Answer:
K = 0 J
Explanation:
Given that,
The mass of the particle, m = 1.2 mg
The speed of the particle, [tex]v=1.62\times 10\ cm/h[/tex]
We need to find the kinetic energy of the particle at time t = 0 s.
At t = 0 s, the particle is at rest, v = 0
So,
[tex]K=\dfrac{1}{2}mv^2[/tex]
If v = 0,
[tex]K=0\ J[/tex]
So, the kinetic energy of the particle at time t = 0 s is 0 J.
What quantity of heat is transferred when a 150.0g block of iron metal is heated from 25.0°C to 73.3°C? What is the direction of the heat flow?
Answer:
Heat is flowing into the metal.
Explanation:
From the question given above, the following data were obtained:
Mass (M) of iron = 150 g
Initial temperature (T₁) = 25.0°C
Final temperature (T₂) = 73.3°C
Direction of heat flow =?
Next, we shall determine the change in the temperature of iron. This can be obtained as follow:
Initial temperature (T₁) = 25.0 °C
Final temperature (T₂) = 73.3 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 73.3 – 25
ΔT = 48.3 °C
Next, we shall determine the heat transfered. This can be obtained as follow:
Mass (M) of iron = 150 g
Change in temperature (ΔT) = 48.3 °C
Specific heat capacity (C) of iron = 0.450 J/gºC
Heat (Q) transfered =?
Q = MCΔT
Q = 150 × 0.450 × 48.3
Q = 3260.25 J
Since the heat transferred is positive, it means the iron metal is absorbing the heat. Thus, heat is flowing into the metal.
A
Fluids in which the shear stress must reach
certain minimum value(yield stress)
before flow commences are called
Answer:
Plastic
Explanation:
Shear Modulus can be defined as the ratio of shear stress to shear strain with respect to a physical object.
This ultimately implies that, Shear Modulus arises as a result of the application of a shear force on an object or body which eventually leads to its deformation. Thus, this phenomenon is simply used by scientists to measure or determine the rigidity of an object or body.
Fluids in which the shear stress must reach certain minimum value (yield stress) before flow commences are called plastic. Thus, a plastic would only begin to flow when its shear stress attain a certain minimum value (yield stress). The unit of measurement of yield stress is usually mega pascal (MPa).
find the weight of a body of mass 200kg on the earth at a latitude 30°.(R=6400 km ,g=9.8m/s²,ω=7.27×10⁻⁵ rad/sec)
Answer:
................ftf6x
A block of mass M is connected by a string and pulley to a hanging mass m.The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. Find the acceleration of the system and tensions on the string.
The free body diagram for the block of mass M consists of four forces:
• the block's weight, Mg, pointing downward
• the normal force of the table pushing upward on the block, also with magnitude Mg
• kinetic friction with magnitude µMg = 0.2 Mg, pointing to the left
• tension of magnitude T pulling the block to the right
For the block of mass m, there are only two forces:
• its weight, mg, pulling downward
• tension T pulling upward
The m-block will pull the M-block toward the edge of the table, so we take the right direction to be positive for the M-block, and downward to be positive for the m-block.
Newton's second law gives us
T - 0.2Mg = Ma
mg - T = ma
where a is the acceleration of either block/the system. Adding these equations together eliminates T and we can solve for a :
mg - 0.2 Mg = (m + M) a
a = (m - 0.2M) / (m + M) g
a = 1.96 m/s²
Then the tension in the string is
T = m (g - a)
T = 78.4 N
Momentum is defined as mass ___ velocity
The north pole of magnet A will __?____ the south pole of magnet B
Answer:
A will attract
B will repare
(c) The ball leaves the tennis player's racket at a speed of 50 m/s and travels a
distance of 20 m before bouncing.
(i) Calculate how long it takes the ball to travel this distance.
(1 mark)
Answer:
t=0.417s
Explanation:
After the ball hits the racket it is in freefall(assume air resistance as negligible)
so a=-g
use
x-x0=v0t+1/2at^2
Plug in givens
20=50t-4.9t^2
Solve quadratic equation using quadratic formula
t= 0.417 seconds, (the other answer is extraneous because it is too big because in 1 second, the ball travels 50 meters)
No esporte coletivo, um dos principais fatores desenvolvidos é o desenvolvimento social. Qual desses não faz parte das virtudes ensinadas no esporte?
