines below are perpendicular and the slope of the red line is -7,
what is the slope of the green line?
10
10
A. 7
ОО
B. -7
C. 1
Answer:
C. ⅐
Step-by-step explanation:
Recall: the slope of a line that is perpendicular to another is the negative reciprocal of the slope of the other line that it is perpendicular to.
Thus:
Slope of red line = -7
The green line that is perpendicular to the red line will have a slope that is the negative reciprocal of -7.
Negative reciprocal of -7 = ⅐
The slope of the green line is therefore ⅐
What is the mode of the data?
Weight of Dogs In the Pet Store
Stem Leaves
0 3, 8
1 0, 1, 4, 7,
2 2, 4, 5
3 5 0 | 3 = 3 pounds
4 0
A. 17
B. 3
C. no mode
D. 40
Answer:
No mode
Step-by-step explanation:
Mode = number that appears the most
No number appears more than 1 time
Hence there is no mode
Answer:Should be no mode tell me if i'I'm wrong
Step-by-step explanation:
In 2005, there were 14,100 students at college A, with a projected enrollment increase of 1000 students per year. In the same year, there were 34,350 students at college B, with a projected enrollment decline of 1250 students per year. According to these projections, when will the colleges have the same enrollment? What will be the enrollment in each college at that time?
Let A be college A and let B be College B
A= 14,100
Rule: 1 Year = +1,000 students
B= 34,350
Rule: -1250 per year
1st Answer: 2017
Notice: I didn't show the formula because I'm not %100 sure I'm kind of off so if this is incorrect I'm deeply sorry. I truly am. On the bright side, I think its correct.
State the final conclusion in simple nontechnical terms.
Original claim: The proportion of male golfers is less than 0.6.
Initial conclusion: Fail to reject the null hypothesis.
Which of the following is the correct conclusion?
A. There is suffficient evidence to support the claim that the proportion of male golfers is less than 0.6.
B. There is not sufficient evidence to support the claim that the proportion of male golfers is less than 0.6.
Answer:
B. There is not sufficient evidence to support the claim that the proportion of male golfers is less than 0.6.
Step-by-step explanation:
The proportion of male golfers is less than 0.6.
At the null hypothesis, we test if the proportion is of at least 0.6, that is:
[tex]H_0: p \geq 0.6[/tex]
At the alternative hypothesis, we test if the proportion is of less than 0.6, that is:
[tex]H_1: p < 0.6[/tex]
Fail to reject the null hypothesis.
This means that there is not sufficient evidence to conclude that the proportion is less than 0.6, and thus the correct answer is given by option B.
PLEASE HELPPPP WILL GIVE BRAINLIESTTTT
Factor the following expressions completely. Show and check all work on your own paper.
9x2-18x+9
Hi there!
[tex]\large\boxed{9(x - 1)^{2}}[/tex]
9x² - 18x + 9
We can begin by factoring out a 9 from each term:
9(x² - 2x + 1)
Now, find two terms that add up to -2 and equal 1 when multiplied. We get:
9(x - 1)(x - 1)
Or:
9(x - 1)²
Will give brainliest answer
1... > equivalent 2...>equivalent 3...>not equivalent mark if u want
a cat measures 76 cm from its nose to its tail the length of a lion is 3 times as long as a car how long is a lion? Give your answer in meters
Answer:
ok so if the lion is 3 times bigger we have to multiply the length of the cat by
3
3*76=228
so the lion is 228 cm long
now we divide by 100 for meters
228 divided by 100=2.28 meters
Hope This Helps!!!
Answer:
2.28 Meters
Step-by-step explanation:
If the lion is 3 times as long as the cat and the cat is 76cm long you just multiply 76*3=228 convert that to meters and it gives you 2.28 meters in length for the lion
In this diagram, ABAC – AEDF. If the
area of ABAC = 6 in?, what is the
area of AEDF?
Answer:
2.7 in²
Step-by-step explanation:
similar triangles have the same angles, and all side lengths (or other distances) of one triangle have the same scaling factor to the side lengths of the other triangle.
so, we know the relation between the 2 baselines is 2/3, as this is the factor to turn the baseline of the large triangle into the baseline of the smaller triangle.
in other words
EF = BC × 2/3
2 = 3 × 2/3
correct
how do we calculate the area of a triangle ?
Area = baseline × height / 2
from BAC we know
Area = 6
baseline = 3
height = ?
6 = 3 × height / 2
12 = 3 × height
height = 4
aha !
now, EDF has a height too that we need to calculate is Area. and this height has the same scaling factor compared to the larger triangle as the side lengths : 2/3
so, for EDF we know
Area = ?
baseline = 2
height = 4 × 2/3 = 8/3
therefore, the area is
Area = (2 × 8/3) / 2 = (16/3) / 2 = 8/3 = 2.66666... ≈ 2.7
the shirt answer would be :
we know from the 2 baselines that the scaling factor for each distance is 2/3.
for the area we need to multiply 2 distances, so that means we have to multiply both by 2/3. and so on the formula for the area we have to use 2/3 × 2/3.
