You are a 60 year old male. You want $1,000,000.00 in term life insurance. It will cost you $13.22 per $1,000.
Calculate the annual premium.
A $11,220.00
B $12,220.00
C $13,220.00
D $14,220.00

Answers

Answer 1

Answer:

C $13,220

Step-by-step explanation:


Related Questions

I need help finding this solution.

Answers

9514 1404 393

Answer:

  -16∛2

Step-by-step explanation:

It can be helpful to have some familiarity with the cubes of small integers. For example, ...

  2³ = 8

  6³ = 216

With this in mind you recognize the expression as ...

  3∛((-6)³(2)) +∛((2³)(2))

  = 3(-6)∛2 +2∛2

  = (-18 +2)∛2

  = -16∛2

Find the values of the sine, cosine, and tangent for ZA C A 36ft B
24ft

Answers

Question:

Find the values of the sine, cosine, and tangent for ∠A

a. sin A = [tex]\frac{\sqrt{13} }{2}[/tex],  cos A = [tex]\frac{\sqrt{13} }{3}[/tex],  tan A = [tex]\frac{2 }{3}[/tex]

b. sin A = [tex]3\frac{\sqrt{13} }{13}[/tex],  cos A = [tex]2\frac{\sqrt{13} }{13}[/tex],  tan A = [tex]\frac{3}{2}[/tex]

c. sin A = [tex]\frac{\sqrt{13} }{3}[/tex],  cos A = [tex]\frac{\sqrt{13} }{2}[/tex],  tan A = [tex]\frac{3}{2}[/tex]

d. sin A = [tex]2\frac{\sqrt{13} }{13}[/tex],  cos A = [tex]3\frac{\sqrt{13} }{13}[/tex],  tan A = [tex]\frac{2 }{3}[/tex]

Answer:

d. sin A = [tex]2\frac{\sqrt{13} }{13}[/tex],  cos A = [tex]3\frac{\sqrt{13} }{13}[/tex],  tan A = [tex]\frac{2 }{3}[/tex]

Step-by-step explanation:

The triangle for the question has been attached to this response.

As shown in the triangle;

AC = 36ft

BC = 24ft

ACB = 90°

To calculate the values of the sine, cosine, and tangent of ∠A;

i. First calculate the value of the missing side AB.

Using Pythagoras' theorem;

⇒ (AB)² = (AC)² + (BC)²

Substitute the values of AC and BC

⇒ (AB)² = (36)² + (24)²

Solve for AB

⇒ (AB)² = 1296 + 576

⇒ (AB)² = 1872

⇒ AB = [tex]\sqrt{1872}[/tex]

⇒ AB = [tex]12\sqrt{13}[/tex] ft

From the values of the sides, it can be noted that the side AB is the hypotenuse of the triangle since that is the longest side with a value of [tex]12\sqrt{13}[/tex] ft (43.27ft).

ii. Calculate the sine of ∠A (i.e sin A)

The sine of an angle (Ф) in a triangle is given by the ratio of the opposite side to that angle to the hypotenuse side of the triangle. i.e

sin Ф = [tex]\frac{opposite}{hypotenuse}[/tex]             -------------(i)

In this case,

Ф = A

opposite = 24ft (This is the opposite side to angle A)

hypotenuse = [tex]12\sqrt{13}[/tex] ft (This is the longest side of the triangle)

Substitute these values into equation (i) as follows;

sin A = [tex]\frac{24}{12\sqrt{13} }[/tex]

sin A = [tex]\frac{2}{\sqrt{13}}[/tex]

Rationalize the result by multiplying both the numerator and denominator by [tex]\sqrt{13}[/tex]

sin A = [tex]\frac{2}{\sqrt{13}} * \frac{\sqrt{13} }{\sqrt{13} }[/tex]

sin A = [tex]\frac{2\sqrt{13} }{13}[/tex]

iii. Calculate the cosine of ∠A (i.e cos A)

The cosine of an angle (Ф) in a triangle is given by the ratio of the adjacent side to that angle to the hypotenuse side of the triangle. i.e

cos Ф = [tex]\frac{adjacent}{hypotenuse}[/tex]             -------------(ii)

In this case,

Ф = A

adjacent = 36ft (This is the adjecent side to angle A)

hypotenuse = [tex]12\sqrt{13}[/tex] ft (This is the longest side of the triangle)