Companheirismo
Humildade
Ser justo (Fair Play)
Vencer independente do que precise ser feito
Answer:
fair palybtgshsisuehdh
What is true when an object floats in water? A. When an object floats, it exceeds the volume of water available. B. When an object floats, it displaces a volume of water equal to its own volume. C. When an object floats, it does not displace its entire volume.
Answer:
C. When an object floats, it does not displace its entire volume.
Explanation:
Buoyancy can be defined as an upward force which is created by the water displaced by an object.
According to Archimede's principle, it is directly proportional to the amount (weight) of water that is being displaced by an object.
Basically, the greater the amount of water an object displaces; the greater is the force of buoyancy pushing the object up. The buoyancy of an object is given by the formula;
[tex] Fb = pgV [/tex]
[tex] But, \; V = Ah [/tex]
[tex] Hence, \; Fb = pgAh [/tex]
Where;
Fb = buoyant force of a liquid acting on an object.
g = acceleration due to gravity.
p = density of the liquid.
v = volume of the liquid displaced.
h = height of liquid (water) displaced by an object.
A = surface area of the floating object.
The unit of measurement for buoyancy is Newton (N).
Additionally, the density of a fluid is directly proportional to the buoyant force acting on it i.e as the density of a liquid decreases, buoyancy decreases and vice-versa.
Furthermore, an object such as a boat, ship, ferry, canoe, etc, are able to float because the volume of water they displace weigh more than their own weight. Thus, if a boat or any physical object weighs more than the volume of water it displaces, it would sink; otherwise, it floats.
In conclusion, the true statement is that when an object floats, it does not displace its entire volume.
Would this pressure difference be greater or smaller if the scuba diver were in seawater (density 1050 kg/m3 ) and went to the same depth you calculated in question D1, took and held his breath, and then returned to the surface
Answer:
Greater.
Explanation:
This pressure difference will be greater if the scuba diver were in seawater and went to the same depth because the seawater have salts which increases the density of water as compared to freshwater. Salt in water increases the density which automatically increases the pressure on the diver so that's why we can say that the pressure will be increases for the scuba diver in seawater as compared to freshwater.
If you change the motor in your vehicle you need to notify the DMV within ____,
days of this change.
-20
-25
-10
-15
when you change your motor on your vehicle you need to notify the DMV within 10 days
If you change the motor in your vehicle you need to notify the DMV within 10 days of this change.
An engine or motorAn engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.
Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power generation), heat energy (e.g. geothermal), chemical energy, electric potential, and nuclear energy (from nuclear fission or nuclear fusion). Many of these processes generate heat as an intermediate energy form, so heat engines have special importance. Some natural processes, such as atmospheric convection cells convert environmental heat into motion (e.g. in the form of rising air currents). Mechanical energy is of particular importance in transportation but also plays a role in many industrial processes such as cutting, grinding, crushing, and mixing.
Mechanical heat engines convert heat into work via various thermodynamic processes. The internal combustion engine is perhaps the most common example of a mechanical heat engine, in which heat from the combustion of fuel causes rapid pressurization of the gaseous combustion products in the combustion chamber, causing them to expand and drive a piston, which turns a crankshaft. Unlike internal combustion engines, a reaction engine (such as a jet engine) produces thrust by expelling reaction mass, by Newton's third law of motion.
Learn more about motor
https://brainly.com/question/8954449
#SPJ2
A uniform steel rod of length 0.9 m and mass 3.8 kg has two point masses of 2.3 kg each at the two ends. Calculate the moment of inertia of the system about an axis perpendicular to the rod, and passing through its center.
Answer: [tex]2.4705\ kg.m^2[/tex]
Explanation:
Given
length of the rod is L=0.9 m
Mass of the rod m=3.8 kg
Point masses has mass of m=2.3 kg
Moment of Inertia of the rod about the center is
[tex]\Rightarrow I_o=\dfrac{1}{12}ML^2[/tex]
Moment of inertia of combined system is the sum of rod and two point masses.
