Answer:
2.80N/m
Explanation:
Given data
mass m= 56kg
perios T= 11.2s
The expression for the period is given as
T=2π√m/k
Substitute
11.2= 2*3.142*√56/k
square both sides
11.2^2= 2*3.142*56/k
125.44= 351.904/k
k=351.904/125.44
k= 2.80N/m
Hence the spring constant is 2.80N/m
A 1640 kg merry-go-round with a radius of 7.50 m accelerates from rest to a rate of 1.00 revolution per 8.00 s. Estimate the merry-go-round as a solid cylinder and determine the net work needed for this acceleration.
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed, [tex]$\omega = \frac{1}{8}$[/tex] rev/sec
[tex]$=\frac{2 \pi \times 7.5}{8}$[/tex] rad/sec
= 5.89 rad/sec
Therefore, force required,
[tex]$F=m.\omega^2.r$[/tex]
[tex]$$=1640 \times (5.89)^2 \times 7.5[/tex]
= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J
Which image illustrates reflection?
A
B
с
D
Answer: I beleive A
Explanation:
Answer:
A
Explanation:
We can see the light being reflected off the mirror.
which vector best represents the net force acting on the +3 C charge
Steel wire rope is used to lift a heavy object. We use a 3.1m steel wire that
is 6.0mm in diameter and lift a 1700kg object. Then, the wire elongates
0.17m. Calculate the Young’s modulus for the rope material.
Answer:
Young's modulus for the rope material is 20.8 MPa.
Explanation:
The Young's modulus is given by:
[tex] E = \frac{FL_{0}}{A\Delta L} [/tex]
Where:
F: is the force applied on the wire
L₀: is the initial length of the wire = 3.1 m
A: is the cross-section area of the wire
ΔL: is the change in the length = 0.17 m
The cross-section area of the wire is given by the area of a circle:
[tex] A = \pi r^{2} = \pi (\frac{0.006 m}{2})^{2} = 2.83 \cdot 10^{-5} m^{2} [/tex]
Now we need to find the force applied on the wire. Since the wire is lifting an object, the force is equal to the tension of the wire as follows:
[tex] F = T_{w} = W_{o} [/tex]
Where:
[tex] T_{w} [/tex]: is the tension of the wire
[tex]W_{o} [/tex]: is the weigh of the object = mg
m: is the mass of the object = 1700 kg
g: is the acceleration due to gravity = 9.81 m/s²
[tex] F = mg = 1700 kg*9.81 m/s^{2} = 16677 N [/tex]
Hence, the Young's modulus is:
[tex] E = \frac{16677 N*0.006 m}{2.83 \cdot 10^{-5} m^{2}*0.17 m} = 20.8 MPa [/tex]
Therefore, Young's modulus for the rope material is 20.8 MPa.
I hope it helps you!
The mass of the moon is 7.2 × 10^22 kg and its radius is 1.7×10^6 m.What will be the gravity of the moon to a body of the mass 1 kg on the surface of the moon.
Answer:
1.66 N
Explanation:
The force of gravity of the moon on the body is given by
F = GMm/R² where G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², M = mass of moon = 7.2 × 10²² kg, m = mass of body = 1 kg and R = radius of moon = 1.7 × 10⁶ m
Substituting the values of the variables into the equation, we have
F = GMm/R²
F = 6.67 × 10⁻¹¹ Nm²/kg² × 7.2 × 10²² kg × 1 kg/(1.7 × 10⁶ m)²
F = 48.024 × 10¹¹ Nm²/2.89 × 10¹² m²
F = 16.62 × 10⁻¹ N
F = 1.662 N
F ≅ 1.66 N
So, the gravity on the moon is 1.66 N
This diagram shows the magnetic field lines near the ends of two magnets. There is an error in the diagram.
Two bar magnet with the north pole of one near the south pole of the second. field lines are leaving the north pole and bent away from the south pole of the other. Field lines are leaving the south pole of one and bending away from the north pole of the other.
