52) If 3.41 g of nitrogen react with 2.79 g of hydrogen to produce ammonia, what is the limiting reactant and what mass of ammonia is produced

Answers

Answer 1

The limiting reactant is N2 and the mass of ammonia produced is 4.16 g.

The balanced chemical equation for the reaction of nitrogen and hydrogen to produce ammonia is:

N2 + 3H2 → 2NH3

According to the equation, one mole of nitrogen reacts with three moles of hydrogen to produce two moles of ammonia.

First, we need to determine which reactant is limiting. To do this, we can calculate the number of moles of each reactant:

moles of N2 = 3.41 g / 28.02 g/mol = 0.122 mol

moles of H2 = 2.79 g / 2.02 g/mol = 1.38 mol

The mole ratio of N2 to H2 in the balanced equation is 1:3.

Therefore, N2 is the limiting reactant because there are fewer moles of N2 than are required to react with all of the H2 present.

Next, we can use the mole ratio from the balanced equation to calculate the number of moles of ammonia produced:

moles of NH3 = 0.122 mol N2 x (2 mol NH3 / 1 mol N2) = 0.244 mol NH3

Finally, we can use the molar mass of ammonia to convert the number of moles to grams:

mass of NH3 = 0.244 mol NH3 x 17.03 g/mol = 4.16 g NH3

to know more about limiting reactant refer here:

https://brainly.com/question/14225536#

#SPJ11


Related Questions

The volume of a gas with an initial pressure of 380 mmHg increases from 5.0 L to 9.0 L. What is the final pressure of the gas,in atm, assuming no change in moles or temperature

Answers

The final pressure of the gas, in atm, assuming no change in moles or temperature, is 0.28 atm

To solve this problem, we can use Boyle's Law, which states that the pressure and volume of a gas are inversely proportional at constant temperature and moles.

Mathematically, this can be expressed as P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

First, we need to convert the initial pressure of 380 mmHg to atm. 1 atm = 760 mmHg, so 380 mmHg = 0.5 atm.

Using Boyle's Law, we can set up the equation:

P1V1 = P2V2
0.5 atm x 5.0 L = P2 x 9.0 L

Simplifying the equation, we get:

P2 = (0.5 atm x 5.0 L) / 9.0 L
P2 = 0.28 atm

Therefore, the final pressure of the gas, in atm, assuming no change in moles or temperature, is 0.28 atm.
Hi! To solve this problem, we can use Boyle's Law, which states that the product of the initial pressure and volume (P1V1) is equal to the product of the final pressure and volume (P2V2) for a constant temperature and amount of gas.

Initial pressure (P1) = 380 mmHg
Initial volume (V1) = 5.0 L
Final volume (V2) = 9.0 L

First, let's convert the initial pressure from mmHg to atm:
1 atm = 760 mmHg
P1 = 380 mmHg * (1 atm / 760 mmHg) = 0.5 atm

Now apply Boyle's Law:
P1V1 = P2V2
(0.5 atm)(5.0 L) = P2(9.0 L)

To find the final pressure (P2), divide both sides of the equation by 9.0 L:
P2 = (0.5 atm)(5.0 L) / 9.0 L = 0.2778 atm

So, the final pressure of the gas is approximately 0.2778 atm.

To know more about pressure  click on below link :

https://brainly.com/question/19722560

#SPJ11

Answer:The final pressure of the gas is 0.278 atm.

Explanation:

To solve this problem, we can use Boyle's law, which states that the product of pressure and volume is constant for a given amount of gas at a constant temperature:

P1V1 = P2V2

where P1 and V1 are the initial pressure and volume, respectively, and P2 and V2 are the final pressure and volume, respectively.

Plugging in the given values, we get:

P1 = 380 mmHg

V1 = 5.0 L

V2 = 9.0 L

Solving for P2, we get:

P2 = (P1 * V1) / V2 = (380 mmHg * 5.0 L) / 9.0 L = 211.11 mmHg

To convert the pressure to atm, we divide by 760 mmHg/atm:

P2 = 211.11 mmHg / 760 mmHg/atm = 0.278 atm

TO KNOW MORE ON Boyle's law,REFER

https://brainly.com/question/30367067#

#SPJ11

Suppose .120 mol of electrons must be transported from one side of an electrochemical cell to another in minutes. Calculate the size of electric current that must flow.

Answers

.120 mol of electrons is transported from one side of an electrochemical cell to another in minutes, the size of electric current that must flow is 11,578.2 A.

We need to use Faraday's constant, which tells us that one mole of electrons carries a charge of 96,485 coulombs. Therefore, 0.120 mol of electrons carries a charge of 0.120 mol x 96,485 C/mol = 11,578.2 C

If we want to transport this charge in minutes, we need to divide it by the number of minutes:
11,578.2 C / (number of minutes) = electric current in amperes (A)

So, here no. of minutes = 1.

Therefore electric current = 11,578.2 A.

To know more about electric current visit:

https://brainly.com/question/29766827

#SPJ11

In the presence of horseradish peroxidase and H2O2, _____________ is oxidized. A. Both ferricyanide and and ferrocyanide B. Ferrocyanide C. D-Glucolactone D. Ferricyanide

Answers

In the presence of horseradish peroxidase and H2O2, D-Glucolactone is oxidized.