Substitute these values into equation (ii) as follows;

cos A = [tex]\frac{36}{12\sqrt{13} }[/tex]

cos A = [tex]\frac{3}{\sqrt{13}}[/tex]

Rationalize the result by multiplying both the numerator and denominator by [tex]\sqrt{13}[/tex]

cos A = [tex]\frac{3}{\sqrt{13}} * \frac{\sqrt{13} }{\sqrt{13} }[/tex]

cos A = [tex]\frac{3\sqrt{13} }{13}[/tex]

iii. Calculate the tangent of ∠A (i.e tan A)

The cosine of an angle (Ф) in a triangle is given by the ratio of the opposite side to that angle to the adjacent side of the triangle. i.e

tan Ф = [tex]\frac{opposite}{adjacent}[/tex]             -------------(iii)

In this case,

Ф = A

opposite = 24 ft (This is the opposite side to angle A)

adjacent = 36 ft (This is the adjacent side to angle A)

Substitute these values into equation (iii) as follows;

tan A = [tex]\frac{24}{36}[/tex]

tan A = [tex]\frac{2}{3}[/tex]

(a)234.3x13 (b) 31.38 X 5 (c) 0.653X 45 (d) 21.45X 10
(e) 25.41X 18 (f) 93.2 X 47 (g) 234.2X 342 (h) 89.4X20

(a)1.1 X 3.0 (b) 2.5 X 1.4 (c) 3.4X 4.6 (d) 2.4X4.8
(e) 2.6 X 12.3 (f) 6.72 X 56.1 (e) 24.59 X 31.2 (f) 27.15 X 3.7

Answers

A. 3045.9
B. 156.9
C. 29.385
D. 214.5
E. 457.38
F. 4380.4
G. 80096.4
H. 1788

A. 3.3
B. 3.5
C. 15.64
D. 11.52
E. 31.98
F. 376.992
E. 767.208
F. 100.455

Polinômio (2x+6y)(4x-2y)

Answers

Answer:

I'm pretty sure it's 8x^2+20xy-12y^2

Answer:

pff don't know .  sssory

Step-by-step explanation:

what is the correct answer to my question ?

Answers

Answer:

13/17

Step-by-step explanation:

is 7/4 bigger than -4 / 7​

Answers

Answer:

7/4 is larger than -4/7

Step-by-step explanation:

7/4 is greater than a whole. 4/4 = 1 whole and the fraction is 7/4. -4/7 is smaller than a whole and is a negative number.

Therefore 7/4 is bigger

Hope this helps!

Answer:

yes 7/4 is bigger than -4/7

Step-by-step explanation:

its bigger because its positive!

What is 5.071 in words?

Answers

Answer:

Step-by-step explanation:

The number 5.071 written in english words is "five and seventy-one thousandths

Five point zero seventy one

(3a+2b-4c)+(3a+2b-4c)​

Answers

6

+

4

8

Step-by-step explanation:

Please mark me as brain list and please like my answer and rate also

Answer:

hope this will help you more

Draw a line representing the “rise” and a line representing “run” of the line. State the slope of the line in simplest form

Answers

Answer: The rise and run is the two point between each other on a line for example 1/2 rise over run. 1 is rise and 2 is run so y=mx +b the slope is m and the y int is b so

Y= 1/2x + 3 the 3 is going to be on the Y acis not the X its important not to mix the two. In other words go to 0,0 make a line go up.. the from 0,0 go doen the same length

Step-by-step explanation:

find the LCM of ;
(1+4x+4x2-16x) and (1+2x-8x3-16x4)​

Answers

Answer:

16x4−4x2+4x−116x4−4x2+4x−1

=16x4−(4x2−4x+1)=16x4−(4x2−4x+1)

=(4x2)2−(2x−1)2∵a2−2ab+b2=(a−b)2=(4x2)2−(2x−1)2∵a2−2ab+b2=(a−b)2

=(4x2−2x+1)(4x2+2x−1)∵a2−b2=(a−b)(a+b

Step-by-step explanation:

1. Write 3.3.3.3.3 as a power.​

Answers

Answer:

3^5

Step-by-step explanation:

On the iPad it looks like that but the five is on the top right smaller

Answer:

3⁵

every 3 has it own power that is 1 however that .3 confused us

30 POINTS
Help on Part B pleaseeee

Answers

In verse of B.g(x)=[tex]\frac{x+5}{4}[/tex] is:

4x-5

Answer:

Solution given:

B.g(x)=[tex]\frac{x+5}{4}[/tex]

let

g(x)=y

y=[tex]\frac{x+5}{4}[/tex]

Interchanging role of x and y

we get:

x=[tex]\frac{y+5}{4}[/tex]

doing crisscrossed multiplication

4x=y+5

y=4x-5

So

g-¹(x)=4x-5

Given that,

→ g(x) = x+5/4

Then g(x)=y,

→ y = x+5/4

Now we can interchange role of x and y,

→ x = y+5/4

Then use the cross multiplication,

→ 4x = y+5

→ y = 4x-5

Hence, g-¹(x) = 4x-5 is the solution.

which is the correct answer?

