Step-by-step explanation:
we cannot see the diagram, so we don't know how many layers of bricks are used. and therefore it is impossible to tell the height of the wall.
g At a certain gas station, 30% of all customers use the restroom. What is the probability that, out of the next 10 customers, (a) exactly 4 will use the restroom
Answer:
[tex]P(x=4) = 0.200[/tex]
Step-by-step explanation:
Given
[tex]n=10[/tex] --- selected customers
[tex]x = 4[/tex] --- those that are expected to use the restroom
[tex]p =30\% = 0.30[/tex] --- proportion that uses the restroom
Required
[tex]P(x = 4)[/tex]
The question illustrates binomial probability and the formula is:
[tex]P(x) = ^nC_x * p^x * (1 - p)^{n - x}[/tex]
So, we have:
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (1 - 0.30)^{10 - 4}[/tex]
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 210* (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 0.200[/tex]
Which of the following statements must be true about this diagram? Check all
that apply.
4 3
1
1
N
A. The degree measure of 23 equals the sum of the degree
measures of 21 and 22.
B. m23 is greater than m 2
C. The degree measure of 24 equals the sum of the degree
measures of 22 and 23.
D. m 4 is greater than m_2.
E. m24 is greater than m 1.
F. The degree measure of 24 equals the sum of the degree measures
of 21 and 22.
Answer:
D, E, and F
Step-by-step explanation:
✔️Statement D is true:
Rationale: m<4 is more than 90°, while m<2 is less than 90°. Therefore m<4 is greater than m<2
✔️Statement E is true:
Rationale: m<4 is more than 90°, while m<1 is less than 90°. Therefore m<4 is greater than m<1
✔️Statement F is true:
Rationale:
m<4 is an external angle of the triangle.
m<1 and m<2 are interior angles that are opposite to m<4. Therefore, based on the external angle theorem of a triangle,
m<4 = m<1 + m<2
1. What is the area of the figure below? (1 point)
5 in.
3 in.
12 in
O 18 in.2
O 30 in.2
O 36 in.2
O 60 in.2
Answer: 36in2
Step-by-step explanation:
A= base *height
=12*3
=36
The Area of the figure is 36 in².
What is Area of parallelogram?The area of a parallelogram refers to the total number of unit squares that can fit into it and it is measured in square units (like cm2, m2, in2, etc). It is the region enclosed or encompassed by a parallelogram in two-dimensional space.
two equal, opposite sides,two intersecting and non-equal diagonals, andopposite angles that are equalThe area of a parallelogram can be calculated by multiplying its base with the altitude. The base and altitude of a parallelogram are perpendicular to each other. The formula to calculate the area of a parallelogram can thus be given as,
Area of parallelogram = b × h square units
where,
b is the length of the base
h is the height or altitude
Given:
base= 12 in
height= 3 in
Area of parallelogram,
= base * height
=12* 3
= 36 in²
Learn more about Area of parallelogram here:
https://brainly.com/question/16052466
#SPJ2
if 11^-x=4, what does 11^2x equal
Answer:
1/16
Step-by-step explanation:
If 11^-x=4, then 11^x=1/4.
If 11^x=1/4, then 11^2x=(1/4)^2 which equals 1/16.
a drum has a diameter of 10 inches. find the area of the top of the drum. use 3.14 for pi.
.
.
.
Please show to work too. Thank you.
Answer:
My answer is 78.55
Step-by-step explanation:
I've given the steps. Hope it really helps
Answer: 78.5 inches
Step-by-step explanation:
Area = Pi x r x r
Diameter = 10 in
Radius = 5 in
314/100 x 5 x 5 = 314/4
314/4 = 78.5
= 78.5 inches
NEED ANSWER QUICK!!
Camillo needs 2,400 oz of jelly for the food challenge. If 48 oz of jelly cost $3.84, how much will Camillo spend on jelly? Explain how you can find your answer.
Answer:
$192
Step-by-step explanation:
2400/48=50
50x3.84=192
Answer:Sample Response: First, find the unit price of the jelly. The unit cost of jelly is $0.08 per ounce. Next, find the total price of 2,400 oz by multiplying the unit price by the quantity. The total price is $192.
Step-by-step explanation:Pls mrk me as brainliest need award
The 100th term of 8, 8^4, 8^7, 8^10, …
Answer:
[tex]8^{298} \\8^{3(n-1)+1}[/tex]
Step-by-step explanation:
Answer:
8^298
Step-by-step explanation:
n = 1, 8^(1 + 0 * 3)
n = 2, 8^(1 + 1 * 3)
n = 3, 8^(1 + 2 * 3)
n = 4, 8^(1 + 3 * 3)
The exponent of 8 is 1 added to product of 1 less than the term number multiplied by 3.
n = n, 8^(1 + [n - 1] * 3) = 8^(1 + 3n - 3) = 8^(3n - 2)
For n = 100, the exponent is
3n - 2 = 3(100) - 2 = 300 - 2 = 298
Answer: 8^298
If x = 5, what additional information is necessary to show that by SAS?
Question 8 of 9
Use a calculator to find the correlation coefficient of the data set.
у
2
15
6
13
7
8
12
X
15
13
9
8
5
A. -0.909
B. 0.909
C. 0.953
D. -0.953
Actual data table :
X __ y
2 15
6 13
7 9
8 8
12 5
Answer:
0.953
Step-by-step explanation:
The question isnt well formatted :
The actual data:
X __ y
2 15
6 13
7 9
8 8
12 5
Using a correlation Coefficient calculator, the correlation Coefficient obtained by fitting the data is 0.953 which depicts a strong linear correlation between the x and y variable. This shows that the value of y increases with a corresponding increase in x values and vice versa.
A cell site is a site where electronic communications equipment is placed in a cellular network for the use of mobile phones. The numbers y of cell sites from 1985 through 2014 can be modeled by
y = 340,110/
1 + 377e−0.259t
where t represents the year, with
t = 5 corresponding to 1985.
Use the model to find the numbers of cell sites in the years 1998, 2003, and 2006
Answer:
(a) 74553
(b) 172120
(c) 234802
Step-by-step explanation:
Given
[tex]y = \frac{340110}{1 + 377e^{-0.259t}}[/tex]
Solving (a): 1998
Year 1998 means that:
[tex]t =1998 - 1980[/tex]
[tex]t =18[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*18}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-4.662}}[/tex]
[tex]y = \frac{340110}{1 + 3.562}[/tex]
[tex]y = \frac{340110}{4.562}[/tex]
[tex]y = 74553[/tex] --- approximated
Solving (b): 2003
Year 2003 means that:
[tex]t = 2003 - 1980[/tex]
[tex]t =23[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*23}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-5.957}}[/tex]
[tex]y = \frac{340110}{1 + 0.976}[/tex]
[tex]y = \frac{340110}{1.976}[/tex]
[tex]y = 172120[/tex] --- approximated
Solving (c): 2006
Year 2006 means that:
[tex]t = 2006 - 1980[/tex]
[tex]t =26[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*26}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-6.734}}[/tex]
[tex]y = \frac{340110}{1 + 0.4485}[/tex]
[tex]y = \frac{340110}{1.4485}[/tex]
[tex]y = 234802[/tex] --- approximated
You are traveling from Earth towards the space station at a speed of 1250 km per hour. Your friend is traveling from the space station to Earth at a speed of 500 km per hour. If both of you meet on the way after 20 hours, what is the distance between Earth and the space station?
Answer:
d=35000Km
Step-by-step explanation:
After 20h I traveled for
s1=1250*20=25000Km
My friend
s2=500*20=10000Km
Therefore d=25000+10000=35000Km
A rectangular garden is 5 ft longer than it is wide. Its area is 1800ft^2. What are its dimensions?
Answer:
The dimensions are 45 feet by 40 feet.
Step-by-step explanation:
Recall that the area of a rectangle is given by:
[tex]\displaystyle A=w\ell[/tex]
Where w is the width and l is the length.