[tex]\Rightarrow I=I_o+2mr^2[/tex]
[tex]\Rightarrow I=\dfrac{1}{12}3.8\times 0.9^2+2\times 2.3\times \left(\dfrac{0.9}{2}\right)^2\\\\\Rightarrow I=1.539+0.9315\\\Rightarrow I=2.4705\ kg-m^2[/tex]
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me
Why is the temperature constant during the melting of water?
[tex] \orange{\underline{\huge{\bold{\textit{\green{\bf{QUESTION}}}}}}}[/tex]
Why is the temperature constant during the melting of water?
[tex] \huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}[/tex]
[tex] \orange{\underline{\huge{\bold{\textit{\green{\bf{ REASON}}}}}}}[/tex]
THE HEAT WE R SUPPLYING TO THE WATER TO RAISE THE TEMP OF THE WATER IS USED BY THE MOLECULES TO BREAK INTERMOLECULAR BONDS WHICH HELP IN THE CHANGING OF THE LATTICE (STRUCTURE) OF THE WATER .
ICE HAS A HEXAGONAL RING LIKE STRUCTURE WHICH IS CONVERTED INTO REGULAR CRYSTALLINE STRUCTURE WHICH CAN ONLY BE FORMED WITH THE HELP OF FORMATION OF NEW BONDS AND BREAKDOWN OF OLDER ONES
THE AMOUNT OF ENERGY WHICH IS USED IN CONVERSATION OF THE STATE OF FROM SOLID TO LIQUID IS KNOWN AS LATENT HEAT OF FUSION.
SO TEMP REMAIN CONSTANT DURING CHANGE IN STATE .
[tex] \red \star{Thanks \: And \: Brainlist} \blue\star \\ \green\star If \: U \: Liked \: My \: Answer \purple \star[/tex]
Which of the following represents the velocity time relationship for a falling apple?
Answer "a" would be correct.
Answer:
d
Explanation:
There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D
Brainliest please~
Your dog is running around the grass in your back yard. He undergoes successive displacements 3.20 m south, 8.16 m northeast, and 15.6 m west. What is the resultant displacement
Answer:
D1 = 3.50 m, south; D2 = 8.20 m, northeast; D3 = 15.0 m, west. Converting all these displacements from east where zero degrees is at east or + x-axis, the converted displacements are: D1 = 3.50 m 270°; D2 = 8.20 m 45° and D3 = 15.0 m 180°. We then tabulate these vectors including there x and y components. The x-components are solved by magnitudes * cos of direction angle while the y-components of the three vectors are solved by magnitudes * sin of direction angle.
The resultant is computed by summing the components algebraically. The direction in degrees is the arc tangent of the sum of all y divided by the sum of all x.
Explanation:
why do you like the full moon ?
Answer:
The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.Answer:
because it look more impressive than empty dark sky .
65. The weight of a body when totally immersed in a liquid is 4.2N if he weight of the liquid displaced is 2.5N. Find the weight of the body in air.
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
A Catapult throws a payload in a circle with an arm that is 65.0 cm long. At a certain instant, the arm is rotating at 8.0 rad/s and the angular speed is increasing at 40.0 rad/s2. For this instant, find the magnitude of the acceleration of the payload.
Answer:
The acceleration of the payload is 26 m/s2.
Explanation:
length, L = 65 cm = 0.65 m
angular acceleration = 40 rad/s^2
The acceleration is given by
a = angular acceleration x length
a = 40 x 0.65
a = 26 m/s^2
You need to calculate the volume of berm that has a starting cross-sectional area of 118 SF, and an ending cross-sectional area of 245 SF. The berm is 300 ft long and is assumed to taper evenly between the two cross-sectional areas, what is the calculated volume of the berm in cubic feet
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?
Answer:
Power = Energy/time
Energy = Power xtime.
Time= 20hrs
Power = 100Watt =0.1Kw
Energy = 0.1 x 20 = 2Kwhr.
This Answer is in Kilowatt-hour ...
If the one given to you is in Joules
You'd have to Change your time to seconds
Then Multiply it by the power of 100Watts.
