Answer:
E = 3495.96 J
Explanation:
From the law of conservation of energy:
Total Mechanical Energy at h1 = Total Mechanical Energy at h2
Kinetic energy at h1 + potential energy at h1 = Kinetic energy at h2 + potential energy at h2 + Mechanical Energy Lost due to Friction
[tex]K.E_{h1}+P.E_{h1} = K.E_{h2}+P.E_{h2} + E\\\\\frac{1}{2}mv_1^2\ J + mgh_1 = \frac{1}{2}mv_2^2 + mgh_2 + E\\\\\frac{1}{2}(36\ kg)(0\ m/s)_1^2\ J + (36\ kg)(9.81\ m/s^2)(24\ m)_1 = \frac{1}{2}(36\ kg)(7.8\ m/s)_2^2 + (36\ kg)(9.81\ m/s^2)(11\ m)_2 + E\\\\0\ J + 8475.84\ J = 1095.12\ J + 3884.76\ J + E\\E = 8475.84\ J - 1095.12\ J - 3884.76\ J\\[/tex]
E = 3495.96 J
Determine the absolute pressure on the bottom of a swimming pool 27.0 m by 8.9 m whose uniform depth is 1.8 m . Express your answer using two significant figures.
Answer:
[tex]P=17658Pa[/tex]
Explanation:
From the question we are told that:
Dimension
[tex]L*B=27.0*8.9[/tex]
Depth [tex]d=1.8m[/tex]
Generally the equation for Volume of water is mathematically given by
[tex]V=L*B*D[/tex]
[tex]V=27.0*8.9*1.8[/tex]
[tex]V=432.54m^3[/tex]
Therefore
Force at the bottom of the Pool
[tex]F=\rho Vg[/tex]
Where
[tex]\rho \ density\ of \ water(1000kg/m^3)[/tex]
[tex]F=1000*432.54m^3*9.81[/tex]
[tex]F=4.2*10^{6}N[/tex]
Generally the equation for Pressure at the bottom is mathematically given by
[tex]P=\frac{Forece }{Area}[/tex]
[tex]P=\frac{4.2*10^{6}N}{27.0*8.9}[/tex]
[tex]P=17658Pa[/tex]
A coin and feather are dropped in a moon. what will fall earlier on ground.give reasons.if they are dropped in the earth,which one will fall faster?
Answer:
When an object is dropped, the "principal" force that acts on that object is the gravitational force.
Thus, in the absence of air resistance and such, the acceleration of the object will be equal to the gravitational acceleration:
g = 9.8m/s^2
So, when we drop objects in the moon (where there is no air) the acceleration of every object will be exactly the same. (so there is no dependence in the mass or shape of the object)
Thus, if we drop a coin and a feather in the moon, both objects will fall with the same acceleration, and then both objects will hit the ground at the same time.
But if we are in Earth, we can not ignore the air resistance (a force that acts in the opposite direction than the movement of the object)
And this force depends on the shape and mass of the object (for example, something with a really larger surface and really thin, like a sheet of paper will be more affected by this force than a small rock)
Then here, when the air resistance applies, we should expect that the heavier and smaller object (the coin) to be less affected by this force, then the resistance that the coin experiences is smaller, then the coin falls "faster" than the feather.
A small object A, electrically charged, creates an electric field. At a point P located 0.250 m directly north of A, the field has a value of 40.0 N/C directed to the south. If a second object B with the same charge as A is placed at 0.250m south of A (so that objects A and B and point P follow a straight line), what is the magnitude of the total electric field produced by the two objects at P?