Horseradish peroxidase (HRP) is an enzyme that catalyzes the oxidation of various substrates in the presence of hydrogen peroxide (H2O2). HRP uses H2O2 as a cosubstrate to oxidize a wide range of organic and inorganic compounds. One of the common substrates used for HRP assay is D-Glucolactone, which is oxidized by HRP in the presence of H2O2 to form 5-ketogluconate and water. The oxidation reaction involves the transfer of electrons from D-Glucolactone to H2O2, which is facilitated by the HRP enzyme.

Ferrocyanide and ferricyanide are not typically oxidized by horseradish peroxidase and H2O2, as they are already in their fully oxidized and reduced states, respectively. However, they can be used as redox indicators to measure the activity of HRP in vitro, as the rate of oxidation of D-Glucolactone can be monitored by the change in the absorbance of ferrocyanide or ferricyanide.

To know more about horseradish peroxidase refer here:

https://brainly.com/question/29576759#

#SPJ11

A pure gaseous compound has a mass of 0.109 g and a volume of 112 mL at 373 K and 750. torr. Calculate the molar mass of the compound.

Answers

The molar mass of the compound is 24.8 g/mol.

Firstly, we need to convert the given volume from mL to L by dividing it by 1000:

112 mL ÷ 1000 mL/L = 0.112 L

Next, we can use the Ideal Gas Law, PV = nRT, to calculate the number of moles of the compound present in the given volume:

PV = nRT

n = (PV) ÷ RT

where P = 750. torr = 750. mmHg (since 1 torr = 1 mmHg)

V = 0.112 L

R = 0.0821 L·atm/(mol·K) (gas constant)

T = 373 K

n = (750. mmHg × 0.112 L) ÷ (0.0821 L·atm/(mol·K) × 373 K)

n = 0.0044 mol

Finally, we can calculate the molar mass (M) of the compound using its mass (m) and number of moles (n):

M = m/n

M = 0.109 g ÷ 0.0044 mol

M = 24.8 g/mol


To know more about  molar mass, refer here:

https://brainly.com/question/22997914#

#SPJ11

hydronium ion, H3O+ Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons and any formal charges if necessary.

Answers

The hydronium ion, [tex]H_3O^+[/tex], consists of three hydrogen atoms (H) and one oxygen atom (O).

The oxygen atom has six valence electrons, which are paired up in two lone pairs and two of these electrons are shared with the three hydrogen atoms through covalent bonds. The oxygen atom has a formal charge of +1, while the three hydrogen atoms each have a formal charge of 0. The lone pair of electrons on the oxygen atom gives the molecule a tetrahedral shape.
Overall, the hydronium ion can be represented as follows:
  H
  |
H--O--H
  |
  H+
where the dashes represent covalent bonds and the + sign represents the formal charge on the oxygen atom.

To learn more about hydronium ion click here https://brainly.com/question/14619642

#SPJ11

At a certain temperature, the value of the equilibrium constant, K, for the reaction represented above is 2.0 x 105 . What is the value of K for the reverse reaction at the same temperature

Answers

The value of K for the reverse reaction, in this case, would be 5 x [tex]10^{-6}[/tex].

How to determine the value of K of a reaction?

For a chemical reaction:

A + B ⇌ C + D

The equilibrium constant, K, is given by the ratio of the product concentrations to the reactant concentrations, with each concentration raised to the power of its stoichiometric coefficient:

K = [C]^c[D]^d / [A]^a[B]^b

where a, b, c, and d are the stoichiometric coefficients of the reactants and products, and [A], [B], [C], and [D] are their respective concentrations at equilibrium.

For the reverse reaction:

C + D ⇌ A + B

The equilibrium constant, K', is given by the same formula, with the concentrations of the products and reactants switched:

K' = [A]^a[B]^b / [C]^c[D]^d

Since the forward and reverse reactions are the same reaction, but in opposite directions, the equilibrium constants for the two reactions are related by the following equation:

K' = 1 / K

where K is the equilibrium constant for the forward reaction.


Step 1: Identify the equilibrium constant for the forward reaction (given in the question):

[tex]K_{forward}[/tex] = 2.0 x [tex]10^{5}[/tex]

Step 2: Calculate the equilibrium constant for the reverse reaction by taking the reciprocal of [tex]K_{forward}[/tex]:

[tex]K_{reverse}[/tex] = 1 / [tex]K_{forward}[/tex]

Step 3: Plug in the value of [tex]K_{forward}[/tex] into the equation from Step 2:

[tex]K_{reverse}[/tex] = 1 / (2.0 x [tex]10^{5}[/tex])

[tex]K_{reverse}[/tex] = 5.0 x [tex]10^{-6}[/tex]

The value of K for the reverse reaction at the same temperature is 5 x [tex]10^{-6}[/tex].

To know more about Equilibrium Constant:

https://brainly.com/question/12269779

#SPJ11

Answer:

5x10-6

Explanation:

Calculate the pH of a 0.350 M sodium chlorite, NaClO2, solution. Show all work, including your balanced chemical equation and law of mass action.

Answers

The pH of a 0.350 M sodium chlorite solution is 7.