Answers

Answer:

11/12

Step-by-step explanation:

1/4 + 2/3

= 3/12 + 8/12

= 11/12

in a school there are 650 girls. It is 26% of the whole students, how many boys are there in the school?​

Answers

Answer:

Step-by-step explanation:

Frt7v6c87buhinjomp,l.;

A researcher wishes to conduct a study of the color preferences of new car buyers. Suppose that 50% of this population prefers the color green. If 14 buyers are randomly selected, what is the probability that exactly 12 buyers would prefer green

Answers

Answer:

The probability that exactly 12 buyers would prefer green

=0.00555

Step-by-step explanation:

We are given that

p=50%=50/100=0.50

n=14

We have to find the probability that exactly 12 buyers would prefer green.

q=1-p

q=1-0.50=0.50

Using binomial distribution formula

[tex]P(X=x)=nC_r p^r q^{n-r}[/tex]

[tex]P(x=12)=14C_{12}(0.50)^{12}(0.50)^{14-12}[/tex]

[tex]P(x=12)=14C_{12}(0.50)^{12}(0.50)^2[/tex]

[tex]P(x=12)=14C_{12}(0.50)^{14}[/tex]

[tex]P(x=12)=\frac{14!}{12!2!}(0.50)^{14}[/tex]

[tex]P(x=12)=\frac{14\times 13\times 12!}{12!2\times 1}(0.50)^{14}[/tex]

[tex]P(x=12)=91\cdot (0.50)^{14}[/tex]

[tex]P(x=12)=0.00555[/tex]

Hence, the probability that exactly 12 buyers would prefer green

=0.00555

The data set shows the number of players on each softball team in a tournament:


9

12

8

7

7

21

11

9

8

7

10

7

10

11



Which of the following statements is true based on the data set?
There is one outlier that indicates an unusually large number of players on that team.
There are two outliers that indicate an unusually large number of players on those two teams.
There is one outlier that indicates an unusually small number of players on that team.
There are two outliers that indicate an unusually small number of players on those two teams.

Answers

i think the answer is option a, there is one outlier that indicates an unusually large amount of players on that team. 21 is the only outlier and it represents 21 players, while the other teams only have 7-12 players.

Which figure can be formed from the net?
pls answer fast for brainiest !

Answers

Answer:

It should be the top right one

(with 6ft as the height)

Step-by-step explanation:

Answer:

It must be the lower to the left choice.

Step-by-step explanation:

As you can see, the net we have is composed of only triangles.

So we should be choosing a figure with a triangular base.

Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.

The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.

Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.

If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.

Hope this helps

The shaded region R in diagram below is enclosed by y-axis, y = x^2 - 1 and y = 3.
Determine the volume of the solid generated when the shaded region R is revolved
about x = -1 by using Disk method.

Answers

Cross sections of the volume are washers or annuli with outer radii x(y) + 1, where

y = x(y) ² - 1   ==>   x(y) = √(y + 1)

and inner radii 1. The distance between the outermost edge of each shell to the axis of revolution is then 1 + √(y + 1), and the distance between the innermost edge of R on the y-axis to the axis of revolution is 1.

For each value of y in the interval [-1, 3], the corresponding cross section has an area of

π (1 + √(y + 1))² - π (1)² = π (2√(y + 1) + y + 1)

Then the volume of the solid is the integral of this area over [-1, 3]:

[tex]\displaystyle\int_{-1}^3\pi y\,\mathrm dy = \frac{\pi y^2}2\bigg|_{-1}^3 = \boxed{4\pi}[/tex]

[tex]\displaystyle\int_{-1}^3 \pi\left(2\sqrt{y+1}+y+1\right)\,\mathrm dy = \pi\left(\frac43(y+1)^{3/2}+\frac{y^2}2+y\right)\bigg|_{-1}^3 = \boxed{\frac{56\pi}3}[/tex]

Consider the quadratic function F(x)=-x^2-x+20
The line of symmetry has the equation ?