Answer:
E_total = - 50 N / A
Explanation:
The electric field is a vector magnitude whereby
E_total = Eₐ + E_b
where the bold letters indicate vectors, in this case the charges of the two objects A and B are the same and they are on the same line
E_total = - E_a - E_b
the electric field for a point charge is
E_a = [tex]k \ \frac{q_a}{r_a^2 }[/tex]
qₐ= Eₐ rₐ² / k
indicates that Eₐ = 40.0 N / C
qₐ = 40.0 0.250²/9 10⁹
qₐ = 2.777 10⁻¹⁰ C
indicates that the charge of the two points is the same
qₐ = q_b
E_total = - k qₐ / rₐ² - k qₐ / (2 rₐ)²
E_total = [tex]-k \ \frac{q_a}{r_a^2} \ ( 1 + \frac{1}{4} )[/tex]
we calculate
E_total = - 40.0 (5/4)
E_total = - 50 N / A
convert 56km/h to m/s.
Explanation:
15.556 metres per second
Mary needs to row her boat across a 160 m-wide river that is flowing to the east at a speed of 1.5 m/s. Mary can row with a speed of 3.6 m/s. If Mary points her boat due north, how far from her intended landing spot will she be when she reaches the opposite shore? What is her speed with respect to the shore?
Answer: 66.67 m, 44.44 s
Explanation:
Given
Velocity of flow is [tex]u=1.5\ m/s[/tex]
Mary can row with speed [tex]v=3.6\ m/s[/tex]
Width of the river [tex]y=160\ m[/tex]
Flow will drift the Mary towards east, while Mary boat will cause it to travel in North direction
time taken to cross river
[tex]\Rightarrow t=\dfrac{160}{3.6}\\\\\Rightarrow t=\dfrac{400}{9}\ s[/tex]
Flow will drift Mary by
[tex]\Rightarrow x=ut\\\\\Rightarrow x=1.5\times \dfrac{400}{9}\\\\\Rightarrow x=66.67\ m[/tex]
Velocity w.r.t shore is
[tex]\Rightarrow v_{net}=\sqrt{3.6^2+1.5^2}\\\Rightarrow v_{net}=\sqrt{15.21}\\\Rightarrow v_{net}=3.9\ m/s[/tex]
The cable lifting an elevator is wrapped around a 1.1m diameter cylinder that is turned by the elevator's motor. The elevator is moving upward at a speed of 2.6 ms. It then slows to a stop, while the cylinder turns one complete revolution. How long does it take for the elevator to stop? Express your answer to two significant figures and include the appropriate units.
Answer:
t = 2.7 s
Explanation:
This is a kinematics problem.
How the elevator reduces its speed to zero by a distance equal to the length of the cylinder
y = 2π r = 2 π d / 2
y = π d
y = π 1.1
y = 3,456 m
now we can look for the acceleration of the system
v² = v₀² - 2 a y
0 = v₀² - 2 a y
a = v₀² / 2y
a = 2.6² / 2 3.456
a = 0.978 m / s²
now let's calculate the time
v = v₀ - a t
0 = v₀ - at
t = v₀ / a
t = 2.6 /0.978
t = 2.658 s
ask for the result with two significant figures
t = 2.7 s
A 3.10 mol sample of an ideal diatomic gas expands adiabatically from a volume of 0.1550 m3 to 0.742 m3 . Initially the pressure was 1.00 atm.(a) Determine the initial and final temperatures.initial Kfinal K(b) Determine the change in internal energy. J(c) Determine the heat lost by the gas. J(d) Determine the work done on the gas. J
Answer:
a) Initial Temperature = 609.4 K and Final Temperature = 325.7 K
b) the change in internal energy is -18279.78 J
c) heat lost by the gas is zero or 0
d) the work done on the gas is -18279.78 J
Explanation:
Given the data in the question;
P[tex]_i[/tex] = 1 atm = 101325 pascal
P[tex]_f[/tex] = ?