The first step to calculate the pH of a sodium chlorite ([tex]NaClO_2[/tex]) solution is to write the balanced chemical equation for the dissociation of [tex]NaClO_2[/tex] in water:

[tex]NaClO_2 + H_2O = HClO_2 + Na^+ + OH^-[/tex]

The equilibrium expression for this reaction is:

[tex]Kb = ([HClO_2][OH^-])/[NaClO_2][/tex]

where Kb is the base dissociation constant for [tex]HClO_2[/tex]. We can use the relationship Kw = Ka x Kb (where Kw is the ion product constant for water) to find the value of Kb, since Ka for [tex]HClO_2[/tex] is known to be [tex]1.1 * 10^{-2}[/tex]:

Kw = Ka x Kb

[tex]1.0 *10^{-14} = 1.1 * 10^{-2} x Kb\\Kb = 9.1 * 10^{-13}[/tex]

Now we can use the Kb expression to find the concentration of hydroxide ions in the solution:

[tex]Kb = ([HClO_2][OH^-])/[NaClO_2]\\9.1 * 10^{-13} = ([HClO_2][OH^-])/0.350\\[OH^-] = (9.1 * 10^{-13} x 0.350)/[HClO_2][/tex]

Since sodium chlorite is a salt, it completely dissociates in water, so the initial concentration of [tex]HClO_2[/tex] is zero. Therefore, the concentration of hydroxide ions in the solution is:

[tex][OH^-] = (9.1 * 10^{-13} * 0.350)/0 = 0[/tex]

This means that the solution is neutral, and the pH is 7.

For more question on pH click on

https://brainly.com/question/172153

#SPJ11

A solution is made by mixing 38 mL of ethanol and 100 mL of toluene. What is the volume percentage of ethanol in the solution

Answers

The volume percentage of ethanol in the solution is approximately 27.54%.

To determine the volume percentage of ethanol in the solution, we need to divide the volume of ethanol by the total volume of the solution and then multiply by 100.
First, we need to add the volumes of ethanol and toluene to find the total volume of the solution:
38 mL + 100 mL = 138 mL
Now we can calculate the volume percentage of ethanol:
Volume percentage of ethanol = (38 mL ÷ 138 mL) x 100% = 27.54%
Therefore, the volume percentage of ethanol in the solution is 27.54%.
To calculate the volume percentage of ethanol in the solution, we need to first determine the total volume of the solution, and then find the proportion of ethanol in it. Here's the step-by-step calculation:
1. Determine the total volume of the solution:
Total volume = Volume of ethanol + Volume of toluene
Total volume = 38 mL (ethanol) + 100 mL (toluene)
Total volume = 138 mL
2. Calculate the volume percentage of ethanol:
Volume percentage of ethanol = (Volume of ethanol / Total volume) × 100
Volume percentage of ethanol = (38 mL / 138 mL) × 100
Volume percentage of ethanol ≈ 27.54%
So, the volume percentage of ethanol in the solution is approximately 27.54%.

learn more about solution here

https://brainly.com/question/28945073

#SPJ11

Identify the precipitate(s) of the reaction that occurs when asilver nitrate solution is mixed with a sodium chloridesolution.

sodium nitrate

silver chloride

sodium chloride

silver nitrate

Answers

When a silver nitrate solution is mixed with a sodium chloride solution, a chemical reaction takes place that results in the formation of a white precipitate of silver chloride.

This precipitate forms because silver ions from the silver nitrate solution combine with chloride ions from the sodium chloride solution to form insoluble silver chloride. This reaction is known as a double displacement reaction, and the balanced chemical equation for it is:
[tex]AgNO_3 + NaCl --> AgCl + NaNO_3[/tex]
The remaining products of the reaction, sodium nitrate and soluble silver nitrate, stay in solution and do not form a precipitate. The formation of silver chloride precipitate is a common reaction used in laboratory experiments to identify the presence of chloride ions in a sample. Overall, the reaction between silver nitrate and sodium chloride results in the formation of silver chloride precipitate, which is insoluble and readily visible.

To learn more about silver chloride click here https://brainly.com/question/12912140

#SPJ11

If a nitrogen molecule, N2, were to react with a reactive metal such as potassium, what charge would the resulting nitride ions have

Answers

The reaction between nitrogen and potassium is highly exothermic and requires a lot of energy to overcome the triple bond in the N2 molecule. Once the reaction occurs, the resulting nitride ions would have a charge of -3.

If a nitrogen molecule, N2, were to react with a reactive metal such as potassium, the resulting compound would be a nitride.

This is because nitrogen has a valence of -3, meaning it needs to gain three electrons to complete its octet and achieve a stable electron configuration.

When nitrogen reacts with potassium, it forms a compound with a 1:3 stoichiometric ratio, meaning that for every one potassium ion (K+), there are three nitride ions (N3-).

The nitride ion has a structure similar to that of ammonia (NH3), with a lone pair of electrons on each nitrogen atom.

This makes it a powerful Lewis base and allows it to form strong bonds with metals, such as potassium. The resulting nitride ions are highly stable and form compounds with a wide range of metals.

to know more about exothermic reactions refer here:

https://brainly.com/question/29206227#

#SPJ11

Explain the order of elution of ferrocene and acetylferrocene from the column. Why did the acetylferrocene stay near the top of the column

Answers

Compounds that are more polar or have a higher solubility in the eluent will be eluted more quickly and will therefore come out of the column first. Acetylferrocene is more polar and less soluble in the eluent than ferrocene.

The order of elution of compounds from a chromatography column is determined by their relative polarity and solubility in the mobile phase (eluent). In the case of ferrocene and acetylferrocene, ferrocene is less polar and more soluble in the eluent (such as hexanes) than acetylferrocene.

Therefore, when a hexanes/ethyl acetate mixture (which is more polar than pure hexanes) is used as the eluent, acetylferrocene will have a higher affinity for the stationary phase and will be retained on the column for longer. Ferrocene, being less polar, will have a lower affinity for the stationary phase and will be eluted more quickly.