The velocity of an object increases at a constant rate from 20 m/s to 50 m/s in 10 s.Find the acceleation
Answer:
[tex]{ \bf{v = u + at}} \\ 50 = 20 + (a \times 10) \\ 30 = 10a \\ { \tt{acceleration = 3 \: {ms}^{ - 2} }}[/tex]
An elevator with its occupants weighs 2400 N and is supported by a vertical cable. What is the tension in the cable if the elevator is moving up with its speed decreasing at a rate of 1.7
Answer:
Hope you find it useful. please correct me if I am wrong
The tension in the cable if the elevator is moving upward with its speed decreasing at a rate of 1.7 m/s² is equal to 1983.67 N.
What is tension?Tension can be described as a force acting along the length of a medium such as a rope, mainly a force carried by a flexible medium.
Tension can be defined as an action-reaction pair of forces acting at each end of the elements. The tension force is in every section of the rope in both directions, apart from the endpoints. Each endpoint of the rope experience tension and force from the weight attached.
Given the force due to the weight of the elevator = mg = 2400N
m = 2400/9.8 Kg
The elevator deaccelerating while moving upward, a = -1.7 m/s²
According to Newton's 3rd law: T - mg = ma
T - 2400 = (2400/9.8) × (-1.7)
T = 2400 - 416.32
T = 1983.67 N
Learn more about tension, here:
brainly.com/question/28965515
#SPJ5
A wheel has a diameter of 10m and weight 360N what minimum horizontal force is necessary to pull the wheel over a brick 0.1m when a force is applied at the wheel
a student weighs 1200N they are standing in an elevator that is moving downwards at a constant speed of
Answer:
Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?
This problem has been solved!
This problem has been solved!See the answer
This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of 4.9 m/s. What is the magnitude of the net force acing on the student?
Explanation:
use this R= m(g-a), where R = reaction = weight, m= mass, a= acceleration and g= acceleration due to gravity
1. A 20.0 N force directed 20.0° above the horizontal is applied to a 6.00 kg crate that is traveling on a horizontal
surface. What is the magnitude of the normal force exerted by the surface on the crate?
N = 52.0 N
Explanation:
Given: [tex]F_a= 20.0\:\text{N}=\:\text{applied\:force}[/tex]
[tex]m=6.00\:\text{kg}[/tex]
[tex]N = \text{normal force}[/tex]
The net force [tex]F_{net}[/tex] is given by
[tex]F_{net} = N + F_a\sin 20 - mg=0[/tex]
Solving for N, we get
[tex]N = mg - F_a\sin 20[/tex]
[tex]\:\:\:\:\:\:= (6.00\:\text{kg})(9.8\:\text{m/s}^2) - (20.0\:\text{N}\sin 20)[/tex]
[tex]\:\:\:\:\:\:= 52.0\:\text{N}[/tex]
Two plastic bowling balls, 1 and 2, are rubbed with cloth until they each carry a uniformly distributed charge of magnitude 0.50 nC . Ball 1 is negatively charged, and ball 2 is positively charged. The balls are held apart by a 900-mm stick stuck through the holes so that it runs from the center of one ball to the center of the other.
Required:
What is the magnitude of the dipole moment of the arrangement?
Answer:
The right solution is "[tex]4.5\times 10^{-10} \ Cm[/tex]".
Explanation:
Given that,
q = 0.50 nC
d = 900 mm
As we know,
⇒ [tex]P=qd[/tex]
By putting the values, we get
⇒ [tex]=0.50\times 900[/tex]
⇒ [tex]=(0.50\times 10^{-9})\times 0.9[/tex]
⇒ [tex]=4.5\times 10^{-10} \ Cm[/tex]
Answer:
The dipole moment is 4.5 x 10^-10 Cm.
Explanation:
Charge on each ball, q = 0.5 nC
Length, L = 900 mm = 0.9 m
The dipole moment is defined as the product of either charge and the distance between them.
It is a vector quantity and the direction is from negative charge to the positive charge.
The dipole moment is
[tex]p = q L\\\\p = 0.5 \times 10^{-9}\times 0.9\\\\p = 4.5\times 10^{-10} Cm[/tex]
A 1500 kg car traveling at 20 m/s suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll.
What will be the car’s speed as it coasts into the gas station on the other side of the valley?
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.
Answer:
[tex]\frac{r_1}{r_2}=6.9[/tex]
Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:
[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]
where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]