V[tex]_i[/tex] = 0.1550 m³
V[tex]_f[/tex] = 0.742 m³
we know that for an adiabatic process γ = 1.4
P[tex]_i[/tex]V[tex]_i^Y[/tex] = P[tex]_f[/tex]V[tex]_f^Y[/tex]
P[tex]_f[/tex] = P[tex]_i[/tex][tex]([/tex] V[tex]_i[/tex] / V[tex]_f[/tex] [tex])^Y[/tex]
we substitute
P[tex]_f[/tex] = 1 × [tex]([/tex] 0.1550 / 0.742 [tex])^{1.4[/tex]
= [tex]([/tex] 0.2088948787 [tex])^{1.4[/tex]
= 0.11166 atm
a) the initial and final temperatures
Initial temperature
T[tex]_i[/tex] = P[tex]_i[/tex]V[tex]_i[/tex] / nR
given that n = 3.10 mol
= ( 101325 × 0.1550 ) / ( 3.10 × 8.314 )
= 15705.375 / 25.7734
T[tex]_i[/tex] = 609.4 K
Final temperature
T[tex]_f[/tex] = P[tex]_f[/tex]V[tex]_f[/tex] / nR
= ( 0.11166 × 101325 × 0.742 ) / ( 3.10 × 8.314 )
= 8394.95 / 25.7734
= 325.7 K
Therefore, Initial Temperature = 609.4 K and Final Temperature = 325.7 K
b) the change in internal energy
ΔE[tex]_{int[/tex] = nC[tex]_v[/tex]ΔT
here, C[tex]_v[/tex] = ( 5/2 )R
ΔE[tex]_{int[/tex] = 3.10 × ( 5/2 )8.314 × ( 325.7 - 609.4 )
= -18279.78 J
Therefore, the change in internal energy is -18279.78 J
c) the heat lost by the gas
Since its an adiabatic process,
Q = 0
Therefore, heat lost by the gas is zero or 0
d) the work done on the gas
W = ΔE[tex]_{int[/tex] - Q
= -18279.78 J - 0
W = -18279.78 J
Therefore, the work done on the gas is -18279.78 J
a) The Initial Temperature and Final Temperature of gas are 601.68 K and 321.61 K respectively.
b) The change in internal energy is -18279.78 J.
c) The heat lost by the gas is zero.
d) The work done on the gas is -18279.78 J.
Given data:
The moles of sample is, n = 3.10 mol.
The initial volume of sample is, [tex]V_{1}=0.1550 \;\rm m^{3}[/tex].
The final volume of sample is, [tex]V_{2}=0.742 \;\rm m^{3}[/tex].
The initial pressure of the sample is, [tex]P_{1}=1.00 \;\rm atm[/tex].
(a)
We know that the relation between the pressure and volume for an adiabatic process is as follows,
[tex]P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}[/tex]
Here, [tex]\gamma[/tex] is a adiabatic index. And for air, its value is 1.41.
Solving as,
[tex]P_{2}=P_{1} \times\dfrac{V_{1}^{\gamma}}{V_{2}^{\gamma}}\\\\\\P_{2}=1.00 \times\dfrac{0.1550^{1.41}}{0.742^{1.41}}\\\\\\P_{2} = 0.11166 \;\rm atm[/tex]
Now, calculate the final temperature using the ideal gas equation as,
[tex]P_{2}V_{2}=nRT_{2}\\\\T_{2}= \dfrac{P_{2} \times V_{2}}{nR}\\\\T_{2}= \dfrac{0.11166 \times 10^{5}\times 0.742}{3.10 \times 8.31}\\\\T_{2}=321.61 \;\rm K[/tex]
Similarly, calculate the initial temperature as,
[tex]P_{1}V_{1}=nRT_{1}\\\\T_{1}= \dfrac{P_{1} \times V_{1}}{nR}\\\\T_{1}= \dfrac{1 \times 10^{5}\times 0.1550}{3.10 \times 8.31}\\\\T_{1}=601.68 \;\rm K[/tex]
Thus, we can conclude that the initial and final temperature of the gas is 601.68 K and 321.61 K respectively.
(b)
The change in internal energy is given as,
ΔE = nCΔT
here, C = ( 5/2 )R
ΔE = 3.10 × ( 5/2 )8.314 × ( 325.7 - 609.4 )
= -18279.78 J
Therefore, the change in internal energy is -18279.78 J.
c)
The heat lost by the gas . Since its an adiabatic process, so there will be no heat interaction.