Answers

Answer:

[tex]x = - \frac{1}{2} [/tex]

Step-by-step explanation:

[tex]x = \frac{ - b}{2a} = \frac{1}{ - 2} [/tex]

We have 9 pens, of which 5 are green ink, 3 are red ink, and 1 is black. If we put the pens in a line, how many arrangements are possible

Answers

Answer:

504 arrangements are possible

Step-by-step explanation:

Arrangements of n elements:

The number of arrangements of n elements is given by:

[tex]A_{n} = n![/tex]

Arrangements of n elements, divided into groups:

The number of arrangements of n elements, divided into groups of [tex]n_1, n_2,...,n_n[/tex] elements is given by:

[tex]A_{n}^{n_1,n_2,...,n_n} = \frac{n!}{n_1!n_2!...n_n!}[/tex]

In this case:

9 pens, into groups of 5, 3 and 1. So

[tex]A_{9}^{5,3,1} = \frac{9!}{5!3!1!} = 504[/tex]

504 arrangements are possible

Please help me there’s a image above.

Answers

Answer:

4,-1 that is the answer so

what is the inverse of the function shown

Answers

Step-by-step explanation:

the down function clearly is

y = x - 5, -2 <= x <= 8

the reasons :

1. it is linear. so, we have only a form of ax+b

2. x=0 => y=-5

x=5 => y=0

so, with these 2 points alone we can see

y = ax + b

-5 = a×0 +b = b

0 = a×5 - 5

5 = a×5

1 = a

the inverse function is based on

y = x - 5

=>

x = y + 5

now renaming the variables so that y is the result and x the input variable delivers

y = x + 5

and because the original function only delivered y- values between -7 and +3, this is also the defined domain for the inverse function.

so,

y = x + 5, -7 <= x <= +3

so, we have the points

x=-7 => y=-2

x=+3 => y=8

you need to draw the line between these 2 points with filled dots at the end points (as they are included in the function).

1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 24 customers per hour or 0.4 customers per minute.
a. What is the mean or expected number of customers that will arrive in a five-minute period?
b. Assume that the Poisson probability distribution can be used to describe the arrival process. Use the arrival rate in part (a) and compute the probabilities that exactly 0, 1, 2, and 3 customers will arrive during a five-minute period.
c. Delays are expected if more than three customers arrive during any five-minute period. What is the probability that delays will occur?
2. In the Willow Brook National Bank waiting line system (see Problem 1), assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6 customers per minute. Use the exponential probability distribution to answer the following questions:
a. What is the probability that the service time is one minute or less?
b. What is the probability that the service time is two minutes or less?
c. What is the probability that the service time is more than two minutes?

Answers

Answer:

1.

a. 2

b. 0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

c. 0.1428 = 14.28% probability that delays will occur.

2.

a. 0.4512 = 45.12% probability that the service time is one minute or less.

b. 0.6988 = 69.88% probability that the service time is two minutes or less.

c. 0.3012 = 30.12% probability that the service time is more than two minutes.

Step-by-step explanation:

Poisson distribution:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

Question 1:

a. What is the mean or expected number of customers that will arrive in a five-minute period?

0.4 customers per minute, so for 5 minutes:

[tex]\mu = 0.4*5 = 2[/tex]

So 2 is the answer.

Question b:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-2}*2^{0}}{(0)!} = 0.1353[/tex]

[tex]P(X = 1) = \frac{e^{-2}*2^{1}}{(1)!} = 0.2707[/tex]

[tex]P(X = 2) = \frac{e^{-2}*2^{2}}{(2)!} = 0.2707[/tex]

[tex]P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1805[/tex]

0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

Question c:

This is:

[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]

In which:

[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

The values we have in item b, so:

[tex]P(X \leq 3) = 0.1353 + 0.2707 + 0.2707 + 0.1805 = 0.8572[/tex]

[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8572 = 0.1428[/tex]

0.1428 = 14.28% probability that delays will occur.

Question 2:

[tex]\mu = 0.6[/tex]

a. What is the probability that the service time is one minute or less?

[tex]P(X \leq 1) = 1 - e^{-0.6} = 0.4512[/tex]

0.4512 = 45.12% probability that the service time is one minute or less.

b. What is the probability that the service time is two minutes or less?