Learn more about  Acetylferrocene here:

https://brainly.com/question/17087710

#SPJ11

Which half-reaction occurs at the negative electrode in an electrolytic cell in which an object is being plated with silver

Answers

In an electrolytic cell in which an object is being plated with silver, the half-reaction that occurs at the negative electrode (cathode) is:

Ag⁺(aq) + e⁻ → Ag(s)

In this reaction, silver ions in solution (Ag⁺) gain electrons (e⁻) to form solid silver (Ag) on the surface of the object being plated. This process is called reduction, and it occurs at the cathode, which is the negative electrode in an electrolytic cell.

Meanwhile, at the positive electrode (anode), the half-reaction that occurs is the oxidation of a source of silver, such as a silver electrode or a silver compound:

Ag(s) → Ag⁺(aq) + e⁻

In this reaction, solid silver (Ag) loses an electron (e⁻) to form silver ions (Ag⁺) in solution. This process is called oxidation and it occurs at the anode, which is the positive electrode in an electrolytic cell.

Overall, in the electrolytic cell, silver ions are reduced at the cathode to form solid silver on the object being plated, while a source of silver is oxidized at the anode to maintain the concentration of silver ions in solution.

For more information about electrolysis, refer to the link:

brainly.com/question/12054569

#SPJ4

Full Question ;

Electrolysis is used to silver plate an iron spoon by placing it in a solution containing Ag+ ions and connecting the spoon and a silver electrode to a battery. Enter the half‑reaction that takes place when the spoon is plated with silver. Include phases.

volume of 46.2 mL of a 0.468 M Ca(NO3)2 solution is mixed with 90.5 mL of a 1.896 M Ca(NO3)2 solution. Calculate the concentration of the final solution.

Answers

The concentration of the final solution after mixing 46.2 mL of a 0.468 M Ca(NO₃)₂ solution with 90.5 mL of a 1.896 M Ca(NO₃)₂ solution is 1.119 M.

To calculate the concentration of the final solution, we can use the concept of molarity, which is defined as the amount of solute (in moles) dissolved in a given volume of solution (in liters).

First, we need to find the total amount of moles of Ca(NO₃)₂ in both solutions. For the 46.2 mL of 0.468 M Ca(NO₃)₂ solution, the moles of Ca(NO₃)₂ can be calculated as follows:

moles of Ca(NO₃)₂ = concentration (M) × volume (L)

= 0.468 M × 0.0462 L

= 0.0216 moles

Similarly, for the 90.5 mL of 1.896 M Ca(NO₃)₂ solution, the moles of Ca(NO₃)₂ can be calculated as follows:

moles of Ca(NO₃)₂ = concentration (M) × volume (L)

= 1.896 M × 0.0905 L

= 0.1714 moles

Next, we add the moles of Ca(NO₃)₂ from both solutions to get the total moles of Ca(NO₃)₂ in the final solution:

total moles of Ca(NO₃)₂ = moles from first solution + moles from second solution

= 0.0216 moles + 0.1714 moles

= 0.193 moles

Finally, we divide the total moles of Ca(NO₃)₂ by the total volume of the final solution (which is the sum of the volumes of both solutions) to get the concentration of the final solution:

concentration of final solution = total moles of Ca(NO₃)₂ / total volume of final solution

= 0.193 moles / (0.0462 L + 0.0905 L)

= 1.119 M

Therefore, the concentration of the final solution after mixing the two solutions is 1.119 M.

To know more about molarity refer here:

https://brainly.com/question/8732513#

#SPJ11

what would happen if the erlenmeyer flask containing the crude dba in EtOH undergoing crystallization was moved while still hot directly to the ice bath

Answers

Moving a hot Erlenmeyer flask directly from crystallization to an ice bath could result in the formation of smaller or unwanted crystals, or the formation of amorphous solids.

This is because rapid cooling can result in rapid crystal nucleation and growth, which can prevent the formation of large, well-defined crystals. It can also lead to the formation of amorphous solids, which have no defined crystal structure and can be more difficult to purify.

Additionally, sudden temperature changes can cause cracking or breaking of the Erlenmeyer flask, potentially leading to the loss of the sample. It is therefore important to allow the solution to cool slowly to room temperature before transferring to an ice bath, to ensure the formation of large, well-defined crystals.

To know more about the Erlenmeyer flask refer here :

https://brainly.com/question/10261429#

#SPJ11

g If the wastewater above has a flow of 1 MGD and an initial alkalinity of 60 mg L-1 as CaCO3, how much lime must be added per day to complete the nitrification reaction if the lime is 70% CaO(s) by mass

Answers

We need to add 150.0 lbs/day of lime that is 70% CaO by mass to complete the nitrification reaction in 1 MGD of wastewater with an initial alkalinity of 60 mg/L as CaCO3.

To calculate the amount of lime needed to complete the nitrification reaction, we first need to determine the amount of alkalinity that needs to be provided.

The nitrification reaction for ammonia (NH3) can be expressed as follows:

[tex]NH_{3} + 2O_{2} - > NO_{3}- + H_{2}O + 2H^+[/tex]

For every mole of ammonia oxidized, two moles of alkalinity are consumed. Therefore, to completely nitrify all the ammonia in 1 million gallons per day (MGD) of wastewater with an initial alkalinity of 60 mg/L as [tex]CaCO_{3}[/tex], we need to add an amount of lime that will provide 2 x 60 = 120 mg/L of alkalinity.

