Answer:
I think the answer is 100 because nothing greater than 200 if its rounded hope this helped if not sorry
Suppose a tank contains 400 gallons of salt water. If pure water flows into the tank at the rate of 7 gallons per minute and the mixture flows out at the rate of 3 gallons per minute, how many pounds of salt will remain in the tank after 16 minutes if 28 pounds of salt are in the mixture initially? (Give your answer correct to at least three decimal places.)
Answer:
Step-by-step explanation:
This is a differential equation problem most easily solved with an exponential decay equation of the form
[tex]y=Ce^{kt}[/tex]. We know that the initial amount of salt in the tank is 28 pounds, so
C = 28. Now we just need to find k.
The concentration of salt changes as the pure water flows in and the salt water flows out. So the change in concentration, where y is the concentration of salt in the tank, is [tex]\frac{dy}{dt}[/tex]. Thus, the change in the concentration of salt is found in
[tex]\frac{dy}{dt}=[/tex] inflow of salt - outflow of salt
Pure water, what is flowing into the tank, has no salt in it at all; and since we don't know how much salt is leaving (our unknown, basically), the outflow at 3 gal/min is 3 times the amount of salt leaving out of the 400 gallons of salt water at time t:
[tex]3(\frac{y}{400})[/tex]
Therefore,
[tex]\frac{dy}{dt}=0-3(\frac{y}{400})[/tex] or just
[tex]\frac{dy}{dt}=-\frac{3y}{400}[/tex] and in terms of time,
[tex]-\frac{3t}{400}[/tex]
Thus, our equation is
[tex]y=28e^{-\frac{3t}{400}[/tex] and filling in 16 for the number of minutes in t:
y = 24.834 pounds of salt
7 women can bake 100 cookies in 14 days. How many would it take for 4 women to bake 240 cookies?
Answer:
it would take 30 and a half days to make 240 cookies
Land costing $140,000 was sold for $173,000 cash. The gain on the sale was reported on the income statement as other income. On the statement of cash flows, what amount should be reported as an investing activity from the sale of land?
Answer:
Amount should be reported in investing activities = $173,000
Step-by-step explanation:
Given:
Amount of land costing = $140,000
Sold amount of land = $173,000
Find:
Amount should be reported in investing activities
Computation:
Amount should be reported in investing activities = $173,000
The cash flow statement shows how much money is coming in and going out. The whole amount of cash received, which is 173,000 dollars, will be recorded as proceeds from the sale of land in the investment activity. As a result, the right answer is 173,000.
Andrew wants to build a square garden and needs to determine how much area he has for planting the perimeter of the garden is between 12 and 14 feet what is the range if the possible areas
Answer:
9 ft^2 and 12.25 ft^2
Step-by-step explanation:
We need to figure out the area for a square with a perimeter of 12 feet and 14 feet.
A square has four sides that are all equal in length, therefore:
12/4 = 3
14/4 = 3.5
3 and 3.5 are the individual side lengths of the garden, so to find the area, we just multiply those numbers by themselves (since it is a square garden).
3*3 = 9
3.5*3.5 = 12.25
Therefore, the answer is 9 ft^2 and 12.25 ft^2
Optimal-Eats blender has a mean time before failure of 37 months with a standard deviation of 5 months, and the failure times are normally distributed. What should be the warranty period, in months, so that the manufacturer will not have more than 7% of the blenders returned
Answer:
The warranty period should be of 30 months.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Optimal-Eats blender has a mean time before failure of 37 months with a standard deviation of 5 months.
This means that [tex]\mu = 37, \sigma = 5[/tex]
What should be the warranty period, in months, so that the manufacturer will not have more than 7% of the blenders returned?
The warranty period should be the 7th percentile, which is X when Z has a p-value if 0.07, so X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 37}{5}[/tex]
[tex]X - 37 = -1.475*5[/tex]
[tex]X = 29.6[/tex]
Rounding to the nearest whole number, 30.
The warranty period should be of 30 months.
