A resistor has four colored stripes in the following order: orange, orange, brown and silver. What is the resistance of the resistor and its tolerance

Answers

Answer 1

Answer:

Resistance =330 Ω

Tolerance = 33 Ω

Explanation:

see attached resistor color code table

The first stripe is orange, which means the leftmost digit is a 3.

The second stripe is orange , which means the next digit is a 3.

The third stripe is brown.  Since brown is 1, it means add one zero to the right of the first two digits.

The resistance is:

orange-orange-brown=  330 Ω

The tolerance is:

The fourth color band indicates the resistor's tolerance.  Tolerance is the percentage of error in the resistor's resistance.

silver is 10%

A 330 Ω resistor has a silver tolerance band.  

Tolerance = value of resistor x value of tolerance band

= 330 Ω x 10% = 33 Ω

330 Ω stated resistance +/- 33 Ω tolerance means that the resistor could range in actual value from as much as 363 Ω to as little as 297 Ω.

A Resistor Has Four Colored Stripes In The Following Order: Orange, Orange, Brown And Silver. What Is
Answer 2

The resistance of the resistor is 330 Ω and the tolerance is within  363 Ω and 297 Ω

In physics, resistor's resistance is coded using colors.

Orange colors are coded as 3

The  brown color is coded as 0

The silver color determines the tolerance and silver means 10%

The resistor with four colored stripes in the following order: orange, orange, brown has a resistance value of 330 Ω

Tolerance = 330 × 10%

Tolerance = 33Ω

Resistor value = 330±33

Resistor value = (330+33) and (330-33)

Resistor value = 363 Ω and 297 Ω

Hence the resistance of the resistor is 330 Ω and the tolerance is within  363 Ω and 297 Ω

Learn more here: https://brainly.com/question/18829138

A Resistor Has Four Colored Stripes In The Following Order: Orange, Orange, Brown And Silver. What Is

Related Questions

Statement I: At the same temperature lighter gas molecules have a higher average velocity than heavier gas molecules.
Statement II: At the same temperature lighter gas molecules have a higher average kinetic energy than heavier gas molecules.
a) Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1
b) Both the statement 1 and statement 2 are correct and statement 2 is not the correct explanation of statement 1
c) Statement 1 is correct but statement 2 is not correct
d) Statement 1 is not correct but statement 2 is correct
e) Both the statement 1 and statement 2 is not correct

Answers

Answer:

Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1

Explanation:

Both the velocity and kinetic energy of a gas molecule depends on its relative molecular mass according to Graham's law of diffusion in gases. Hence, the greater the relative molecular mass of the gas, the lesser its average velocity and kinetic energy.

Hence we can see that statement 2 vividly explains the postulation of statement 1 and makes the points more easily comprehensible.

Air in a 124 km/h wind strikes head-on the face of a building 42 m wide by 73 m high and is brought to rest. If air has a mass of 1.3 kg per cubic centimeter, determine the average force of wind on the building.

Answers

Answer:

The average force of wind on the building is 4.728 x 10¹² N

Explanation:

Given;

speed of the air wind, v = 124 km/h

dimension of the building, 42 m wide by 73 m high

density of the air, ρ = 1.3 kg/cm³ =

speed of the air in m/s = 124/3.6 = 34.44 m/s

Area of the building, A = 42 m x 73 m = 3066 m²

density of the air in (k.g/m³);

[tex]\rho = \frac{1.3 \ kg}{cm^3} *(\frac{100\ cm}{1 \ m} )^3\\\\\rho = \frac{1.3 \ kg}{cm^3} *\frac{10^6\ cm^3}{1 \ m^3} = \frac{1.3*10^6 \ kg}{m^3}[/tex]

The average force of wind on the building;

F = mass flow rate x velocity

F = (ρvA) x V

F = ρAv²

F = 1.3 x 10⁶ x 3066  x (34.44)²

F = 4.728 x 10¹² N

Therefore, the average force of wind on the building is 4.728 x 10¹² N

Consider the waveform expression. y(x,t)=ymsin(801t+3.38+0.503x) The transverse displacement ( y ) of a wave is given as a function of position ( x in meters) and time ( t in seconds) by the expression. Determine the wavelength, frequency, period, and phase constant of this waveform.