2/3 × 2/3 = 4/9
=>
Area small = Area large × 4/9 = 6 × 4/9 = 24/9 = 8/3 ≈ 2.7
54% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults. Find the probability
that the number of U.S. adults who have very little confidence in newspapers is (a) exactly five, (b) at least six, and (c)
less than four.
(a) P(5) =
(Round to three decimal places as needed.)
(b) P(x26) =
(Round to three decimal places as needed.)
(c) P(x<4) =
(Round to three decimal places as needed.)
Part B is not clear and the clear one is;
P(X ≥ 6)
Answer:
A) 0.238
B) 0.478
C) 0.114
Step-by-step explanation:
To solve this, we will make use of binomial probability formula;
P(X = x) = nCx × p^(x)•(1 - p) ^(n - x)
A) 54% of U.S. adults have very little confidence in newspapers. Thus;
p = 0.54
10 random adults are selected. Thus;
P(X = 5) = 10C5 × 0.54^(5) × (1 - 0.54)^(10 - 5)
P(X = 5) = 0.238
B) P(X ≥ 6) = P(6) + P(7) + P(8) + P(9) + P(10)
From online binomial probability calculator, we have;
P(X ≥ 6) = 0.2331 + 0.1564 + 0.0688 + 0.01796 + 0.0021 = 0.47836 ≈ 0.478
C) P(x<4) = P(3) + P(2) + P(1) + P(0)
Again with online binomial probability calculations, we have;
P(x<4) = 0.1141 ≈ 0.114
Alex thinks of a number. he squares it, then takes away five .Next multiplies it by 4 ,takes away seven, divides it by three ,and finally adds six his answer is nine what number did he start with
Answer:
3
Step-by-step explanation:
start with the ending answer and go backwards
Answer:
3.
Step-by-step explanation:
.
If 6 playes cost 54$ how much do 30 plates cost
Answer:
270 plates
Step-by-step explanation:
First, you need to find how much one plate costs.
6x = 54
---- ----
6 6
x = 9
Now, multiply 30 plates with x, which is 9.
30(9) = 270
The answer is 270.
Answer:
270
Step-by-step explanation:
54($)÷6= 9 then 9×30=270
Which answers describe the shape below? Check all that apply.
A. Quadrilateral
B. Trapezoid
C. Rhombus
D. Rectangle
E. Parallelogram
F. Square
9514 1404 393
Answer:
A, C, D, E, F
Step-by-step explanation:
The figure has 4 sides: 2 pairs of parallel sides, all of equal length. The angles are right angles.
The figure is a ...
quadrilateralrhombusrectangleparallelogramsquareAnswer:
A, and F.
Step-by-step explanation: I hope this helps.
Four sides are called a quadrilateral.
Three sides are called a triangle.
Five sides are called a pentagon.
Six sides are called hexagons.
A rectangle is a quadrilateral with four right angles.
A square is a quadrilateral with four right angles.
A rhombus is a quadrilateral with four equal sides.
A parallelogram is a quadrilateral with two pairs of parallel sides.
A trapezoid is a quadrilateral with one pair of parallel sides.
Acute angles are less than 90°
Right angles are exactly 90°
Obtuse angles are more than 90°
Acute triangle has three acute angles.
Right triangle has one right angle.
An obtuse triangle has one obtuse angle.
Isosceles triangle has the minimum of two sides that are equal length.
Equilateral triangle has three sides that are at an equal length.
Scalene triangles have three sides of different lengths,
Acute triangles with three equal sides are called an equiangular triangle.
what is the value of 24 * 0.03
Answer:
The value of 24x0.03 is gong to be, "800"
What transformation to the linear parent function, f(x) = x, gives the function
g(x) = x + 7?
O
A. Shift 7 units down.
B. Vertically stretch by a factor of 7.
C. Shift 7 units right.
D. Shift 7 units left.
Helping my home girls for the future
5a2 + b(a2 + 5) + b2
[tex]\rightarrow\sf {5a}^{2} + {b(a}^{2} + 5) + {b}^{2} [/tex]
Solution:[tex]\rightarrow\sf {5a}^{2} + {b(a }^{2} + 5) + {b}^{2} \\ = \sf {5a}^{2} + {ba}^{2} + b \times 5 + {b}^{2} \\ = \large\boxed{\sf{\red{ {5a}^{2} + {ba}^{2} + 5b + {b}^{2} }}}[/tex]
Answer:[tex]\rightarrow\large\boxed{\sf{\red{ {5a}^{2} + {ba}^{2} + 5b + {b}^{2} }}}[/tex]
[tex]\color{red}{==========================}[/tex]
✍︎ꕥᴍᴀᴛʜᴅᴇᴍᴏɴǫᴜᴇᴇɴꕥ
✍︎ꕥᴄᴀʀʀʏᴏɴʟᴇᴀʀɴɪɴɢꕥ
tan sin^-1(-1/2)+tan^-1(3/4)
exact value!