A rectangular vegetable garden will have a width that is 3 feet less than the length, and an area of 54square feet. If x represents the length, then the length can be found by solving the equation: x(x-3)=54 What is the length, x, of the garden? The length is blank feet.
Answer: 9 feet
Step-by-step explanation:
From the information given, we have already been given the equation which is x(x-3)=54. Therefore we will find the value of x which will be:
x(x-3)=54
x² - 3x - 54
x² - 9x + 6x - 54
x(x - 9) + 6(x - 9)
Therefore,
(x - 9) = 0
x = 0 + 9
x = 9
The length is 9 feet
The width will be:
x - 3 = 9 - 3 = 6 feet
Find the distance from the vertices of AABC to the corresponding vertices of the other three triangles, and enter them in the table. For AJKL-
you'll need to use the distance formula da (01 – 12) + (y1 - y2) . Verify your calculations using the tools available in GeoGebra.
Answer:
See explanation
Step-by-step explanation:
The question is incomplete, as the vertices of the triangle are not given.
A general explanation is as follows;
To calculate distance between two points, we use:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
Take for instance;
[tex]A = (1,4)[/tex]
[tex]B = (3,-2)[/tex]
Distance AB is:
[tex]AB = \sqrt{(1 - 3)^2 + (4 - -2)^2}[/tex]
[tex]AB = \sqrt{(- 2)^2 + (4 +2)^2}[/tex]
[tex]AB = \sqrt{(- 2)^2 + (6)^2}[/tex]
Evaluate the exponents
[tex]AB = \sqrt{4 + 36}[/tex]
[tex]AB = \sqrt{40}[/tex]
[tex]AB = 6.32[/tex]
Answer:
for edmentum
Step-by-step explanation:
On a coordinate plane, points (0.5, 2), (4, 16), and (6.5, 26) are plotted.
Natalie made a graph showing these ordered pairs representing a proportional relationship.
(0.5, 2), (4, 16), (6.5, 26)
Which ordered pair would be on the same line as Natalie’s ordered pairs?
(3.5, 12)
(2, 4)
(8, 32)
(12, 36)
Answer:
(8,32)
Step-by-step explanation:
(8,32) because when graphed (8,32) lands on the same line as the other.
Answer:
C
Step-by-step explanation:
got it right on edge 2021
The answer to this 6th grade summer school math question is
Answer 7.84
Find the perimeter of the
polygon if ZB = D.
3 om
B
4 cm
D
5 cm
C
P = [?] cm
Answer:
16 cm
Step-by-step explanation:
4 + 4 + 3 + 5 = 16
The = sign means that B (which is 4 cm) is equal to D (which had no number)
And because it says that B = D (with the squiggly line (or a tilde)) And the L's (which means that the letters represent an angle) All you have to do is add the numbers together, and you get 16.
Sorry if I explained it badly, you at least got the answer.
(And also, if I'm wrong, please tell me.)
Answer:
P = 32 cm
Step-by-step explanation:
Im just putting the right answer up so you don't accidentally put in the wrong one.
help me with 2 excersise , thanks a lot
Answer: I do not know what you mean, but you could do burpees, and sit ups.
Divide: (2n3+4n−9)÷(n+2).
Answer:
2n+2
_____
9 2n
Julie and Mona know that that Earth’s average distance from the Sun is approximately 93 million miles and it takes 1 year to complete an orbit of the Sun. A new asteroid has been discovered orbiting the Sun at an average distance of 1,488 million miles. How long will it take for the asteroid, in Earth years, to complete one orbit of the Sun.
Answer:
16 years
Step-by-step explanation:
Given that :
Earth's distance from sun = 93 million miles
Number of years to complete an orbit = 1 year
Average orbiting distance of new asteroid = 1488 million miles
Number of years to complete an orbit = x
93,000,000 Miles = 1
1488000000 miles = x
Cross multiply :
93000000x = 1488000000
x = 1488000000 / 93000000
x = 16 years
Period taken to orbit the sun = 16 years
Answer: 64 Earth years...