Answers

Answer:

f = 127.48 Hz ,  T = 7.844 1⁻³ s ,  Ф = 3.38 ,     λ = 12.49 m

Explanation:

The general equation for the motion of a wave in a string is

          y = A sin (kx -wt + fi)

the expression they give is

         y = ym sin (0.503x + 801 t + 3.38 )

the veloicda that accompanies time is

      w = 801   rad / s

angular velocity is related to frequency

      w = 2π f

      f = w / 2π

      f = 801 / 2π

      f = 127.48 Hz

The period is the inverse of the frequency

      T = 1 / f

       T = 1 / 127.48

      T = 7.844 10⁻³ s

the csntnate of phase fi is the independent term

      Ф = 3.38

the wave vector accompanies the position k = 0.503 cm

       ka = 2pi /λ

       λ = 2 π / k

       λ = 2 π / 0.503

       λ = 12.49 m

Narrow, bright fringes are observed on a screen behind a diffraction grating. The entire experiment is then immersed in water. Do the fringes on the screen get closer together, get farther apart, remain the same, or disappear? Explain.

Answers

Answer:

 n (a sin θ) =  m λ₀

n> 1, therefore the fringes move away from each other

Explanation:

The diffraction experiment the constructive interference fringes is described by

          a sin θ = m λ₀

in this equation it is assumed that the experiment emptied the air n = 1

When the same experiment is performed in water, the wavelength changes

           λₙ = λ₀ / n

execution for constructive interference

            a sin θ = m λₙ

we substitute

           a sin θ = m λ / n

           n (a sin θ) =  m λ₀

the refractive index of water is n = 1.33, so for the same wavelength the separation of the spectrum is multiplied by n> 1, therefore the fringes move away from each other

If Matthew was traveling into space from Earth, which of these would he be able to reach first? A) Sun B) Venus C) Alpha centauri D) not enough information given

Answers

C.) Alpha Centauri

Explanation:

Due to it being the closest planetary system to earth.

About 4.367 light years away.

Answer: not enough information given

Explanation:

Consider the following:
a) radio waves emitted by a weather radar system to detect raindrops and ice crystals in the atmosphere to study weather patterns;
b) microwaves used in communication satellite transmissions;
c) infrared waves that are perceived as heat when you turn on a burner on an electric stove;
d) the multicolor light in a rainbow;
e) the ultraviolet solar radiation that reaches the surface of the earth and causes unprotected skin to burn; and
f) X rays used in medicine for diagnostic imaging.

Answers

Answer:

They have different wavelengths.

They have different frequencies.

They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.

Explanation:

The complete question is

Consider the following:

a) radio waves emitted by a weather radar system to detect raindrops and ice crystals in the atmosphere to study weather patterns;

b) microwaves used in communication satellite transmissions;

c) infrared waves that are perceived as heat when you turn on a burner on an electric stove;

d) the multicolor light in a rainbow;

e) the ultraviolet solar radiation that reaches the surface of the earth and causes unprotected skin to burn; and

f) X rays used in medicine for diagnostic imaging.

Which of the following statements correctly describe the various forms of EM radiation listed above?

check all that apply to the above

They have different wavelengths.

They have different frequencies.

They propagate at different speeds through a vacuum depending on their frequency.

They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.

They require different media to propagate.

All the above phenomena are due the electromagnetic wave spectrum. Electromagnetic waves travel at a constant speed of 3 x 10^8 m/s in a vacuum. Within the spectrum, the different types of electromagnetic waves exists in different band range of frequencies and wavelengths unique to each of the waves, and the energy they carry. When these waves enter a non-vacuum medium, their speed change, depending on the nature of the material of the medium, and the frequency or the wavelength of the incoming wave.

Find the sum of 46 and -46

Answers

Answer:

0

Explanation:

Please help and if you have the answer if you can please explain how you got it :)!

Answers

Answer:

The mass of ball C is greater than the mass of ball A but less than the mass of ball B.