The length is five feet longer than the width. Thus, we can write that:
[tex]\ell = w+5[/tex]
The total area is 1800 square feet. Substitute:
[tex]1800=w(w+5)[/tex]
Solve for w. Distribute:
[tex]w^2+5w=1800[/tex]
Subtract 1800 from both sides:
[tex]w^2+5w-1800=0[/tex]
Factor. We can use 45 and -40. Hence:
[tex]\displaystyle (w+45)(w-40)=0[/tex]
Zero Product Property:
[tex]w+45=0\text{ or } w-40=0[/tex]
Solve for each case:
[tex]\displaystyle w=-45\text{ or } w=40[/tex]
Since the width cannot be negative, we can ignore the first solution.
So, the width is 40 feet. Since the length is five feet longer, the length is 45 feet.
The dimensions are 45 feet by 40 feet.
SOLVE PLS!! ILL MARK BRAINILEST!!
Answer:
73.3333....
Step-by-step explanation:
please mark me brainliest
Answer:
a: t=13.6 cm
b: h=12.9 mm
Step-by-step explanation:
Hi there!
Let's start with a
in a, we are given a right triangle (notice the right angle), the length of the hypotenuse (the side OPPOSITE from the right angle) as 18 cm, one acute angle given as 41° and the length of one of the legs (the legs are the sides that make up the right angle) as t
We're asked to use the primary trigonometric ratios
Those ratios are:
Sine, which is opposite/hypotenuse
Cosine, which is adjacent/hypotenuse
Tangent, which is opposite/adjacent
We will be basing the ratio off of the 41° angle, so let's find out which sides will be which in reference to that angle
The opposite side will be the other leg, the unmarked side
The adjacent side will be t
The hypotenuse will be the side marked as 18 cm
So let's use cos(41) in this case
cos(41)=t/18
Plug cos(41) into your calculator, and remember to have the calculator in degree mode
cos(41)≈0.8 (rounded to the nearest tenth)
0.8=t/18
multiply both sides by 18
13.6 cm=t
It's already rounded to the nearest tenth :)
b.
We are given a right triangle, and the lengths of the legs as h and 9 mm, as well as one acute angle as 35°
We'll be basing our ratio off of the 35 degree angle, so let's find which sides will be which in reference to that angle
The opposite side will be the leg marked as 9 mm
The adjacent side will be the leg marked as h
The hypotenuse will be the unmarked side
Since we are given the lengths of the opposite and the adjacent, let's use tan(35)
tan(35)=9/h
Plug tan(35) into your calculator, and remember to have it in degree mode
tan(35)≈0.7
0.7=9/h
multiply both sides by h
0.7h=9
divide both sides by 0.7
h=12.9 mm (rounded to the nearest tenth)
Hope this helps!
Factor out the greatest common factor.
Answer:
The answer to your question is given below.
Step-by-step explanation:
6x⁴ + 4x³ – 10x
The greatest common factor can be obtained as follow:
6x⁴ = 2 * 3 * x * x * x * x
4x³ = 2 * 2 * x * x * x
10x = 2 × 5 * x
Greatest common factor = 2 * x
= 2x
Thus, the expression 6x⁴ + 4x³ – 10x can be written as:
6x⁴ + 4x³ – 10x = 2x(3x³ + 2x² – 5)
20 points help please.
Answer:
-2 is the answer trust me
a mountain railway AB is of length 864m and rises at an angle of 120° to the horizontal.A train is 856m above sea level when it is at A calculate the height above sea level of the train when it reaches B
9514 1404 393
Answer:
1604 m
Step-by-step explanation:
The relevant trig relation is ...
Sin = Opposite/Hypotenuse
Here, the "opposite" is the elevation of point B above point A, and the "hypotenuse" is the length of the railway. Then the total height of point B is ...
B = 856 + 864·sin(120°)
B = 856 +864(√3)/2 = 856 +432√3 ≈ 1604.246
The height of the train at point B is about 1604 m above sea level.
Please help ASAP!!! Thank you!!!
Step-by-step explanation:
1) = Solution
(3x+2)(x-1) = 3x^2 - 3x+2x-2
= 3x^2 - x - 2
2) = (x-5)(2x+3)
= 2x^2 + 3x - 10x - 15
= 2x^2 - 7x - 15
3) = (2x+5)(3x-2)
= 6x^2 - 4x + 15x - 10
= 6x^2 + 11x - 10
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
On a coordinate plane, a line goes through points (negative 1, 0), (0, 1), and (1, 2). Which table goes with the graph?
Answer:
Table B
Step-by-step explanation:
correct on edge :)
What is the measure of L?
A. 390
B. 25°
C. Cannot be determined
D. 32°
Answer:
im pretty sure 25°
Step-by-step explanation:
Well the shape of an L is basically 1/4 of a rectangle. 1/4 is equal to 25 because 25 multiplied by 4 is 100. 100 divided by 4 is 25.
SOMEONE PLS HELP ME I WILL MAKE U BRAINLIST ! In a survey sample of 83 respondents, about 30.1 percent of the samplework less than 40 hours per week. What is the estimated standard error for the group of respondents who work 40 hours or more per week?
(*round to two decimal places)
Answer:
Answer = √(0.301 × 0.699 / 83) ≈ 0.050
A 68 percent confidence interval for the proportion of persons who work less than 40 hours per week is (0.251, 0.351), or equivalently (25.1%, 35.1%)
Step-by-step explanation:
√(0.301 × 0.699 / 83) ≈ 0.050
We have a large sample size of n = 83 respondents. Let p be the true proportion of persons who work less than 40 hours per week. A point estimate of p is because about 30.1 percent of the sample work less than 40 hours per week. We can estimate the standard deviation of as . A confidence interval is given by , then, a 68% confidence interval is , i.e., , i.e., (0.251, 0.351). is the value that satisfies that there is an area of 0.16 above this and under the standard normal curve.The standard error for a proportion is √(pq/n), where q=1−p.
Hope this answer helps you :)
Have a great day
Mark brainliest
Write the equation that represents each table of values
9514 1404 393
Answer:
3. y = 3·4^x
4. y = 24·0.5^x
5. y = 45·0.9^x
Step-by-step explanation:
Each table appears to represent an exponential function. Such a function can be written in the form ...
y = a·b^x
where 'a' is the value of y when x=0, and 'b' is the ratio of the values of y when x=1 and x=0.
__
3. a = 3. b = 12/3 = 4
y = 3·4^x
__
4. a = 24. b = 12/24 = 0.5
y = 24·0.5^x
__
5. a = 45. b = 40.5/45 = 0.9
y = 45·0.9^x
What number increased by 11.8% equals 185
Answer:165.47
Step-by-step explanation:
Calculate the number of ways to form a set of three distinct items such that no two of the selected items are in the same row or same column
Answer:
1200
Explanation:
Order does not matter, if we said xyz order, it would still not make a difference if it was zyx or yzx hence we use the combination formula:
nCr = n! / r! * (n - r)!
where n= total number of items
r= number of items chosen at a time
Combinations are used when the order of events do not matter in calculating the outcome.
We calculate using the formula:
(30×20×12)÷3!=1200
There are therefore 1200 ways for the three distinct items to not be in same row or column
Please Help
Solve 3(x+2)-4x=8
Hello!
3(x + 2) - 4x = 8 <=>
<=> 3x + 6 - 4x = 8 <=>
<=> -x + 6 = 8 <=>
<=> -x = 8 - 6 <=>
<=> -x = 2 <=>
<=> x = -2
Good luck! :)
Find the volume of the cone. Round to the nearest hundredth.
Answer:
Step-by-step explanation:
volume of cone=1/3 πr²h
=1/3×π×5²×11
=275/3 ×3.14
≈287.33 in³
can anyone help me and explain
Answer:
cf
=41
5 f-46
Step-by-step explanation:
thiis is the answer
Answer:
To find the inverse, switch the y(F(C)) and the x(C) variables.