To convert mg/L of alkalinity as to mg/L of lime (CaO), we need to use the following conversion factor:

1 mg/L [tex]CaCO_{3}[/tex]= 1 mg/L CaO / 0.56

where 0.56 is the equivalent weight ratio of CaO to [tex]CaCO_{3}[/tex].

So, the required dose of lime can be calculated as follows:

Required dose of lime = (120 mg/L) x (1 mg/L CaO / 0.56) x (1 MGD) x (70/100) x (1 day/24 hours)

= 150.0 lbs/day

Learn more about nitrification here:

https://brainly.com/question/28195929

#SPJ11

When sodium thiosulfate is added to a solution of silver bromide, all the silver ions in solution will form complex ions because

Answers

When sodium thiosulfate (Na₂S₂O₃) is introduced to a solution containing silver bromide (AgBr), the silver ions (Ag⁺) in the solution react with the thiosulfate ions (S₂O₃²⁻) from the sodium thiosulfate, resulting in the formation of complex ions. These complex ions consist of a metal ion, which in this case is Ag⁺, and one or more ligands, in this case, the thiosulfate ions.

This reaction occurs because the thiosulfate ions have a high affinity for the silver ions due to their ability to coordinate with the metal ion, forming a stable complex. Once the complex ion is formed, it remains in solution and does not precipitate out as a solid.

Therefore, all the silver ions in solution will form complex ions when sodium thiosulfate is added to a solution of silver bromide, leading to the formation of a clear colorless solution. This reaction is often used in photography to fix the image by removing the unexposed silver bromide from the photographic film.

To know more about the complex ion refer here :

https://brainly.com/question/31418041#

#SPJ11

According to the Law of Dulong and Petit, the specific heat capacity multiplied by the atomic mass of an metal equals approximately 24.9. This number represents the _________ of the element.

Answers

This number represents the molar heat capacity of the element, which is the amount of heat required to raise the temperature of one mole of the substance by one degree Celsius (or Kelvin) at constant pressure.

The Law of Dulong and Petit is a physical law that relates the molar heat capacity of a substance to its atomic mass. Specifically, the law states that for most solid elements and compounds, the product of the specific heat capacity and the atomic mass of the substance is approximately equal to 3R, where R is the gas constant (8.314 J/(mol·K)). Therefore, the molar heat capacity of these substances is approximately equal to 3R/m, where m is the molar mass of the substance.

The Law of Dulong and Petit was first proposed in 1819 by French physicists Pierre Louis Dulong and Alexis Thérèse Petit. The law is based on the assumption that all solids have the same average energy per atom at high temperatures, and that this energy is proportional to the absolute temperature.

learn more about Molar heat capacity here:

https://brainly.com/question/28302909

#SPJ11

How much of a 11.0 M HNO3 solution should you use to make 850.0 mL of a 0.220 M HNO3 solution

Answers

Answer:

17 mL

Explanation:

n = concentration × volume

n = 850 × 0.220

n = 187 moles

n = cv

v = n/c

v = 187/11M

v = 17 mL

87 . Calculate the pH of a buffer solution prepared from 0.155 mol of phosphoric acid, 0.250 mole of KH2PO4, and enough water to make 0.500 L of solution.

Answers

The pH of the buffer solution is 7.83. A solution with a pH of 7 is considered neutral, while solutions with pH values less than 7 are acidic and solutions with pH values greater than 7 are basic (alkaline).

What is Buffer Solution?

A buffer solution is a solution that can resist changes in pH upon addition of small amounts of acid or base. Buffer solutions are important in many chemical and biological processes where maintaining a stable pH is crucial.

The pKa values for these dissociation steps are 2.14, 7.20, and 12.35, respectively. Since we are given the concentrations of phosphoric acid and its conjugate base, we can calculate the concentrations of H+ and [tex]H_2PO_4-[/tex]  using the following equations:

[H+] = sqrt((Ka1Ka2[H3PO4])/([H2PO4-]+Ka1*[H3PO4]))

[H2PO4-] = [H3PO4]/([H+]/Ka1+1)

where Ka1 and Ka2 are the dissociation constants of phosphoric acid (Ka1 = 7.5 x [tex]10^{-3}[/tex], Ka2 = 6.2 x [tex]10^{-8}[/tex]).

Plugging in the given values, we have:

[H3PO4] = 0.155 mol

[H2PO4-] = 0.250 mol

V = 0.500 L

Using the above equations, we can find that:

[H+] = 7.24 x [tex]10^{-8}[/tex] M

[H2PO4-] = 0.218 M

Now, we can use the Henderson-Hasselbalch equation to calculate the pH:

pH = pKa + log([A-]/[HA])

pH = 7.20 + log(0.218/0.032)

pH = 7.20 + 0.627

pH = 7.83

Therefore, the pH of the buffer solution is 7.83.

To know more about Buffer Solution, visit;

https://brainly.com/question/8676275

#SPJ4

A drop in water temperature is observed when 0.873 g of ammonium nitrate (NH4NO3) is added. The enthalpy change for this reaction is 0.280 kJ. Which

Answers

The statement which is accurate is , the ∆H°soln for Al(NO3)3 is -68.3 kJ/mol so this is an exothermic process where energy in the form of heat is released into the surroundings which is option B.

The enthalpy change of 0.280 kJ is also a negative value, which further confirms that it is an exothermic process. Option A is incorrect as it suggests that the process is endothermic, which is not the case here.