Explanation:

From Newton's second law, net force = mass × acceleration.

Using the data for ball B, the acceleration of gravity near the surface of the moon is:

∑F = ma

9.6 N = (6 kg) a

a = 1.6 m/s²

Therefore, the mass of ball C is:

∑F = ma

6.6 N = m (1.6 m/s²)

m = 4.1 kg

Water enters a student's house 10.0 m above the ground through a pipe with a cross section area of 1.00 x 10-4m2 at ground. Inside the house the pipe's cross section area is 0.50 x 10-4m2. The student in the house want to know the water pressure inside the pipe at the ground level. He first measured the volume of the bath tank that equals to 45.0 L. Then he fill the tank (the tank is 10 meters above the ground) inside the house with 90.0 seconds. The pipe inside the house is open with the sea level pressure The density of water is 1000 kgm3.
(a) Calculate the water speed at the ground pipe with larger cross section area and the water speed inside the house with smaller cross section area.
(b) Calculate the water pressure in the pipeline at the ground level.

Answers

Answer:

(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)

(b). P₂ = 236500 Pa

Explanation:

This is quite straight-forward so let us begin by defining the terms given.

Given that;

The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.

Let us make the velocity of water inside the house be V₁

such that the Volume of water entering the per second is = A₁V₁

Therefore, in 90sec:

45 L =  90 A₁V₁

V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴

V₁ = 10m/s            (velocity of water inside the house)

From the continuity equation we have that;

A₁V₁ = A₂V₂

0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂

V₂ = 5m/s               (velocity at ground level)

(b). We are told to calculate the water pressure in the pipeline at the ground level.

Using Bernoulli's equation;

P₁ + pgh₁ + 1/2PV₁²  (inside)      =       P₂ + pgh₂ + 1/2PV₂²   (ground level)

1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²

P₂ (pressure) = 1.01*10⁵Pa

Therefore we have;

101000 + 98000 + 50000 = P₂ + 12500

P₂ = 236500 Pa

cheers I hope this helped !!

Two parallel very long straight wires carrying current of 5A each are kept at a separation of 1m. If the currents are in the same direction, the force per unit length between them is __________

Answers

Answer:

The force per unit between the two parallel wires with same current flowing in the same direction is 5 x 10⁻N/m repulsive force.

Explanation:

Given;

current though the two parallel wires, I₁ and I₂ = 5A

distance between the two wires, R = 1 m

The force per unit of the wires is calculated as;

[tex]\frac{F}{L} = \frac{\mu_o I_1I_2}{2\pi R}[/tex]

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

Substitute in the given values into the equation and determine the force per unit length (F/L).

[tex]\frac{F}{L} = \frac{\mu_o I_1I_2}{2\pi R} \\\\ \frac{F}{L} = \frac{4\pi *10^{-7}*5*5}{2\pi *1}\\\\ \frac{F}{L} = 5*10^{-6} \ N/m \ (repulsive)[/tex]

Therefore , the force per unit between the two parallel wires with same current flowing in the same direction is 5 x 10⁻ N/m repulsive force.

Replacing an object attached to a spring with an object having 14 the original mass will change the frequency of oscillation of the system by a factor of

Answers

Answer:

The frequency changes by a factor of  0.27.

Explanation:

The frequency of an object with mass m attached to a spring is given as

[tex]f[/tex] = [tex]\frac{1}{2\pi } \sqrt{\frac{k}{m} }[/tex]

where [tex]f[/tex] is the frequency

k is the spring constant of the spring

m is the mass of the substance on the spring.