An art history professor assigns letter grades on a test according to the following scheme. A: Top 13% of scores B: Scores below the top 13% and above the bottom 56% C: Scores below the top 44% and above the bottom 21% D: Scores below the top 79% and above the bottom 9% F: Bottom 9% of scores Scores on the test are normally distributed with a mean of 79.7 and a standard deviation of 8.4. Find the numerical limits for a B grade. Round your answers to the nearest whole number, if necessary.
Answer:
The numerical limits for a B grade are 81 and 89, that is, a score between 81 and 89 gets a B grade.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Scores on the test are normally distributed with a mean of 79.7 and a standard deviation of 8.4.
This means that [tex]\mu = 79.7, \sigma = 8.4[/tex]
B: Scores below the top 13% and above the bottom 56%
So between the 56th percentile and the 100 - 13 = 87th percentile.
56th percentile:
X when Z has a p-value of 0.56, so X when Z = 0.15. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.15 = \frac{X - 79.7}{8.4}[/tex]
[tex]X - 79.7 = 0.15*8.4[/tex]
[tex]X = 81[/tex]
87th percentile:
X when Z has a p-value of 0.87, so X when Z = 1.13.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.13 = \frac{X - 79.7}{8.4}[/tex]
[tex]X - 79.7 = 1.13*8.4[/tex]
[tex]X = 89[/tex]
The numerical limits for a B grade are 81 and 89, that is, a score between 81 and 89 gets a B grade.
Sam works at a shoe store. He earns $300 every week plus $15 for every pair of shoes that he sells. How many pairs of shoes would he need to sell to make $500 in a week?
Answer:
300 + 15x = 500
15x = 200
x = 200/15
x=13.333
14 pair of shoes
Step-by-step explanation:
the product of ten and the sum of two and a number is five times the number. find the number
Answer:
-4
Step-by-step explanation:
10(2+n)=5n
20+10n=5n
20=-5n
-4=n
The number is n = -4.
What is the product of ten and the sum of two and a number is five times the number?Given: the product of ten and the sum of two and a number exists five times the number.
Let x be the unknown number:
The product of 5 and the sum of two and the number = 10(2+n)
five times the number = 5n
10(2+n) = 5n
Expand 10(2+n) = 20+10n
20+10n = 5n
Subtract 20 from both sides
20+10n-20 = 5n-20
Simplify
10n = 5n-20
Subtract 5n from both sides
10n-5n = 5n-20-5n
Simplify
5n = -20
Divide both sides by 5
[tex]$\frac{5 n}{5}=\frac{-20}{5}[/tex]
n = -4
Therefore, the correct answer is n = -4.
To learn more about algebra
https://brainly.com/question/17427598
#SPJ2
There is a bag filled with 3 blue and 5 red marbles.
A marble is taken at random from the bag, the colour is noted and then it is not replaced.
Another marble is taken at random.
What is the probability of getting 2 of the same colour?
JUST NEED THE ANSWER IN A FRACTION PLEASE
[tex]\frac{13}{28}[/tex]
Step-by-step explanation:Given:
Blue marbles: 3
Reb marbles: 5
Total marbles: 8
Two marbles are selected at random, one after the other with replacement.
Getting the same colour of marbles from the selection means the two marbles are both red or both blue.
(a) Probability of getting 2 marbles being red in colour
i. Probability of picking a red at the first selection:
Number of red marbles ÷ Total number of marbles
=> 5 ÷ 8 = [tex]\frac{5}{8}[/tex]
ii. Probability of picking a red at the second selection:
Number of remaining red marbles ÷ Total number of remaining marbles
Since after the first pick, the marble is not replaced, the remaining red marbles is 4 while the total number of remaining marbles is 7
=> 4 ÷ 7 = [tex]\frac{4}{7}[/tex]
iii. The probability of getting both marbles being red is the product of i and ii above. i.e
[tex]\frac{5}{8}[/tex] x [tex]\frac{4}{7}[/tex] = [tex]\frac{5}{14}[/tex]
(b) Probability of getting 2 marbles being blue in colour
i. Probability of picking a blue at the first selection:
Number of blue marbles ÷ Total number of marbles
=> 3 ÷ 8 = [tex]\frac{3}{8}[/tex]
ii. Probability of picking a blue at the second selection:
Number of remaining blue marbles ÷ Total number of remaining marbles
Since after the first pick, the marble is not replaced, the remaining blue marbles is 2 while the total number of remaining marbles is 7
=> 2 ÷ 7 = [tex]\frac{2}{7}[/tex]
iii. The probability of getting both marbles being blue is the product of i and ii above. i.e
[tex]\frac{3}{8}[/tex] x [tex]\frac{2}{7}[/tex] = [tex]\frac{3}{28}[/tex]
(c) Probability of getting 2 marbles of the same colour.