Answer:
m
Step-by-step explanation:
vfmjj vdzaazb knkuvggb
Plss help Get brainiest if right!
The first side of a triangle is 2/3
as long as the second side. The
length of the third side of the triangle is 1/2 of the sum of the
first and second sides. Find the length of the sides of the triangle
if the perimeter is 50.
Answer:
In Picture
Step-by-step explanation:
Brainliest please~
when 5 is added to 2 times a number , the results is 45. find the number
Answer:i think its 20
Step-by-step explanation: 20 x 2 is 40 plus 5 is 45
Answer:
✓ x - the number 5 + 2x = 45 2x = 45 - 5 2x = 40 x = 20 5 + 2(20) = 45 5 + 40 = 45 45 = 45 Hope this helps. :-) the answer is 20
Step-by-step explanation: Algebra.com
solve the equation 11n - 17 = 49
Answer:
The correct answer is =6.
Step-by-step explanation:
Solution,
Given;
11−17=49
or,11n-17=49
or,11−17+17=49+17
or,11=66
or,n=66/11
#n=6
HOPE IT HELPED♥︎
Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two sides
of this triangle?
• 5 cm and 8 cm
O 6 cm and 7 cm
O 7 cm and 2 cm
8 cm and 9 cm
Answer:
8cm and 9cm
Step-by-step explanation:
because for the triangle to work you need the other two other sides when added together needs to be greater then 13
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Evaluate double integral of f(u,v)=∬dudv over region R where R is bounded by v^2-nu=0 , v^2-(n+1)u=0 and uv=n,uv=(n+1). Sketch neat graph and shade the bounded region. Clearly mention the points of intersection. Reverse the order of integration then evaluate. Where n is 100.
Answer:
5670272728262728227627
What are the solutions to the system of equations graphed below?
Answer:
D
Step-by-step explanation:
solution is the points where the two graphs intersect.
they intersect at (-3,-3) and (0,6)
One invests 100 shares of IBM stocks today. He expects that there could be five possible opening prices with the respective probabilities at 9:30 a.m. in NYSE the next day. The following table lists these possible opening prices and their respective probabilities:
Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5
Possible Opening
Price of IBM, Xi $182.11 $163.88 $180.30 $216.08 $144.92
Probability, pi 13% 19% 33% 17% 18%
Let X represent the five random opening prices of IBM the next day, calculate the mean, variance, and the standard deviation of X. Make your comments on the results you obtain.
Answer:
[tex]E(x) = 177.130[/tex]
[tex]Var(x) = 484.551[/tex]
[tex]\sigma = 22.013[/tex]
Step-by-step explanation:
Given
The attached table
Solving (a): The mean
This is calculated as:
[tex]E(x) = \sum x * p(x)[/tex]
So, we have:
[tex]E(x) = 182.11 * 13\% + 163.88 * 19\% + 180.30 * 33\% + 216.08 * 17\% + 144.92 * 18\%[/tex]
Using a calculator, we have:
[tex]E(x) = 177.1297[/tex]
[tex]E(x) = 177.130[/tex] --- approximated
The average opening price is $177.130
Solving (b): The Variance
This is calculated as:
[tex]Var(x) = E(x^2) - (E(x))^2[/tex]
Where:
[tex]E(x^2) = \sum x^2 * p(x)[/tex]
[tex]E(x^2) = 182.11^2 * 13\% + 163.88^2 * 19\% + 180.30^2 * 33\% + 216.08^2 * 17\% + 144.92^2 * 18\%[/tex]
[tex]E(x^2) = 31859.482249[/tex]
So:
[tex]Var(x) = E(x^2) - (E(x))^2[/tex]
[tex]Var(x) = 31859.482249 - 177.1297^2[/tex]
[tex]Var(x) = 31859.482249 - 31374.9306221[/tex]
[tex]Var(x) = 484.5516269[/tex]
[tex]Var(x) = 484.551[/tex] --- approximated
Solving (c): standard deviation
The standard deviation is:
[tex]\sigma = \sqrt{Var(x)}[/tex]
[tex]\sigma = \sqrt{484.5516269}[/tex]
[tex]\sigma = 22.0125418796[/tex]
Approximate
[tex]\sigma = 22.013[/tex]