Q = 0
Therefore, heat lost by the gas is zero or 0
d)
The work done on the gas
W = ΔE - Q
W = -18279.78 J - 0
W = -18279.78 J
Therefore, the work done on the gas is -18279.78 J.
Learn more about the adiabatic process here:
https://brainly.com/question/14930930
what are the dynamic properties of a nucleus
•. What is called the error due to the procedure and used apparatuses?
a. Random error
b. Index error
c. Systematic error
d. Parallax error.
Answer:
[tex]c.) \: systematic \: error \\ \\ = > it \: is \: the \: error \: caused \: \\ \\ due \: to \: the \: procedure \\ \\ \: and \: used \: apparatuses \\ \\ \huge\mathfrak\red{Hope \: it \: helps}[/tex]
Two plane coaxial disks are separated by a distance 0.6 m. The lower disk is solid with a diameter 0.80 m and a temperature 300 K. The upper disk , at temperature 900 K, has the same outer diameter but is ring-shaped with an inner diameter 0.40 m. Assuming the disks to be blackbodies, calculate the net rate of radiative heat exchange from disk 1 to disk 2, in kW.
Answer:
if anyone is reading my coment your oarents will became very fine soon
two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations
Answer:
The height is the same
Explanation:
Because they were at the same height but they fell at different velocities
An airplane increases its speed at the average rate of 15 m/s2. How much time does it take to increase its speed from 100 m/s to 160 m/s
Answer:
4 s
Explanation:
Acceleration (a) = 15 m/s²Initial velocity (u) = 100 m/sFinal velocity (v) = 160 m/sWe are asked to calculate time taken (t).
By using the first equation of motion,
[tex]\longrightarrow[/tex] v = u + at
[tex]\longrightarrow[/tex] 160 = 100 + 15t
[tex]\longrightarrow[/tex] 160 - 100 = 15t
[tex]\longrightarrow[/tex] 60 = 15t
[tex]\longrightarrow[/tex] 60 ÷ 15 = t
[tex]\longrightarrow[/tex] 4 s = t
Which one of the following statements concerning resistors in "parallel" is true? Question 7 options: The voltage across each resistor is the same. The current through each resistor is the same. The total current through the resistors is the sum of the current through each resistor. The power dissipated by each resistor is the same.
Answer: The correct statement is:
--> The voltage across each resistor is the same.
Explanation:
RESISTORS are defined as the components of an electric circuit which are capable of creating resistance to the file of electric current in the circuit. They work by converting electrical energy into heat, which is dissipated into the air. These resistors can be divided into two according to their arrangements in the electric cell. It include:
--> Resistors in parallel and
--> Resistors in series
RESISTORS are said to be in parallel when two or more resistance or conductors are connected to common terminals so that the potential difference ( voltage) across each conductor IS THE SAME but with different current flow through each of them. Also, Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
You drop two balls of equal diameter from the same height at the same time. Ball 1 is made of metal and has a greater mass than ball 2, which is made of wood. The upward force due to air resistance is the same for both balls. Is the drop time of ball 1 greater than, less than, or equal to the drop time of ball 2? Explain why
Answer:
The drop time ball 1 is less than the drop time of ball 2. A further explanation is provided below.
Explanation:
The net force acting on the ball will be:
⇒ [tex]F_{net}=mg-F_r[/tex]
Here,
F = Force
m = mass
g = acceleration
Now,
According to the Newton's 2nd law of motion, we get
⇒ [tex]F_{net} = ma[/tex]
To find the value of "a", we have to substitute "[tex]F_{net}=ma[/tex]" in the above equation,
⇒ [tex]ma=mg-F_r[/tex]
⇒ [tex]a=g-\frac{F_r}{m}[/tex]
We can see that, the acceleration is greater for the greater mass of less for the lesser mass. Thus the above is the appropriate solution.
Answer:
Both the ball takes equal time to reach to the ground.
Explanation:
Two balls of same diameter
Let the height is h.
Mass of ball 1 is more than the mass of ball 2.