So this function:
[tex]y=\frac{9}{5}x+32 \\[/tex]
Will become this function:
[tex]x=\frac{9}{5}y+32 \\[/tex]
You will then solve for y:
[tex]x=\frac{9}{5}y+32 \\x-32=\frac{9}{5}y\\5(x-32)=5(\frac{9}{5}y)\\5x-160=9y\\y=\frac{5x-160}{9}\\y=\frac{5x}{9}-\frac{160}{9}[/tex]
Substitute in the variables of this problem:
[tex]C(F)=\frac{5C}{9}-\frac{160}{9}[/tex]
Decide if each answer will be less than or greater than the original number. Drag each to the correct category
250% of 18
35% of 300
62% of 182
300% of 250
89% of 525
120% of 72
That's a question about percentage.
Let's imagine that we want to know how much is 90% of 200. To do this calculation, we should multiply 200 by 90 and then divide the result by 100. We do that because 90% is the same thing that [tex]\frac{90}{100} =0,9[/tex]. So, 90% of 200 is equal to:
[tex]\frac{200\cdot90}{100} =\\\\\frac{18000}{100} =\\\\180[/tex]
Now, imagine that you would like to know how much is 100% of 999. First, we multiply 999 by 100 and divide the result by 999. So, 100% of a number is equal to itself. That's a very important information, because it's possible to understand this:
If the percentage is less than 100%, the result is less than original number.If the percentage is equal to 100%, the result is equal to the original number.If the percentage is greater than 100%, the result is greater than original number.Now, we can solve our problem! \o/
The options that the percentage is less than 100% are: 35% of 300, 62% of 182 and 89% of 525. Therefore, their answers will be less than the original number.
And, the option that the percentage is greater than 100% are: 250% of 18, 300% of 250 and 120% of 72. So, their answers will be greater than the original number.
On the image, you can see the answer in a table.
I hope I've helped. ^^
Enjoy your studies! \o/
Point E is the midpoint of AB and point F is the midpoint
of CD.
Which statements about the figure must be true? Select
three options.
AB is bisected by CD.
A
CD is bisected by AB.
DAE = 2 AB
СЕ
F
D
EF = LED
B
CE + EF = FD
The options are;
1) AB is bisected by CD
2) CD is bisected by AB
3) AE = 1/2 AB
4) EF = 1/2 ED
5) FD= EB
6) CE + EF = FD
Answer:
Options 1, 3 & 6 are correct
Step-by-step explanation:
We are told that Point E is the midpoint of AB. Thus, any line that passes through point E will bisect AB into two equal parts.
The only line passing through point E is line CD.
Thus, we can say that line AB is bisected by pine CD. - - - (1)
Also, since E is midpoint of Line AB, it means that;
AE = EB
Thus, AE = EB = ½AB - - - (2)
Also, we are told that F is the mid-point of CD.
Thus;
CF = FD
Point E lies between C and F.
Thus;
CE + EF = CF
Since CF =FD
Thus;
CE + EF = FD - - - (3)
Public health officials claim that people living in low income neighborhoods have different Physical Activity Levels (PAL) than the general population. This is based on knowledge that in the U.S., the mean PAL is 1.65 and the standard deviation is 0.55. A study took a random sample of 51 people who lived in low income neighborhoods and found their mean PAL to be 1.63. Using a one-sample z test, what is the z-score for this data
Answer:
The z-score for this data is Z = -0.26.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
This is based on knowledge that in the U.S., the mean PAL is 1.65 and the standard deviation is 0.55.
This means that [tex]\mu = 1.65, \sigma = 0.55[/tex]
A study took a random sample of 51 people who lived in low income neighborhoods and found their mean PAL to be 1.63.
This means that [tex]n = 51, X = 1.63[/tex]
Using a one-sample z test, what is the z-score for this data
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{1.63 - 1.65}{\frac{0.55}{\sqrt{51}}}[/tex]
[tex]Z = -0.26[/tex]
The z-score for this data is Z = -0.26.