Option C is also incorrect as it suggests that energy is released into the surroundings, which is the opposite of what is observed. The ∆H°soln value for Al(NO3)3 is not relevant to this specific reaction and does not impact the accuracy of the statements.

Therefore, option b is the correct answer.

To know more about enthalpy change click on below link :

https://brainly.com/question/20690888#

#SPJ11

Complete question:

A drop in water temperature is observed when 0.873 g of ammonium nitrate (NH4NO3) is added. The enthalpy change for this reaction is 0.280 kJ. Which of the statements is accurate?

Select one:

a. The ∆H°soln for Al(NO3)3 is +68.3 kJ/ mol so this is an endothermic process where energy in the form of heat is absorbed from the surroundings.

b. The ∆H°soln for Al(NO3)3 is -68.3 kJ/mol so this is an exothermic process where energy in the form of heat is released into the surroundings.

c.The ∆H°soln for Al(NO3)3 is +68.3 kJ/ mol so this is an endothermic process where energy in the form of heat is released into the surroundings.

If you wanted to dilute the 1.85 M solution to make 250 mL of 0.45 solution, how much 1.85 M solution would you need and how much water would you add to it

Answers

To make 250 mL of a 0.45 M solution by diluting a 1.85 M solution, you would need 58.11 mL of the 1.85 M solution and 191.89 mL of water.

To calculate the amount of the 1.85 M solution needed, we can use the formula:

M₁V₁ = M₂V₂

where M₁ is the initial concentration, V₁ is the initial volume, M₂ is the final concentration, and V₂ is the final volume.

Substituting the given values, we have:

(1.85 M)(V₁) = (0.45 M)(250 mL)

Solving for V₁, we get:

V₁ = (0.45 M)(250 mL) / (1.85 M) = 58.11 mL

Therefore, we need 58.11 mL of the 1.85 M solution.

To calculate the amount of water needed, we can subtract the volume of the 1.85 M solution from the final volume:

V₂ - V₁ = 250 mL - 58.11 mL = 191.89 mL

To know more about concentration, refer here:

https://brainly.com/question/30639206#

#SPJ11

A 500.0 mL sample of 0.18 M HClO4 is titrated with 0.45 M LiOH. Determine the pH of the solution before the addition of any LiOH.

Answers

The pH of the solution before the addition of any LiOH is approximately 0.74.

To determine the pH of the solution before the addition of any LiOH, we need to use the dissociation constant (Ka) of HClO₄.

HClO₄ + H₂O ⇌ H₃O⁺ + ClO₄⁻

Ka = [H₃O⁺][ClO₄⁻]/[HClO₄]

Since HClO₄ is a strong acid, it dissociates completely in water, and we can assume that [H₃O⁺] = [HClO₄]. Therefore:

Ka = [H₃O⁺]²/[HClO₄]

From the given concentration of HClO₄ (0.18 M), we can calculate the initial concentration of H₃O⁺ and pH:

[H₃O⁺] = [HClO₄] = 0.18 M

pH = -log[H₃O⁺] = -log(0.18) = 0.74

Therefore, the pH of the solution before the addition of any LiOH is 0.74.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

An ideal gas, initially at a volume of 2.33333 L and pressure of 9 kPa, undergoes isothermal expansion until its volume is 7 L and its pressure is 3 kPa. Calculate the work done by the gas during this process. Answer in units of J.

Answers

The work done by the gas during this isothermal expansion process is 627.92 J.

During an isothermal expansion, the temperature of the gas remains constant. Therefore, using the formula for work done in an isothermal process:

W = nRT ln(V₂/V₁)

Where:
n = number of moles of gas
R = gas constant = 8.31 J/mol*K
T = temperature of the gas
V₂ = initial volume of the gas
V₁ = final volume of the gas

First, we need to calculate the number of moles of gas. Using the ideal gas law:
PV = nRT
n = PV/RT
n = (9 kPa * 2.33333 L) / (8.31 J/mol*K * 273.15 K)
n = 0.00115 mol

Now, calculating the work done:

W = (0.00115 mol * 8.31 J/mol*K * 273.15 K) * ln(7 L / 2.33333 L)

W = 627.92 J

As a result, the gas exerted 627.92 J of work throughout this isothermal expansion phase.

To learn more about isothermal expansion visit:

https://brainly.com/question/17192821

#SPJ11

what accounds for the finding that a protein functions normally in an aqueous buffer but loses its function when placed in an organic solvent

Answers

The reason why a protein may function normally in an aqueous buffer but lose its function when placed in an organic solvent is due to the differences in the chemical properties of these two environments.

Proteins are composed of amino acids that have different chemical properties. Amino acids have polar and nonpolar side chains, which determine their solubility in water or organic solvents. Aqueous buffers are mostly composed of water molecules, which are polar, meaning they have a slight electrical charge that allows them to interact with other polar molecules like amino acids. In contrast, organic solvents are nonpolar and do not have a charge, making it difficult for them to interact with polar amino acids.

When a protein is placed in an organic solvent, the nonpolar side chains of amino acids interact more strongly with the solvent molecules than with the polar amino acids. This causes the protein structure to become disrupted, leading to a loss of its normal function. In an aqueous buffer, the polar nature of the environment allows the protein to maintain its proper structure and function.