The second equation of motion is
[tex]h = u t +0.5 gt^2[/tex]
Here, the buoyant force due to air is same. So, the time of fall is independent of the mass.
So, both the ball takes equal time to reach to the ground.
a tiger covers a distance of 600 m in 15 minutes what is a speed of a tiger?
Answer: 2.4 km/hr
Explanation:
Distance = 600m
Time= 15 minutes = 15 x 60 second/minute = 900 seconds
Speed = [tex]\frac{Distance}{Time}[/tex] = [tex]\frac{600}{900}[/tex] = [tex]\frac{2}{3}[/tex] m/sec
⇒ [tex]\frac{2}{3}[/tex] x [tex]\frac{18}{5}[/tex] = 2.4 km/hr (1 m/sec = 3.6 km/hr)
Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 35 cm while traveling through air. What are the
(a) frequency and
(b) wavelength as the signal travels through 3-mm-thick window glass into your room?
Answer:
(a) 8.57 x 10^8 Hz
(b) 23.3 cm
Explanation:
Wavelength = 35 cm = 0.35 m
speed =3 x10^8 m/s
Let the frequency is f.
(a) The relation is
speed = frequency x wavelength
3 x 10^8 = 0.35 x f
f = 8.57 x 10^8 Hz
(b) refractive index of glass is 1.5
The relation for the refractive index and the wavelength is
wavelength in glass= wavelength in air/ refractive index.
Wavelength in glass= 35/1.5 = 23.3 cm
which is the correct formula for calculating the age of meteor right if using half life
Answer:
n × t_1/2
Exmplanation:
The age of meteorite is calculated by multiplying it's quantity n with the half life . This means that the formula is for age of this meteorite is;
Age of meteorite= n × t_1/2
where;
n = quantity of the meteorite
t_/2 = half life of the meteorite
Thus:
The correct formula is; n × t_1/2
A block of mass 10kg is suspendet at a diameter of 20cm from the centre of a uniform bar im long, what force is required to balance it at its centre of gravity by applying the fore at the other end of the bar?
Answer:
4 kg of force
Explanation:
Force = (mass x distance to fulcrum) / length of fulcrum to end
Subsitute values
F = (10 x 20)/50
F =4
g As they reach higher temperatures, most semiconductors... Selected Answer: have an increased resistance. Answers: have a constant resistance. have an increased resistance. have a decreased resistance.
Answer:
have an increased resistance
A student claimed that thermometers are useless because a
thermometer always registers its own temperature. How would you
respond?
[
A 0.495-kg hockey puck, moving east with a speed of 4.50 m/s , has a head-on collision with a 0.720-kg puck initially at rest. Assuming a perfectly elastic collision, what will be the speed (magnitude of the velocity) of each object after the collision?
Answer:
a) [tex]v_1=-0.833m/s[/tex]
b) [tex]V_2=12.5m/s[/tex]
Explanation:
From the question we are told that:
Hockey puck Mass [tex]m_1=0.495kg[/tex]
Hockey puck Speed [tex]u_1=4.50m/s[/tex]
Puck Mass [tex]m_2=0.720kg[/tex]
Assuming
Initial speed of Puck [tex]u_2=0[/tex]
Generally the equation for Speed of First Puck is mathematically given by
[tex]v_1=(\frac{m_1-m_2}{m_1+m_2})*v_1+(\frac{2m_2}{m_1+m_2})u_2[/tex]
[tex]v_1=(\frac{0.495-0.720}{0.495+0.720})*4.50+0[/tex]
[tex]v_1=-0.833m/s[/tex]
Generally the equation for Speed of Second Puck is mathematically given by
[tex]V_2=(\frac{2m_1}{m_1+m_2})u_2-(\frac{m_1-m_2}{m_1+m_2})v[/tex]
[tex]V_2=(\frac{2*0.495}{0.495*0.720})*4.50-0[/tex]
[tex]V_2=12.5m/s[/tex]
Explain the following observations:
a) A balloon filled with hydrogen gas floats in air;
B) A ship made of steel floats on water.