The probability of getting 2 marbles of same colour is the sum of the probability of getting both marbles of red colour and the probability of getting both marbles as blue colour. i.e The sum of a(iii) and b(iii)
[tex]\frac{5}{14}[/tex] + [tex]\frac{3}{28}[/tex] = [tex]\frac{13}{28}[/tex]
The probability of getting 2 of the same colour is [tex]\frac{13}{28}[/tex]
John runs a computer software store. Yesterday he counted 125 people who walked by the store, 58 of whom came into the store. Of the 58, only 21 bought something in the store. (Round your answers to two decimal places.)
(a) Estimate the probability that a person who walks by the store will enter the store.
(b) Estimate the probability that a person who walks into the store will buy something.
(c) Estimate the probability that a person who walks by the store will come in and buy something.
(d) Estimate the probability that a person who comes into the store will buy nothing.
Answer:
a) 0.46 = 46% probability that a person who walks by the store will enter the store.
b) 0.36 = 36% probability that a person who walks into the store will buy something.
c) 0.17 = 17% probability that a person who walks by the store will come in and buy something.
d) 0.64 = 64% probability that a person who comes into the store will buy nothing.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
(a) Estimate the probability that a person who walks by the store will enter the store.
58 out of 125. So
[tex]p = \frac{58}{125} = 0.46[/tex]
0.46 = 46% probability that a person who walks by the store will enter the store.
(b) Estimate the probability that a person who walks into the store will buy something.
58 walked, 21 bought. So
[tex]p = \frac{21}{58} = 0.36[/tex]
0.36 = 36% probability that a person who walks into the store will buy something.
(c) Estimate the probability that a person who walks by the store will come in and buy something.
21 came in and bought out of 125 that walked by. So
[tex]p = \frac{21}{125} = 0.17[/tex]
0.17 = 17% probability that a person who walks by the store will come in and buy something.
(d) Estimate the probability that a person who comes into the store will buy nothing.
0.36 probability that a person buys something, so 1 - 0.36 = 0.64 = 64% probability that a person who comes into the store will buy nothing.
simplify 3 / 8 (–2 / 7 +(–3 / 8 ×2 / 5)
Answer:
so the answer is 0.16339
Find the values of x and y that make these triangles congruent by the HL theorem
Answer:
x = 3, y = 2Step-by-step explanation:
As due to congruency,
x + 3 = 3y
[By putting the values of x = 3 and y = 2]
=> 3 + 3 = 3 × 2
=> 6 = 6
and,
x = y + 1
[By putting the values of x = 3 and y = 2]
=> 3 = 2 + 1
=> 3 = 3
Hence, proved
Previous Question Question 17 of 20 Next Question Based on the regression model, the expected daily production volume with 112 factory workers is 118,846 units. The human resource department noted that 123,415 units were produced on the most recent day on which there were 112 factory workers. What is the residual of this data point
Answer:
4,569 units
Step-by-step explanation:
Given :
Measured value = 123,415 units
Expected value = 118,846 units
Residual is the difference between the measured and expected value :
Residual = Measured value - Expected value
Residual = 123,415 units - 118,846 units
Residual = 4,569 units
Solve 7 pleaseeeeeeeeeeeeeeeee
Answer:
5040
Step-by-step explanation:
I assume you really mean 7!
you understand what "!" means ?
n! = n×(n-1)×(n-2)×(n-3)×...×3×2×1
so,
7! = 7×6×5×4×3×2×1
now all you need is a calculator.