If the mass of the system is increased by 14 means the new frequency becomes

[tex]f_{n}[/tex] = [tex]\frac{1}{2\pi } \sqrt{\frac{k}{14m} }[/tex]

simplifying, we have

[tex]f_{n}[/tex] = [tex]\frac{1}{2\pi \sqrt{14} } \sqrt{\frac{k}{m} }[/tex]

[tex]f_{n}[/tex] = [tex]\frac{1}{3.742*2\pi } \sqrt{\frac{k}{m} }[/tex]

if we divide this final frequency by the original frequency, we'll have

==> [tex]\frac{1}{3.742*2\pi } \sqrt{\frac{k}{m} }[/tex]  ÷  [tex]\frac{1}{2\pi } \sqrt{\frac{k}{m} }[/tex]

==> [tex]\frac{1}{3.742*2\pi } \sqrt{\frac{k}{m} }[/tex]  x  [tex]2\pi \sqrt{\frac{m}{k} }[/tex]

==> 1/3.742 = 0.27

If you converted 0.000013 to scientific notation, what would the prefix be to the correct number of significant digits?

Answers

Answer:

1.3

Explanation:

it will taken to as in from of standard form

Answer:

1.3 * 10^-5

Explanation:

We are learning about scientific notation.

When a number becomes a decimal followed before with zeroes, we know that the value of that number is decreasing. So instead of usually doing a positive exponent, we will do a negative exponent indicating we are going back.

So let's not only count the amount of zeroes followed before 13, but the decimal.

0.000013

The original number "1.3" went back 5 spaces, therefore making our exponent 5.

1.3 * 10^-5

What is the direction of the magnetic force on the current in each of the six cases?

Answers

Answer:

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B, as shown in Figure 2. If we divide both sides of this expression by l, we find that the magnetic force per unit length of wire in a uniform field is F l=IBsinθ.

Explanation:

A hydraulic press has one piston of diameter 4.0 cm and the other piston of diameter 8.0 cm. What force must be applied to the smaller piston to obtain a force of 1600 N at the larger piston

Answers

Answer:

400 N

Explanation:

Pressure is equal on both pistons.

P = P

F / A = F / A

F / (πd²/4) = F / (πd²/4)

F / d² = F / d²

1600 N / (8.0 cm)² = F / (4.0 cm)²

F = 400 N

The force that should be applied to the smaller piston is 400 N.

Given that,

A hydraulic press has one piston of diameter 4.0 cm and the other piston of diameter 8.0 cm. Pressure is equal on both pistons.

Based on the above information, the calculation is as follows:

[tex]1600 N \div (8.0 cm)^2 = F \div (4.0 cm)^2[/tex]

F = 400 N

Learn more: brainly.com/question/17429689

A sealed tank containing seawater to a height of 10.5 mm also contains air above the water at a gauge pressure of 2.95 atmatm. Water flows out from the bottom through a small hole. How fast is this water moving?

Answers

Answer:

The water is flowing at the rate of 28.04 m/s.

Explanation:

Given;

Height of sea water, z₁ = 10.5 m

gauge pressure, [tex]P_{gauge \ pressure}[/tex] = 2.95 atm

Atmospheric pressure, [tex]P_{atm}[/tex] = 101325 Pa

To determine the speed of the water, apply Bernoulli's equation;

[tex]P_1 + \rho gz_1 + \frac{1}{2}\rho v_1^2 = P_2 + \rho gz_2 + \frac{1}{2}\rho v_2^2[/tex]

where;

P₁ = [tex]P_{gauge \ pressure} + P_{atm \ pressure}[/tex]

P₂ = [tex]P_{atm}[/tex]

v₁ = 0

z₂ = 0

Substitute in these values and the Bernoulli's equation will reduce to;

[tex]P_1 + \rho gz_1 + \frac{1}{2}\rho v_1^2 = P_2 + \rho gz_2 + \frac{1}{2}\rho v_2^2\\\\P_1 + \rho gz_1 + \frac{1}{2}\rho (0)^2 = P_2 + \rho g(0) + \frac{1}{2}\rho v_2^2\\\\P_1 + \rho gz_1 = P_2 + \frac{1}{2}\rho v_2^2\\\\P_{gauge} + P_{atm} + \rho gz_1 = P_{atm} + \frac{1}{2}\rho v_2^2\\\\P_{gauge} + \rho gz_1 = \frac{1}{2}\rho v_2^2\\\\v_2^2 = \frac{2(P_{gauge} + \rho gz_1)}{\rho} \\\\v_2 = \sqrt{ \frac{2(P_{gauge} + \rho gz_1)}{\rho} }[/tex]

where;

[tex]\rho[/tex] is the density of seawater = 1030 kg/m³

[tex]v_2 = \sqrt{ \frac{2(2.95*101325 \ + \ 1030*9.8*10.5 )}{1030} }\\\\v_2 = 28.04 \ m/s[/tex]

Therefore, the water is flowing at the rate of 28.04 m/s.

Answer:

C. effusion because there is a movement of a gas through a small opening into a larger volume

Explanation:

Edge2020

Have a great day y'all :)

You've recently read about a chemical laser that generates a 20.0-cm-diameter, 26.0 MW laser beam. One day, after physics class, you start to wonder if you could use the radiation pressure from this laser beam to launch small payloads into orbit. To see if this might be feasible, you do a quick calculation of the acceleration of a 20.0-cm-diameter, 110 kg, perfectly absorbing block.

Required:
a. What speed would such a block have if pushed horizontally 100 m along a frictionless track by such a laser?
b. Does this seem like a promising method for launching satellites?

Answers

Answer :

(a). The speed of the block is 0.395 m/s.

(b). No

Explanation :

Given that,

Diameter = 20.0 cm

Power = 26.0 MW

Mass = 110 kg

diameter = 20.0 cm

Distance = 100 m

We need to calculate the pressure due to laser

Using formula of pressure

[tex]P_{r}=\dfrac{I}{c}[/tex]

[tex]P_{r}=\dfrac{P}{Ac}

Put the value into the formula

[tex]P_{r}=\dfrac{26.0\times10^{6}}{\pi\times(10\times10^{-2})^2\times3\times10^{8}}[/tex]

[tex]P_{r}=2.75\ N/m^2[/tex]

We need to calculate the force

Using formula of force

[tex]F=P\times A[/tex]

[tex]F=P\times \pi r^2[/tex]

Put the value into the formula

[tex]F=2.75\times\pi (0.01)^2[/tex]

[tex]F=0.086\ N[/tex]

We need to calculate the acceleration

Using formula of force

[tex]F=ma[/tex]

Put the value into the formula

[tex]0.086=110\times a[/tex]

[tex]a=\dfrac{0.086}{110}[/tex]

[tex]a=0.000781\ m/s^2[/tex]

[tex]a=7.81\times10^{-4}\ m/s^2[/tex]

(a). We need to calculate speed of the block

Using equation of motion

[tex]v^2=u^2+2ad[/tex]

Put the value into the formula

[tex]v=\sqrt{2\times7.81\times10^{-4}\times100}[/tex]

[tex]v=0.395\ m/s[/tex]

(b). No because the velocity is very less.

Hence, (a). The speed of the block is 0.395 m/s.

(b). No

sound source of frequency f moves with constant velocity (less than the speed of sound) through a medium that is at rest. A stationary observer hears a sound whose frequency is appreciably different from f because

Answers

Answer:

A static observer hears a sound whose frequency is appreciably different from actual frequency because here the change in frequency of the sound due to doppler effect.

Explanation:

Given that,

Frequency = f

We know that,

The sound source of frequency f moves with constant velocity through a medium that is at rest.

A static observer hears a sound whose frequency is significantly different from actual frequency due to doppler effect.

We know that,

The doppler effect is defined as

[tex]f=f_{0}(\dfrac{v+v_{0}}{v-v_{s}})[/tex]

Where, f₀ = actual frequency

f = observe frequency

v = speed of sound

[tex]v_{o}[/tex] = speed of observer

[tex]v_{s}[/tex] = speed of source

Hence, A static observer hears a sound whose frequency is significantly different from actual frequency because here the change in frequency of the sound due to doppler effect.

Zoning laws establish _______. a. what types of buildings can be built in an area b. the uses an area of land can be put to c. who can live in an area d. the types of business that can occupy a building Please select the best answer from the choices provided A B C D

Answers

Answer:

its B

Explanation:

Answer:

It's B

Explanation: hope it helps ^w^

Explain Cheetah how force, velocity, and acceleration are related.

Answers

Explanation:

A cheetahs force, velocity, and acceleration are related because velocity goes by seconds/mile per hour, force goes by strength and energy, and acceleration goes by how the velocity changes the speed.

1. The most likely injuries in an Anatomy class are (circle all that apply)
a. chemical spill
b. cut from scalpel
c, burn from
open
flame
d. foreign object or splash in eye
e, animal bite

Answers

Answer: B

You are more likely to get cut from a scalpel in anatomy class as opposed to injuries related to chemicals or animal bites

Light with an intensity of 1 kW/m2 falls normally on a surface with an area of 1 cm2 and is completely absorbed. The force of the radiation on the surface is

Answers

Answer:

The force of the radiation on the surface is  3.33 X 10⁻¹⁰ N

Explanation:

Given;

intensity of light, I = 1 kw/m²

area of the surface, A = 1 cm² = 1 x 10⁻⁴ m²

Power of the incident light, P = I x A

Power of the incident light, P = (1 kw/m²) x (1 x 10⁻⁴ m²)

Power of the incident light, P = 1 x 10⁻⁴ kW = 0.1 W

Power of the incident light is given by;

P = Fv

where;

F is the force of the radiation on the surface

v is the speed of light = 3 x 10⁸ m/s

F = P/ v

F = (0.1) / (3 x 10⁸)

F = 3.33 X 10⁻¹⁰ N

Therefore, the force of the radiation on the surface is  3.33 X 10⁻¹⁰ N


What is the mass of a rock lifted 2 meters off the ground that has 196 J of potential energy?

Answers

Answer:

10kg

Explanation:

Let PE=potential energy

PE=196J

g(gravitational force)=9.8m/s^2

h(change in height)=2m

m=?

PE=m*g*(change in h)

196=m*9.8*2

m=10kg

Trial 1: Get a textbook and put a sheet of paper on top of it. Fold the paper as needed to keep the paper from sticking over the edge of the book.Hold the textbook with the paper on top, horizontally about waist high.Drop the book and paper so that they hit the floor flat. Record your observations.Trial 2: With the book in one hand and the paper in the other, drop the book and paper simultaneously from the same height. Record your observations.

Answers

Answer:

1)  the two objects reach the floor at the same time.

2)the book reaches the floor much earlier than the foil

In conclusion, the difference in motion between the two systems subjected to the same acceleration depends on the weight of the body and friction force, when the body has less weight, the friction of the air affects it more

Explanation:

This interesting experiment has the following results

1) first case. Sheet on top of book

In this case the two objects reach the floor at the same time.

This shows that the acceleration in the two objects is the same and we call it the acceleration of gravity.

The speed of the body increases as it goes down linearly.

This occurs because the book that receives air resistance is much heavier, so the resistance has almost no effect on its movement, the sheet does not have the air resistance because it goes down next to the book.

2) second case. Book and sheet next to each other.

In this case the book reaches the floor much earlier than the foil.

This is because the resisting force of the air has almost no effect on the book and its movement is little affected by this force.

In the case of the blade, it has very little weight, therefore as its speed increases, the resistance force of the air rapidly equals the weight of the blade.

           W_sheet - fr = 0

so after this, since the acceleration is zero, it goes down at constant speed, this speed is called the terminal velocity.

In conclusion, the difference in motion between the two systems subjected to the same acceleration depends on the weight of the body and friction force, when the body has less weight, the friction of the air affects it more.

The greatest speed recorded by a baseball thrown by a pitcher was 162.3 km / h, obtained by Nolan Ryan in 1974. If the ball leaves the pitcher's hand with a horizontal speed of this magnitude, how much will the ball have fallen? by the time you have traveled 20 m horizontally?

Answers

Answer:

0.96 m

Explanation:

First, convert km/h to m/s.

162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s

Now find the time it takes to move 20 m horizontally.

Δx = v₀ t + ½ at²

20 m = (45.08 m/s) t + ½ (0 m/s²) t²

t = 0.4436 s

Finally, find how far the ball falls in that time.

Δy = v₀ t + ½ at²

Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²

Δy = -0.96 m

The ball will have fallen 0.96 meters.

In the previous part, you determined the maximum angle that still allows the crate to remain at rest. If the coefficient of friction is less than 0.7, what happens to this angle? A. The maximum angle increases.B. The maximum angle decreases.C. The maximum angle remains the same.D. Simulation q not sure if needed.

Answers

Answer:

B. The maximum angle decreases

Explanation:

If θ be the maximum angle of a slope that allows a crate placed on it to remain at rest , following condition exists .

tanθ = μ , θ is called angle of repose . μ is coefficient of static friction .

So the tan of angle of repose θ is proportional to coefficient of static friction.

If coefficient of static friction is less than .7 , naturally angle of repose will also become less ,ie,  it at lower angle of inclination , the object will start slipping .

A 22-g bullet traveling 240 m/s penetrates a 2.0-kg block of wood and emerges going 150 m/s. If the block is stationary on a frictionless surface when hit, how fast does it move after the bullet emerges?

Answers

Answer:

After the bullet emerges the block moves at 0.99 m/s

Explanation:

Given;

mass of bullet, m₁ = 22 g = 0.022 kg

initial speed of the bullet, u₁ = 240 m/s

final speed of the bullet, v₁ = 150 m/s

mass of block, m₂ = 2.0 kg

initial speed of the block, u₂ = 0

Let the final speed of the block = v₂

Apply principles of conservation of linear momentum;

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

0.022 x 240 + 2 x 0 = 0.022 x 150 + 2v₂

5.28 = 3.3 + 2v₂

5.28 - 3.3 = 2v₂

1.98 = 2v₂

v₂ = 1.98 / 2

v₂ = 0.99 m/s

Therefore, after the bullet emerges the block moves at 0.99 m/s

The body moves at a speed of 2.61m/s after the bullet emerges.

According to the law of collision which states that the momentum of the body before the collision is equal to the momentum of the body after the collision.

The formula for calculating the collision of a body is expressed as:

p = mv

m is the mass of the body

v is the velocity of the body

Based on the law above;

[tex]m_1u_1+m_2u_2=(m_1+m_2)v[/tex]

v is the final velocity of the body after the collision

Substitute the given parameters into the formula as shown:

[tex]0.022(240) + 2(0) = (0.022+2)v\\ 5.28 = 2.022v\\v=\frac{5.28}{2.022}\\v= 2.611m/s[/tex]

This shows that the body moves at a speed of 2.61m/s after the bullet emerges.

Learn more here: https://brainly.com/question/9537044

What type of information is available to scientists through a Global Positioning System (GPS) device?

Answers

Answer:

GPS receivers provide location in latitude, longitude, and altitude. They also provide the accurate time. GPS includes 24 satellites that circle Earth in precise orbits.

J. Henry Alston was the first African American to publish his research findings on the perception of heat and cold in a major US psychology journal. Please select the best answer from the choices provided T F

Answers

Answer:

True

Explanation:

J. Henry Alston was known as a famous African American psychologist. He was known through his thorough study of the sensations of heat and cold.

He thereby became the first African American to publish his research findings on the perception of heat and cold in a major US psychology journal and was an important figure in the field.

What are the density, specific gravity and mass of the air in a room whose dimensions are 4 m * 6 m * 8 m at 100 kPa and 25 C.

Answers

Answer:

Density = 1.1839 kg/m³

Mass = 227.3088 kg

Specific Gravity = 0.00118746 kg/m³

Explanation:

Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³

Now, from tables, density of air at 25°C is 1.1839 kg/m³

Now formula for density is;

ρ = mass(m)/volume(v)

Plugging in the relevant values to give;

1.1839 = m/192

m = 227.3088 kg

Formula for specific gravity of air is;

S.G_air = density of air/density of water

From tables, density of water at 25°C is 997 kg/m³

S.G_air = 1.1839/997 = 0.00118746 kg/m³

Turning the barrel of a 50-mm-focal-length lens on a manual-focus camera moves the lens closer to or farther from the sensor to focus on objects at different distances. The lens has a stated range of focus from 0.70 m infinity.
How far does the lens move between these two extremes?