[tex]P(X \leq 2) = 1 - e^{-0.6(2)} = 1 - e^{-1.2} = 0.6988[/tex]

0.6988 = 69.88% probability that the service time is two minutes or less.

c. What is the probability that the service time is more than two minutes?

[tex]P(X > 2) = e^{-1.2} = 0.3012[/tex]

0.3012 = 30.12% probability that the service time is more than two minutes.

please answer me as soon as posible​

Answers

Answer:

yes your answer is right

Answer:

Yes it's Perfectly correct

What is the approximate percent change in temperature that went down from 120 degrees to 100 degrees?

Answers

The answer would be approximately 17%.

Answer:

17%

Step-by-step explanation:

change in temprature=100-120=-20

% chsnge in temp.=-20/120 ×100=-50/3 %=-16.66666...≈-17%

negative sign shows temperature is coming down.

You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 95% confidence level and a margin of error of 2%. A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.

How many in the workforce should be interviewed to meet your requirements? (Round up your answer to the next whole number.)

Answers

Answer:

865 in the workforce should be interviewed to meet your requirements

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is given by:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.

This means that [tex]\pi = \frac{5}{50} = 0.1[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

How many in the workforce should be interviewed to meet your requirements?

Margin of error of 2%, so n for which M = 0.02.

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.02 = 1.96\sqrt{\frac{0.1*0.9}{n}}[/tex]

[tex]0.02\sqrt{n} = 1.96\sqrt{0.1*0.9}[/tex]

[tex]\sqrt{n} = \frac{1.96\sqrt{0.1*0.9}}{0.02}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.1*0.9}}{0.02})^2[/tex]

[tex]n = 864.4[/tex]

Rounding up:

865 in the workforce should be interviewed to meet your requirements

if i need 90 square feet of tile and each piece of tile covers 0.34 square feet, how much do i need in pieces

Answers

Answer:

265

Step-by-step explanation:

9514 1404 393

Answer:

  265

Step-by-step explanation:

Let t represent the number of tiles needed. Then the area covered by those t tiles will be ...

  area = t·0.34 ft²

We want that area to be 90 ft², so we can solve this equation for t:

  90 ft² = t·(0.34 ft²)

  90 ft²/(0.34 ft²) = t ≈ 264.71

About 265 tiles are needed to cover 90 ft².

Write a polynomial f(x) that satisfies the given conditions. Polynomial of lowest degree with zeros of -2 (multiplicity 3), 3 (multiplicity 1), and with f(0) = 120.​

Answers

Answer:

Step-by-step explanation:

Polynomial f(x) has the following conditions: zeros of -2 (multiplicity 3), 3 (multiplicity 1), and with f(0) = 120.

The first part zeros of -2 means (x+2) and multiplicity 3 means (x+2)^3.

The second part zeros of 3 means (x-3) and multiplicity 1 means (x-3).

The third part f(0) = 120 means substituting x=0 into (x+2)^3*(x-3)*k =120

(0+2)^3*(0-3)*k = 120

-24k = 120

k = -5

Combining all three conditions, f(x)

= -5(x+2)^3*(x-3)

= -5(x^3 + 3*2*x^2 + 3*2*2*x + 2^3)(x-3)

= -5(x^4 + 6x^3 + 12x^2 + 8x - 3x^3 - 18x^2 - 36x - 24)

= -5(x^4 + 3x^3 - 6x^2 - 28x -24)

= -5x^4 - 15x^3 + 30x^2 + 140x + 120

What is the length of an arc with a central angle of 2/3pi radians and a radius of 24 centimeters?

Use 3.14 for pi.

Enter your answer, as a decimal, in the box.

Answers

9514 1404 393

Answer:

  50.24 cm

Step-by-step explanation:

Fill in the given numbers and do the arithmetic.

  s = rθ

  s = (24 cm)(2/3π) = (24 cm)(2/3)(3.14) = 50.24 cm

a student takes two subjects A and B. Know that the probability of passing subjects A and B is 0.8 and 0.7 respectively. If you have passed subject A, the probability of passing subject B is 0.8. Find the probability that the student passes both subjects? Find the probability that the student passes at least one of the two subjects

Answers

Answer:

0.64 = 64% probability that the student passes both subjects.

0.86 = 86% probability that the student passes at least one of the two subjects

Step-by-step explanation:

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

In this question:

Event A: Passing subject A

Event B: Passing subject B

The probability of passing subject A is 0.8.

This means that [tex]P(A) = 0.8[/tex]

If you have passed subject A, the probability of passing subject B is 0.8.