Which change will correct the error in the diagram?
a)changing the N to S
b)reversing the arrows on the left to point toward the N
c)changing the S to N
d)reversing the arrows on the right to point toward the S
Answer:
changing the N to S. that's how the error will be corrected
Answer:
C is the correct answer
Explanation:
i took the test
Part C – RC Circuits in AC Mode 1. Derive Equation 5-6 from Equation 5-5. 2. Using the τ’s you calculated and your measured resistance: a. Calculate the capacitances of the capacitors. b. Compare your calculated and measured values via percent error.
Answer: hi your question is incomplete attached below is the complete question
1) attached below
2) a) 31 Ω, 302.9 Ω
b) 17.3 Ω , 26.4 Ω
Explanation:
1) Deriving Eqn 5-6 from Eqn 5-5
attached below
2) using τ’s calculated and measured resistance
use given data
Tm1 = Rm1 * Cm1
= 329.3 * 333 * 10^-9 = 109.65 μs
Tm2 = Rm2 * Cm2
= 329.3 * 200 * 10^-9 = 658.6 μs
a) Capacitance of capacitors
For Cm1
t₁₂ = 72 μs = R₁' Cm1 log²
∴ R₁' = ( 72 * 10^-6 ) / ( 333 * 10^-9 log² )
= 31 Ω
For Cm2
t₁₂ = 40 μs , ∴ R₂' = 302.9 Ω
b) comparing calculated and measured values via percent error
errors
Rm1 - R₁' = 17.3 Ω
Rm2 - R₂' = 26.4 Ω
Help pleaseeeeeeeeeeeeee
Answer:
hello the answer is 47m/s
need help pleaseee,question is in the pic
Explanation:
For engine 1,
Energy removed = 239 J
Energy added = 567 J
[tex]\eta_1=\dfrac{239}{567}\cdot100=42.15\%[/tex]
For engine 2,
Energy removed = 457 J
Energy added = 789 J
[tex]\eta_2=\dfrac{457}{789}\cdot100=57.92\%[/tex]
For engine 3,
Energy removed = 422 J
Energy added = 1038 J
[tex]\eta_3=\dfrac{422}{1038}\cdot100=40.65\%[/tex]
So, the engine 2 has the highest thermal efficiency.
A flat coil of wire is placed in a uniform magnetic field that is in the y-direction.
The magnetic flux through the coil is maximum if the coil is:_________.
(a) in the XY plane
(b) in either the XY or the YZ plane
(c) in the XZ plane
(d) in any orientation, because it is constant.
Answer:
The correct answer is c
Explanation:
Flow is defined by
Ф = B . A
bold letters indicate vectors.
The magnetic field is directed to the y axis, The area of the coil is represented by a vector normal to the plane of the coil, so to have a flux
i.i = j.j = k.k = 1
and the tori scalar products are zero
a) If the coil must be in the xy plane so that its normal vector is in the Z axis, so there is no flux
b) if the coil is in the plane yz the normal veto is in the x axis, so the flux is zero
C) If the coil is in XZ, the normal vector points in the y direction, usually the scalar product is one and there is a flux in this configuration
The correct answer is c
Container A and container B hold samples of the same ideal gas. The volume and the pressure of container A is equal to the volume and pressure of container B, respectively. If Container A has half as many molecules of the ideal gas in it as Container B does, then which of the following mathematical statements is correct regarding the absolute temperatures TA and TB in Container A and Container B. respectively?
A. TA = TB/2.
B. TA = 4TB.
C. TA = TB/4.
D. TA = 2TB.
E. TA = TB
Answer:
A. TA = TB/2.
Explanation:
Since container A has half as many molecules of the ideal gas in it as container B. Therefore, container A will have half the volume of gas as in container B:
[tex]V_A = \frac{1}{2}V_B[/tex]
Now, from Charle's Law:
[tex]\frac{V_A}{T_A}=\frac{V_B}{T_B}\\\\\frac{1}{2}\frac{V_B}{T_A}=\frac{V_B}{T_B}\\\\T_A = \frac{T_B}{2}[/tex]
Hence, the correct option is:
A. TA = TB/2.
as the ball rises the vertical component of it's velocity_____. explain
Answer:
Decreases
Explanation:
because its moving against gravitational attraction and at maximum height its velocity will be and it will decrease until it reaches maximum height and the start to increase again
When you take your 1900-kg car out for a spin, you go around a corner of radius 55 m with a speed of 15 m/s. The coefficient of static friction between the car and the road is 0.88. Assuming your car doesn't skid, what is the force exerted on it by static friction?