In summary, the difference in the chemical properties between aqueous and organic solvents can account for why a protein may function normally in one environment but lose its function in another.

learn more about organic solvent

https://brainly.com/question/28850026

#SPJ11

A balloon filled with 0.500 L of air at sea level is submerged in the water to a depth that produces a pressure of 3.25 atm. What is the volume of the balloon at this depth

Answers

The volume of the balloon at a depth that produces a pressure of 3.25 atm is 0.1538 L.

The initial volume of the balloon is 0.500 L at sea level. Let's assume that the temperature is constant and the number of moles of air inside the balloon is constant as well.

Using Boyle's law, which states that the pressure of a gas is inversely proportional to its volume at constant temperature and number of moles, we can find the new volume of the balloon:

P1V1 = P2V2

here P1 and V1 are the initial pressure and volume of the balloon, and P2 and V2 are the final pressure and volume of the balloon.

Substituting the given values, we get:

(1 atm) (0.500 L) = (3.25 atm) V2

Solving for V2, we get:

V2 = (1 atm) (0.500 L) / (3.25 atm)

V2 = 0.1538 L

Learn more about volume visit: brainly.com/question/4802074

#SPJ4

Which alkyl bromide reacted fastest with sodium iodide in acetone: 1-bromobutane, 2-bromobutane or 2-bromo-2-methylpropane

Answers

The fastest reaction between the alkyl bromides and sodium iodide in acetone would be the one with the most reactive alkyl halide.

In general, primary alkyl halides react faster than secondary or tertiary ones. Therefore, 1-bromobutane would be expected to react faster than 2-bromobutane or 2-bromo-2-methylpropane. The reaction between an alkyl bromide and sodium iodide in acetone is known as the Finkelstein reaction, which is a substitution reaction that involves exchanging one halogen atom for another. In this reaction, the acetone acts as a solvent and helps to solubilize both the alkyl bromide and the sodium iodide.
It is important to note that the reactivity of alkyl halides can also be affected by the presence of other functional groups or steric hindrance. However, in the case of these three alkyl bromides, 1-bromobutane would be expected to react the fastest due to its primary nature.

To learn more about alkyl bromides click here https://brainly.com/question/31555985

#SPJ11

If a proton and an electron in a hydrogen atom have parallel spins, and then change to have antiparallel spins, the atom must

Answers

When the spins of an electron and proton in a hydrogen atom change from parallel to antiparallel, the atom transitions from the triplet state to the singlet state, resulting in the emission of the Lyman-alpha line and a lowering of the atom's energy.

When an electron and proton in a hydrogen atom have parallel spins, they are in a state known as a triplet state. In this state, the total spin angular momentum of the atom is equal to 1, and the atom has higher energy than it would in a singlet state where the total spin angular momentum is equal to 0.

If the spins of the electron and proton change from parallel to antiparallel, the atom transitions from the triplet state to the singlet state. This transition results in the emission of a photon with a wavelength of 121.6 nanometers, which is known as the Lyman-alpha line.

The transition from the triplet state to the singlet state results in a lowering of the energy of the hydrogen atom. This change in energy can have important consequences in a variety of contexts. For example, the Lyman-alpha line is commonly used in astronomy to study the properties of intergalactic gas clouds, as it is one of the brightest emission lines in the spectra of these objects.

To learn more about electron

https://brainly.com/question/1255220

#SPJ4

What nickname have we given to the warming effect on the global climate based on an overabundance of gases and vapors in the air absorbing heat

Answers

The nickname that have given to the warming effect on the global climate based on an overabundance of gases and vapors in the air  is known as the "Greenhouse Effect."

The term is derived from the way a greenhouse works, where sunlight enters through the glass walls and heats up the interior, but the heat is then trapped inside and cannot escape, resulting in higher temperatures.

Similarly, the Earth's atmosphere acts like a greenhouse, allowing sunlight to pass through but trapping the heat that is radiated back from the Earth's surface, leading to a gradual increase in temperature over time.

This effect is caused primarily by human activities such as the burning of fossil fuels, deforestation, and industrial processes, which release large amounts of greenhouse gases such as carbon dioxide, methane, and nitrous oxide into the atmosphere.

To know more about greenhouse effect   click on below link :

https://brainly.com/question/13390232

#SPJ11

How many grams of CO2 are contained in a 1.00 L flask if the pressure is 1.67 atm and the temperature is 21.9°C?

Answers

The amount of CO₂ (carbon dioxide) contained in a 1.00 L flask at a pressure of 1.67 atm and a temperature of 21.9°C is 46.47 g.

To calculate the amount of CO₂ in the flask, we can use the ideal gas law, which relates the pressure, volume, temperature, and amount of gas.

The ideal gas law equation is:

PV = nRT

Where:

P = pressure of the gas (in atm)

V = volume of the gas (in L)

n = amount of gas (in moles)

R = ideal gas constant (0.0821 L atm / (mol K))

T = temperature of the gas (in Kelvin)

First, we need to convert the temperature from Celsius to Kelvin by adding 273.15:

T = 21.9°C + 273.15 = 295.05 K

Given:

Pressure (P) = 1.67 atm

Volume (V) = 1.00 L

Temperature (T) = 295.05 K

We can rearrange the ideal gas law equation to solve for the amount of gas (n):

n = PV / (RT)

Plugging in the given values:

n = 1.67 atm x 1.00 L / (0.0821 L atm / (mol K) x 295.05 K)

n = 0.0568 mol (rounded to four decimal places)

Now, we can calculate the mass of CO₂ using its molar mass, which is 44.01 g/mol.