Answers

Answer:

Explanation:

To focus object at .7m , the image distance can be measured as follows

object distance u = .7m

focal length f = .05 m

image distance v = ?

from lens formula

[tex]\frac{1}{v} -\frac{1}{u} = \frac{1}{f}[/tex]

[tex]\frac{1}{v} +\frac{1}{.7} = \frac{1}{.05}[/tex]

[tex]\frac{1}{v} =\frac{1}{.05} -\frac{1}{.7}[/tex]

v = .054 m

= 54 mm

when the object is at infinity , image is formed at focus ie at distance of

50 mm .

So lens position from sensor  where image is formed , varies from 54 mm to 50 mm .

Other Questions
Which crops were the main reason slavery became part of the colonial economy? A medical rescue helicopter is flying at an average speed of 172 miles per hour toward its base hospital. At 2:42 p.m., thehelicopter is 80 miles from the hospital. Use this information for Items 4-5.Which equation can be used to determine m, the number of minutes it will take the helicopter to reach thehospital? Which type of government operates much like a democracy? Al2O3 (s) + 6 NaOH (aq) + 12HF (g) 2 Na3AlF6 (s) + 9 H2O (l) In an experiment; 6.55 g Al2O3 and excess HF were dissolved in 1.75 L of 0.15 M NaOH. If 20 g Na3AlF6was obtained, a Which one is the limiting reagent? b What is the actual yield? c What is the theoretical yield? d What is the percent yield for this experiment? What should you do with corded tools when they are not being used? Calculate the total surface area of a rectangular box 10cm long, 8cm wide and 6cm tall. What does this symbol mean Suppose that the election of a popular presidential candidate suddenly increases peoples confidence in the future. Use the model of aggregate demand and aggregate supply to analyze the effect on the economy Having established that a sound wave corresponds to pressure fluctuations in the medium, what can you conclude about the direction in which such pressure fluctuations travel A bottle of hot sauce is 3/4 full. Leigh uses 2/9 of the contents of the hot sauce bottle for lunch. How much of a full bottle of hot sauce did Leigh use for lunch? What is the name of the largest barrier island in the world What are the explicit equation and domain for a geometric sequence with a first term of 5 and a second term of 10? an = 5(2)n 1; all integers where n 1 an = 5(2)n 1; all integers where n 0 an = 5(15)n 1; all integers where n 1 an = 5(15)n 1; all integers where n 0 The Jackson-Timberlake Wardrobe Co. just paid a dividend of $1.75 per share on its stock. The dividends are expected to grow at a constant rate of 4 percent per year indefinitely. Investors require a return of 11 percent on the company's stock.Required:a. What is the current stock price? b. What will the stock price be in 18 years? 19. If the polynomial P(x) = 27x^3 + 9x^2 3x 10 is divided by 3x 2, the remainder will be options: A) 1 B) 2 C) 3 D) 0 A chloroplast has stopped producing atp and NADPH WILL MARK BRAINLIEST PLZZ!! How did the Shays Rebellion illustrate the need for a stronger national government than what existed under the Articles of Confederation? Let f(x) = 1/x+2 and g (x) = 1/x-3. Find (f/g) (x). Assume all appropriate restrictions to the domain. help!!!! Which advantage did village societies have over hunter-gatherer societies?Village societies had metal for tools, but hunter-gatherer societies did not.Village societies domesticated plants and animals, but hunter-gatherer societies did not.Village societies could interact with other societies, but hunter-gatherer societies could not.Village societies used the labor of hunter-gatherers, but hunter-gatherers did not hire villagers. I need help with #66 and #68 Which of the following is true regarding the payback method: 18 8 01:02:53 a. When a company is 'cash poor', a project with a short payback period but a low rate of return may be preferable to a project with a long payback period and a high rate of return b. The computation of the payback period is the project's initial investment divided by the present value of its net cash flows. c. A payback period of 35 means a company will earn 35 times its initial investment, d. The payback period increases as the cost of capital increases