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
An audience of 2250 fills a concert hall of volume 32000 m^3. If there were no ventilation, by how much would the temperature of the air rise over a period of 2.0 h due to the metabolism of the people (70 W/person)?
why is it wrong to leave our light on
Answer:
you will get huge electricity bills ............
A 49.5-turn circular coil of radius 5.10 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0.535 T. If the coil carries a current of 26.5 mA, find the magnitude of the maximum possible torque exerted on the coil.
Answer:
The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm
Explanation:
Given;
number of turns of the circular coil, N = 49.5 turns
radius of the coil, r = 5.10 cm = 0.051 m
magnitude of the magnetic field, B = 0.535 T
current in the coil, I = 26.5 mA = 0.0265 A
The magnitude of the maximum possible torque exerted on the coil is calculated as;
τ = NIAB
where;
A is the area of the coil
A = πr² = π(0.051)² = 0.00817 m²
Substitute the given values and solve for the maximum torque
τ = (49.5) x (0.0265) x (0.00817) x (0.535)
τ = 0.00573 Nm
τ = 5.73 x 10⁻³ Nm
A TV satellite dish is designed to receive radio waves of wavelength
0.0644 meters. What is the frequency of the waves it receives? _______GHz
Give your answer in gigahertz (GHz). 1 GHz = 10^9 Hz.
Give your answer to the nearest tenth of a GHz (one place after the decimal). Just enter the number; do NOT use scientific notation.
Answer:
4.7 GHz
Explanation:
Applying,
v = λf................. Equation 1
Where v = velocity of the radio wave, λ = wavelength, f = frequency
make f the subject of the equation
f = v/λ.............. Equation 2
Note: A radio wave is an electromagnetic wave, as such it moves with a velocity of 3.00 x 10⁸ m/s
From the question,
Given: λ = 0.0644 meters
Constant: v = 3.00 x 10⁸ m/s
Substitute these values into equation 2
f = (3.00 x 10⁸)/0.0644
f = 4.66×10⁹ Hz
f = 4.7 GHz
how do you calculate voltage drop
Answer:
Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.
Divide by 100.
Multiply by proper voltage drop value in tables. The result is voltage drop.
Explanation:
a) Viewers of Star Trek hear of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy source is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then extract them as needed. Antimatter annihilates with normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.00 x10^7 m/s in a circular path 2.00m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge.b) Is this field strength obtainable with today's technology or is it a futuristic possibility?
Soap bubble coloring example:
(reflection, interference, refraction, diffraction)
Explanation:
Interference is the example of soap bubble colouringEXTRA INFO:(LOOK AT THE IMAGE)
An incoming light ray is partly reflected by the top surface of the soap film and partly reflected by the bottom surface. The wave reflected from the bottom surface has traveled further (an extra distance equal to twice the thickness of the film) so emerges out of step with the top wave. When the two waves meet, they add together, and some colors are removed by destructive interference. Where the film is thickest, the bubble appears more blueish; where it's thinner, it will look more violet or magenta.
[tex]\huge\bold\color{black}{ANSWER}[/tex]
Soap bubble coloring example: INTERFERENCE
which has higher eneergy electron r proton
Answer:
proton have higher energy than electron
Explanation:
tag me brainliest
Answer:
proton
Explanation:
proton is higher energy than the electron
A cylindrical disk of wood weighing 45.0 N and having a diameter of 30.0 cm floats on a cylinder of oil of density 0.850 g>cm3 (Fig. E12.19). The cylinder of oil is 75.0 cm deep and has a diameter the same as that of the wood. (a) What is the gauge pressure at the top of the oil column
Answer:
665.25 Pa
Explanation:
Given data :
Weight of the disk, w = 45 N
Diameter, d = 30 cm
= 0.30 m
Therefore, radius of the disk,
[tex]$r=\frac{d}{2}$[/tex]
[tex]$r=\frac{0.30}{2}$[/tex]
= 0.15 m
Now, area of the cylindrical disk,
[tex]$A=\pi r^2$[/tex]
[tex]$A=3.14 \times (0.15)^2$[/tex]
[tex]$=0.07065 \ m^2$[/tex]
∴ The gauge pressure at the top of the oil column is :
[tex]$p=\frac{w}{A}$[/tex]
[tex]$p=\frac{47}{0.07065}$[/tex]
= 665.25 Pa
Therefore, the gauge pressure is 665.25 Pa.
The definition of pressure allows to find the result for the pressure at the top of the oil cylinder is:
The pressure is: P = 636.6 Pa
The pressure is defined by the relationship between perpendicular force and area.
[tex]P = \frac{F}{A}[/tex]
where P is pressure, F is force, and A is area.
They indicate that the wooden cylinder weighs W = 45.0 N and has a diameter of d = 30 cm = 0.30 m.
The area is:
A = π r² = [tex]\pi \frac{d^2}{4}[/tex]
In the attachment we see a diagram of the forces, where the weight of the cylinder and the thrust are equal.
B-W = 0
B = W
The force applied to the liquid is the weights of the cylinder. Let's replace.
[tex]P= \frac{W}{A} \\P = W \frac{4}{\pi d^2 }[/tex]
Let's calculate.
[tex]P = \frac{45 \ 4 }{\pi \ 0.30^2 }[/tex] P = 45 4 / pi 0.30²
P = 636.6 Pa
In conclusion using the definition of pressure we can find the result for the pressure at the top of the oil cylinder is:
The pressure is: P = 636.6 Pa.
Learn more about pressure here: brainly.com/question/17467912
The image of the object formed by the lens is real, enlarged and inverted. What is the kind of lens ?
Answer:
Converging (convex) lens.
Explanation:
A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.
Basically, there are two (2) main types of lens and these includes;
I. Diverging (concave) lens.
II. Converging (convex) lens.
A converging (convex) lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. Thus, this type of lens is usually thin at the lower and upper edges and thick across the middle.
Basically, the image of the object formed by a converging (convex) lens. lens is real, enlarged and inverted.
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]
Therefore, the frequency of this mode of vibration is 138.87 Hz
IS ANYONE THERE..??!
Answer:
hmmmmmmmmmmmmmmmmmmmmmmmm y
1. Which one of the following is not an organic compound? Why? CH4 C2H6O CaO
2. Fill in the chart below to identify and describe the functional groups associated with organic chemistry. Name General Structure Properties/Uses Alcohol Aldehyde Ketone Fatty acid Ether
3. Explain why carbon is called “the backbone” molecule of organic chemistry and why organic molecules couldn't easily be based on H or O instead.
Answer:
1. CaO is not an organic compound because it doesn’t contain a carbon molecule.
2.
Name General Structure Properties/Uses
Alcohol R-OH (contains a hydroxyl group) Can be poisonous, can be made from fermentation or distillation
Aldehyde R-COH (contains a carbon atom double-bonded to an oxygen and single-bonded to a hydrogen) Makes up formaldehyde and acetaldehyde
Ketone R-CO-R (contains a carbon atom double-bonded to an oxygen atom and then connected to carbon chains through the other two single bonds) Makes up acetone
Fatty acid R-COOH (contains a carbon atom double-bonded to an oxygen atom, single-bonded to a hydroxyl, and single-bonded to the carbon chain) Makes up fatty acids like acetic acid and stearic acid; used to form esters
Ether R-O-R (contains double carbon chains connected to an oxygen atom through single bonds) Ethyl ether is very volatile and flammable, used in veterinary medicine
3. Carbon is able to make four covalent bonds with other elements. This gives it a lot of diversity and the ability to form differently shaped molecules that perform specific functions or fit specific cell receptors in the body. H can form only one bond, and oxygen forms only two bonds, so they don't have as much potential to form a good starting point for organic molecules.