Mass of CO₂ = molar mass of CO₂ x amount of CO₂ (in moles)

Mass of CO₂ = 44.01 g/mol x 0.0568 mol

Mass of CO₂ = 46.47 g (rounded to two decimal places)

So, the amount of CO₂ contained in the 1.00 L flask at a pressure of 1.67 atm and a temperature of 21.9°C is 46.47 g.

To know more about ideal gas law refer here:

https://brainly.com/question/30458409#

#SPJ11

your final chemistry exam requires you to take 250 ml or a ,500 M solution of silver nitrate. how many gramds of silver do you need to dissolve

Answers

Dissolve approximately 13.48 grams of silver in the form of silver nitrate to prepare 250 mL of a 0.500 M solution for your final chemistry exam.

To prepare 250 mL of a 0.500 M solution of silver nitrate for your final chemistry exam, you will need to dissolve the following amount of silver:

Step 1: Calculate the moles of silver nitrate needed
Moles = Molarity × Volume (in liters)
Moles = 0.500 mol/L × 0.250 L
Moles = 0.125 mol of silver nitrate

Step 2: Determine the molar mass of silver nitrate (AgNO3)
Ag = 107.87 g/mol
N = 14.01 g/mol
O = 16.00 g/mol
Molar mass of AgNO3 = 107.87 + 14.01 + (3 × 16.00) = 169.88 g/mol

Step 3: Calculate the mass of silver nitrate needed
Mass = Moles × Molar mass
Mass = 0.125 mol × 169.88 g/mol
Mass = 21.235 g of silver nitrate

Step 4: Determine the proportion of silver in silver nitrate
Proportion of silver = (Molar mass of Ag) / (Molar mass of AgNO3)
Proportion of silver = 107.87 g/mol / 169.88 g/mol
Proportion of silver ≈ 0.635

Step 5: Calculate the mass of silver needed
Mass of silver = Mass of silver nitrate × Proportion of silver
Mass of silver = 21.235 g × 0.635
Mass of silver ≈ 13.48 g

For more information on chemistry involving silver nitrate refer https://brainly.com/question/30326530

#SPJ11

Other Questions
Why did many Americans, including Jackson, believe that Native Americans needed to be removed from their lands What is the root cause of the problems that Cityside Financial Services are encountering? What needs to change in each organization to address these problems? Should organizations aspire to be culturally diverse and, if so, why? The arrangement of jobs into categories, reflecting the importance of the job to the company and the level of skills required, is the ______ structure. Application of Forensic Accounting ConceptsComplete Case 21 & 28. Refer to the Case in the textbook for detailed instructions.Submission Instructions:Complete and submit the assignment by 11:59 PM ET Sunday.You should submit your completed work in a Word document or Excel spreadsheet if needed.Your work should be formatted and cited in current APA style with appropriate references.Late submissions will have a grade of 0.Your assignment will be graded according to the case rubric. Which type of membrane protein is directly responsible for maintaining the propagation of action potentials across an axon once it has been initiated A project that is exceptionally risky might still be undertaken by a firm if they have several other projects underway that are considered more of a sure thing. This approach to project selection is BEST described by the criterion called: The mean income per person in the United States is $37,000, and the distribution of incomes follows a normal distribution. A random sample of 11 residents of Wilmington, Delaware, had a mean of $43,000 with a standard deviation of $8,800. At the 0.025 level of significance, is that enough evidence to conclude that residents of Wilmington, Delaware, have more income than the national average Which of the following correctly applies to the generation of electrical power by nuclear fission reactions?A. The rate of fission is controlled by controlling the rate of proton emissionB.The fission reaction occurs within the control rods.C.The electric power is generated by a turbine.D.The water system passes over the fuel rods to control temperature and then passes into the steam generator. Describe three techniques commonly used when developing algorithms for relational operators. Explain how these techniques can be used to design algorithms for the selection, projection, and join operators. A child swings a sling with a rock of mass 2.7 kg, in a radius of 1.2. From rest to an angular velocity of 9 rad/s. What is the rotational kinetic energy of the rock? As specified by the California Insurance Code, under the Facility of Payment clause, a group life insurer may pay to a relative or anyone it deems entitled to the group life benefits in the absence of: A buyer is assuming the balance of a seller's mortgage loan. The interest rate is 8%, and the last payment was made April 1, leaving a balance of $18,450. Compute the interest to be paid by the seller if the closing is on April 19. Based on the data, a purely competitive firm produce _____ amount of output when the market price is equal to $180. Companies can customize online advertising by ________ so that people who log on in different places will see content for local businesses. The concern that an MNE could drive local firms out of business, monopolize the market, and raise prices above those that would prevail in competitive markets is a worry for A hollow glass sphere has a density of 1.3g/cm at 20 C. Glycerine has a density of 1.26 g/cm at 20 C. At what temperature would the sphere begin to float in glycerine If two goods are complements, their cross-price elasticity will be Group of answer choices positive. negative. zero. equal to the difference between the income elasticities of demand for the two goods. when a company uses its concert promotion dpearrtment to put on a show then adverties the concert on the compants billboards gives away free tickets on radio statios owned by that company and adverties on the companys television station this is an exmaple of A basic tenet of the cognitive approach is that in order to relieve emotional distress, we must first help clients change their irrational patterns of: Suppose the U.S. population is 275 million. If 210 million people are of working age, 135 million are employed, and 6 million are unemployed, what is the labor force participation rate