Answer and Explanation:
a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.
b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.
A proton enters a region of constant magnetic field, perpendicular to the field and after being accelerated from rest by an electric field through an electrical potential difference of 330 V. Determine the magnitude of the magnetic field, if the proton travels in a circular path with a radius of 23 cm.
Answer:
B = 1.1413 10⁻² T
Explanation:
We use energy concepts to calculate the proton velocity
starting point. When entering the electric field
Em₀ = U = q V
final point. Right out of the electric field
em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
q V = ½ m v²
v = [tex]\sqrt{2qV/m}[/tex]
we calculate
v = [tex]\sqrt{\frac{ 2 \ 1.6 \ 10^{-19} \ 300}{1.67 \ 0^{-27}} }[/tex]
v = [tex]\sqrt{632.3353 \ 10^8}[/tex]
v = 25.15 10⁴ m / s
now enters the region with magnetic field, so it is subjected to a magnetic force
F = m a
the force is
F = q v x B
as the velocity is perpendicular to the magnetic field
F = q v B
acceleration is centripetal
a = v² / r
we substitute
qvB =1/2 m v² / r
B = v[tex]\frac{m v}{2 q r}[/tex]
we calculate
B = [tex]\frac{1.67 \ 10^{-27} 25.15 \ 10^4 }{1.6 \ 10^{-19} 0.23}[/tex]
B = 1.1413 10⁻² T
Wood is an example of
A. Metalloid
B. Insulator
C. Nonmetal
D. Conductor
Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results
Answer:
No, it will not affect the results.
Explanation:
For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.
What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.
why does self inductance acts as electrical inertia?
Answer:
self-indulgence of coil is the property by virtue of wich is tends to maintain magnatic flux link with it and opposed any any change in the flux inducing current in it
A 5.70 g lead bullet traveling at 490 m/s is stopped by a large tree. If half the kinetic energy of the bullet is transformed into internal energy and remains with the bullet while the other half is transmitted to the tree, what is the increase in temperature of the bullet
Answer:
461.73 K
Explanation:
Given that,
The mass of a bullet, m = 5.7 g
Speed of the bullet, v = 490 m/s
Half the kinetic energy of the bullet is transformed into internal energy and remains with the bullet while the other half is transmitted to the tree.
Using the conservation of energy,
[tex]\dfrac{1}{2}(\dfrac{1}{2}mv^2)=mc\Delta T\\\\\Delta T=\dfrac{v^2}{4c}[/tex]
Where
x is the specific heat of lead, c = 130 J/kg K
So,
[tex]\Delta T=\dfrac{(490)^2}{4\times 130}\\\\=461.73\ K[/tex]
So, the increase in temperature of the bullet is 461.73 K.
A typical incandescent light bulb consumes 75 W of power and has a mass of 20 g. You want to save electrical energy by dropping the bulb from a height great enough so that the kinetic energy of the bulb when it reaches the floor will be the same as the energy it took to keep the bulb on for 2.0 hours. From what height should you drop the bulb, assuming no air resistance and constant g?
Answer:
h = 2755102 m = 2755.102 km
Explanation:
According to the given condition:
Potential Energy = Energy Consumed by Bulb
[tex]mgh = Pt\\\\h = \frac{Pt}{mg}[/tex]
where,
h = height = ?
P = Power of bulb = 75 W
t = time = (2 h)(3600 s/1 h) = 7200 s
m = mass of bulb = 20 g = 0.02 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
[tex]h = \frac{(75\ W)(7200\ s)}{(0.02\ kg)(9.8\ m/s^2)}[/tex]
h = 2755102 m = 2755.102 km
Stars have different colors. What causes stars to have colors?
A. location
B. temperature
C. oxygen
D. carbon dioxide
Answer:
temperature
Explanation:
temperature change forms different elements and different element sustain different colour
What word chemical equation describes this chemical reaction?
Answer : sodium + chlorine → sodium chloride