Explanation:
pf
CaO is not an organic compound because it doesn’t contain a carbon molecule.
Name General Structure Properties/Uses(which contains a hydroxyl group) Can be poisonous, can be made from fermentation or distillation
Aldehyde R-COH (contains a carbon atom double-bonded to oxygen and single-bonded to hydrogen) Makes up formaldehyde and acetaldehyde
Ketone R-CO-1R (contains a carbon atom double-bonded to an oxygen atom and then connected to carbon chains through the other two single bonds) Makes up acetone
Fatty acid R-COOH (contains a carbon atom double-bonded to an oxygen atom, single-bonded to a hydroxyl, and single-bonded to the carbon chain) Makes up fatty acids like acetic acid and stearic acid; used to form esters11
Ether -O-R (contains double carbon chains connected to an oxygen atom through single bonds) Ethyl ether is very volatile and flammable, used in veterinary medicine
Carbon can make four covalent bonds with other elements. This gives it a lot of diversity and the ability to form differently shaped molecules that perform specific functions or fit specific cell receptors in the body. H can form only one bond, and oxygen forms only two bonds, so they don't have as much potential to form a good starting point for organic molecules.
Learn more about organic molecules.
https://brainly.com/question/24225576
#SPJ2
Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.
I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)
Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.
The 2.0-kg block feels
• the downward pull of its own weight, (2.0 kg) g
• the upward normal force of the surface, magnitude n₁
• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction
• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction
• the applied force, mag. F, pointing in the positive horizontal direction
Meanwhile the 3.0-kg block feels
• its own weight, (3.0 kg) g, pointing downward
• normal force, mag. n₂, pointing upward
• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction
• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)
Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:
• net vertical force:
n₂ - (3.0 kg) g = 0 ==> n₂ = (3.0 kg) g ==> f₂ = 0.30 (3.0 kg) g
• net horizontal force:
c₂ - f₂ = 0 ==> c₂ = 0.30 (3.0 kg) g ≈ 8.8 N
A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?
Answer:
a n c
Explanation:
true or false A permanent magnet and a coil of wire carrying a current both produce magnetic fields
Answer:
True. A permanent magnet like the earth produces its own B field due to movement of the iron core. The earths magnetic field is the reason why we have an atmosphere and it also is the only defense against solar flares. A coil of wire or solenoid that has current have so much moving charge that the motion of the electrical charge can create a significant G b-field
You work in the special effects department of a movie studio. You are currently working on a superhero movie where the hero is very
strong and cannot be hurt by normal weapons such as a sword. In the next scene, the villain
is going to hit the hero with a lead pipe.
The hero's costume is mostly made of foam and carbon so that is it very light and easy to move around in but will crumble if hit with
anything hard. For this scene, a section of the
costume needs to be replaced with a different material that will only dent, not crumble,
when hit with the pipe. You are on a deadline and look around the props
department for ideas, what could you use?
A. You find sheets of copper (Cu) used in an induced rescue factory scene
B. You find a barrel of phosphorus (P) used as a component in explosive powder
C. You find a tank of helium (He) used for balloons
D. You find large desk of Chlorine (Cl) used to kill bacteria and pools
Answer:
A. You find sheets of copper (Cu) used in an induced rescue factory scene
Explanation:
I would use a sheets of copper (Cu) used in an induced rescue factory scene because, copper is a metal and the only material out of the other options that would only dent and not crumble when hit by the lead pipe.
The other options in B - D are non-metals.
Phosphorus is a non-metal and is used as an explosive and thus cannot be used.
Helium is a gas used in filling balloons and thus cannot be used.
Chlorine is used in killing bacteria and thus cannot be used.
So, copper is the only option available since it is a metal and can thus accommodate a large force.
So, option A is the answer.