This means that [tex]P(B|A) = 0.8[/tex]

Find the probability that the student passes both subjects?

This is [tex]P(A \cap B)[/tex]. So

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

[tex]P(A \cap B) = P(B|A)P(A) = 0.8*0.8 = 0.64[/tex]

0.64 = 64% probability that the student passes both subjects.

Find the probability that the student passes at least one of the two subjects

This is:

[tex]p = P(A) + P(B) - P(A \cap B)[/tex]

Considering [tex]P(B) = 0.7[/tex], we have that:

[tex]p = P(A) + P(B) - P(A \cap B) = 0.8 + 0.7 - 0.64 = 0.86[/tex]

0.86 = 86% probability that the student passes at least one of the two subjects

Other Questions
Which of the following values is closest to the standard deviation for the setof data shown below?23, 64, 73, 47, 22, 46, 34, 48, 67, 89, 83, 12, 23, 44, 16 HELPPP PLSSSSMylo is tracking the amount of calories he is consuming each day, along with his amount of exercise. He also takes his basal metabolic rate into consideration, which is 1,780 calories per day. At the end of the first day, he has consumed 2,000 calories in food and beverages and burned 450 calories with intense cardio training, giving him a 230 calorie deficit for the day. What will most likely be the outcome if Mylo continues this pattern for multiple weeks?A. He will gain weight.B. He will lose weight.C. His weight will stay about the same.D. His weight will shift up and down The plaintiff was driving inattentively when she had to swerve to avoid two other negligently driven vehicles at a busy intersection, and her car struck a light pole. The plaintiff, who was the only driver injured, sued one of the other drivers to recover damages in a jurisdiction that has adopted pure comparative negligence. The jury determined that she suffered injuries of $100,000 and was 50% at fault. If the plaintiff is awarded a recovery of only $25,000 from the defendant, what will be the most likely reason When moving up along an existing supply curve, all variables other than price areO increasingdecreasingO held constantO fluctuating Purple Lemon Fruit Company has two divisions: one is very risky, and the other exhibits significantly less risk. The company uses its investors overall required rate of return to evaluate its investment projects. It is most likely that the firm will become: Each year a few hundred naturalized citizens lose their citizen- ship because they have committed federal crimes. Which congressional power is involved? economic power B judicial power C citizenship and domestic powers foreign relations and war powers How many triangles are there in the picture? Clue, there are more than 30. __________ commonly cause increased energy and alertness, increased heart rate and respiration, and loss of appetite. help me right now pls ?! g a horizontal wheel of radius is rotating about a vertical axis. What is the magnitude of the resultant acceleration of a bug that is hanging tightl on the rim of the wheel You have approached a hospital administrator about marketing in her facility. The administrator is uncomfortable with the suggestion. How could you address her concerns how does the statue of liberty and bill of rights relate? All sales are made on credit. Based on past experience, the company estimates 0.3% of net credit sales to be uncollectible. What adjusting entry should the company make at the end of the current year to record its estimated bad debts expense Preparation of a statement of cash flows involves five steps: (1) Compute the net increase or decrease in cash; (2) compute net cash provided or used by operating activities (using either the direct or indirect method); (3) compute net cash provided or used by investing activities; (4) compute net cash provided or used by financing activities; and (5) report the beginning and ending cash balances and prove that the ending cash balance is explained by net cash flows. Noncash investing and financing activities are also disclosed. (S)-Pentan-2-ol was treated sequentially with methanesulfonyl chloride (CH3SO2Cl) and then potassium iodide. What is the final product that forms PLEASE HELP ME I HAVE PUBLIC SPEAKING DO ANYONE KNOW HOW TO DO IT A company purchased a weaving machine for $198,250. The machine has a useful life of 8 years and a residual value of $10,500. It is estimated that the machine could produce 751,000 bolts of woven fabric over its useful life. In the first year, 105,500 bolts were produced. In the second year, production increased to 109,500 units. Using the units-of-production method, what is the amount of depreciation expense that should be recorded for the second year Question 9 of 17Consider this theme:Each person contains both good and evil.Which excerpt from Frankenstein best supports this theme?English 12 Two linear equations are shown in the graph. #Brainliest award What are the coordinates of the point where the two lines intersect? A. (2, 3) B. (3, 3) C. (3, 0) D. (3, 3) The equation for the circle below is x2 + y2 = 100. What is the length of thecircle's radius?