7! = 5040
How do I find the image after it’s been rotated 270 degrees about the point (-2,-1)?
Answer: (-1, 2)
Step-by-step explanation:
It's a counter-clockwise rotation, that means (x, y) changes to (y, -x).
(-2, -1) ⇒ (-1, -(-2)) ⇒ (-1, 2)
If it's a clockwise rotation, then (x, y) will change to (-y, x)
(-2, -1) ⇒ (-(-1), -2) ⇒ (1, -2)
If $100 is interested at 6% compounded:
a-Annually
b-Monthly
What is the amount after 4 years? How much interest is earned?
To find the simple interest we'll plug it into one of the two available formulas. I will use both formulas so you can determine which is easiest for you, for future problems.
r = I/Pt or I = Prt
(the / represents division)
Let's define and plug.
r = the rate (we'll be solving for r)
I = the total interest earned within the time frame ($2)
P= the principal amount ($100)
t = the total time the principal accrued interest. (6 months/ .5years)
**Because this is in a monthly basis, lets change it into a year to make it easier**
we'll just divide 6 months by 12 months.
6 ÷ 12 = 0.5 years
============================================================
Let's use the first formula first. r = I / Pt
r = 2 / 100 (0.5)
100 x 0.5 = 50
We're now left with: r = 2 / 50
Divide what we have left.
2 ÷ 50 = 0.04
This is our simple interest but we have to convert it into a percentage. To convert the decimal to the percentage, we'll move the decimal two places to the right to make 4.0.
Therefore, our simple interest would be 4%
==========================================================
let's set up the second formula: I = Prt
2 = 100 (r) (0.5)
2 = 50 (r)
2 ÷ 50 = 0.04
0.04 in percentage = 4%
Stuck on this question
Answer:
9262
Step-by-step explanation:
just plug in 22 for n and calculate
The graph below is the graph of a function.
10
- 10
10
- 10
True
B. False
Answer:
hgfyjtdjtrxgfyfguktfkgh
Step-by-step explanation:
hgfytrdutrc
Here are two steps from the derivation of the quadratic formula.
What took place between the first step and the second step?
Answer:
Factoring a perfect square trinomial.
Step-by-step explanation:
The left side was able to be simplified via factoring.
Match the y coordinate with coo responding pairs of x
In a survey, 250 adults and children were asked whether they know how to
swim. The survey data are shown in the relative frequency table.
Can swim
Cannot swim
Total
0.34
Adults
Children
0.06
0.48
0.12
Total
What percentage of the people surveyed can swim?
O A. 18%
B. 82%
C. 48%
D. 34%
Answer:
B - 82%
Step-by-step explanation:
.34+.48
The percentage of people who can swim is 82%.
Option B is the correct answer.
What is a percentage?
The percentage means the required value out of 100.
It is calculated by dividing the required value by the total value and multiplying it by 100.
The percentage change is also calculated using the same method.
In percentage change, we find the difference between the values given.
Example:
Required percentage value = a
total value = b
Percentage = a/b x 100
We have,
The relative frequency table shows the proportion of people in each group who can and cannot swim.
To find the percentage of people who can swim, we need to add up the proportion of adults who can swim (0.34) and the proportion of children who can swim (0.48).
Percentage of people who can swim
= (0.34 + 0.48) x 100%
= 82%
Therefore,
The percentage of people who can swim is 82%.
Learn more about percentages here:
https://brainly.com/question/11403063
#SPJ5
Please kindly help
According to a newspaper article 15% more home remodeling was done in 1985 than in 1984. Professionals performed 75% of all remodeling. If $80.4 billion was spent on residential remodeling in 1985 what was the value of the work done by professionals in 1985?
(1) $ 8.4 billion
(2) $12.06 billion
(3) $20.1 billion
(4) $60 billion
(5) $60.3 billion
Answer:
(3) $20.1 billion
Step-by-step explanation:
hope it help
Answer:
(5) $60.3 billion
Step-by-step explanation: