The answers are:
18 to 24 = [tex]\frac{18}{24} = \frac{3}{4}[/tex]
5 to 15 = [tex]\frac{5}{15} = \frac{1}{3}[/tex]
14:42 = [tex]\frac{14}{42} = \frac{1}{3}[/tex]
15 cents to 18 cents = [tex]\frac{15}{18} = \frac{5}{6}[/tex]
Explanation:
To write a fraction using a ratio, simply use the first number as the numerator (top number), in this case, the numbers 18, 5, 14, and 15, and the second or biggest number as a denominator (bottom number), in this case, the numbers 24, 15, 42 and 18. This means the fractions are [tex]\frac{18}{24}[/tex], [tex]\frac{5}{15}[/tex], [tex]\frac{14}{42}[/tex] , and [tex]\frac{15}{18}[/tex].
The second step is to reduce or simplify the fractions, which means the numbers in a fraction are divided by the same factor (a number that divides another without a remainder). Additionally, to do this, it is important to reduce the fraction to its minimum.
[tex]\frac{18}{24}[/tex] divide this by 6, which is equivalent to [tex]\frac{3}{4}[/tex]
[tex]\frac{5}{15}[/tex] divide this by 5, which is equivalent to [tex]\frac{1}{3}[/tex]
[tex]\frac{14}{42}[/tex] divide this by 14. which is equivalent to [tex]\frac{1}{3}[/tex]
[tex]\frac{15}{18}[/tex] divide this by 3, which is equivalent to [tex]\frac{5}{6}[/tex]
For this item, any answers that are not whole numbers should be entered as a decimal, rounded to the tenths place. In the figure below, line AB, line CD, and line EF intersect at point Q. Line AB is perpendicular to line CD. Complete the following equations.
x =
m∠CQF =
m∠AQE =
Answer:
[tex] x = 10 [/tex]
m<CQF = 32°
m<AQE = 32°
Step-by-step explanation:
m<CQB = m<CQA = 90° (right angle)
m<CQB = m<CQF + m<FQB
m<CQF = 3x + 2
m<FQB = 58°
Therefore,
[tex] 90 = 3x + 2 + 58 [/tex]
Solve for x:
[tex] 90 = 3x + 60 [/tex]
[tex] 90 - 60 = 3x + 60 - 60 [/tex]
[tex] 30 = 3x [/tex]
[tex] \frac{30}{3} = \frac{3x}{3} [/tex]
[tex] 10 = x [/tex]
[tex] x = 10 [/tex]
m<CQF = 3x + 2
Plug in the value of x to find m<CQF
m<CQF = 3(10) + 2 = 30 + 2
m<CQF = 32°
m<CQF and m<AQE are vertical opposite angles, therefore, they are congruent.
Thus,
m<AQE = 32°
Answer:
x = 10
m∠CQF = 32
m∠AQE = 58
Step-by-step explanation:
Refer to Exercise probabilities. Find the following probabilities.
a. Two heads
b. One head
c. At least one head
d. At least two heads
Required:
Draw a probability tree to describe the flipping of three fair coins.
Answer:
Step-by-step explanation:
Probability is defined as the likelihood or chance that an event will occur.
Probability = Expected outcome/Total outcome
probability = n{E}/n{S}
n(E) is the total number of events
n{S} is the total number of sample space.
For a coin that is tossed 3times, the possible outcome are:
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
The total number of sample space is n(S) = 2³ = 8
n{S} = 8
a) probability of getting two heads.
Events E = {HHH, HHT, HTH, THH}
n(E) = 4
Pr(getting two heads) = 4/8 = 1/2
b) probability of getting one head.
Events E = {HTT, THT, TTH}
n(E) = 3
Pr(getting one head) = 3/8
c) probability of getting at least one head means probability of getting 1 head and more but not less than a head.
Events E = {HHH, HHT, HTH, HTT, THH, THT, TTH}
n(E) = 7
Pr(getting at least one head) = 7/8
d) probability of getting at least two heads means probability of getting 2 head and more but not less than 2 head.
Events E = {HHH, HHT, HTH, THH}
n(E) = 4
Pr(getting at least two head) = 4/8 = 1/2
Find the tree diagram in the attachment below.
Solve the problems: a. −8 + 0 = b. 1 × (−14) = c. 19 ÷ 1 = d. 0 × 104 = e. −21 − 0 =
Answer:
A. −8 + 0 = -8
B. 1 × (−14) = -14
C. 19 ÷ 1 = 19
D. 0 × 104 = 0
E. −21 − 0 = 0
Step-by-step explanation:
Anything times or divided by 1 equals the other number that is not 1.
Example 1: 2,999 x 1 = 2,999
Example 2: 2,999 ÷ 1 = 2,999
Anythings times or divided by 0 is 0.
Example 1: 2,999 x 0 = 0
Example 2: 2,999 ÷ 0 = 0
Evaluate x(y-z)2 for =-1,y=5,and z=
Answer:
The value of [tex]x(y-z)^2[/tex] is -16.
Step-by-step explanation:
We need to evaluate [tex]x(y-z)^2[/tex] for x = -1, y = 5 and let us assume that z = 1
It can be simply done by putting the values of x,y and z in the given expression.
[tex]x(y-z)^2=(-1)(5-1)^2\\\\=-1(4)^2[/tex]
We know that the value of 4² = 16
So,
[tex]x(y-z)^2=16\times -1\\\\=-16[/tex]
So, the value of [tex]x(y-z)^2[/tex] is -16.
What is the value of the expression 9(2)+1•8?
Answer:
19.8
Step-by-step explanation:
Answer:
26
Step-by-step explanation:
When we find the values of questions like this, we have to remember to use "PEMDAS".
Because multiplication comes before addition, we have to multiply first.
(Since there are two multiplication parts in the question, we start off by the first one.)
When we multiply both parts, we'll get:
[tex](18)+(8)[/tex], which equals to 26.
So, your answer is 26.
Some friends decided to equally split the cost of gas on their trip. The expression 3g/4 represents how much money each person had to pay in dollars for g gallons of gas. What does the expression 3g in the numerator represent?
A the cost per person
B the number of people splitting the cost of the gas
C the total cost of the gas before it was split among the friends
D the cost per gallon of gas
━━━━━━━━━━━━━━━ ♡ ━━━━━━━━━━━━━━━
Answer: The total cost of the gas before it was split among the friends.
Explanation: If they split it equally, they divide. 3g is divided by 4 so you know that there are 4 friends/people.
Since they are splitting the [total] amount of gas for 4 people, 3g must be the total cost of the gas.
━━━━━━━━━━━━━━━ ♡ ━━━━━━━━━━━━━━━
Answer:
c
Step-by-step explanation:
i took the quiz
Solve by using trial and error method : 2x + 3 = 13
3 • { [ 4 ÷ 2 ] + 2 answer
Answer:
6+2=8
3×2+2=
6+2=8
good luck
Solve the equation using the Properties of Equality: 15 = – 2
Answer:
Where is the plobem
Step-by-step explanation:
Follow me // i'm Followback you
Refer to the accompanying TI-83/84 Plus calculator display of a 95% confidence interval. The sample display results from using a simple random sample of the amounts of tar (in milligrams) in cigarettes that are all king size, non-filtered, non-menthol, and non-light. Express the confidence interval in the format of E.
(23.305,25.075)
mean = 23.69
n = 30
The confidence interval is__?__ + or -___?___.
Answer:
[tex]22.805 < \mu < 24.575\\[/tex]
Step-by-step explanation:
Given parameters
Z interval E = (23.305,25.075)
mean xbar = 23.69
number of samples n = 30
Required
we are to find the confidence interval for the Z interval given.
The formula for finding the confidence interval is expressed as shown below;
[tex]\overline x - E < \mu < \overline x + E[/tex] where;
xbar is the mean = 30
E is the margin of error
[tex]E = \frac{U-L}{2}[/tex]
U = upper limit = 23.305
L = lower limit = 25.075
[tex]E = \frac{25.075-23.305}{2}\\E = \frac{1.77}{2}\\E = 0.885[/tex]
The confidence interval is therefore expressed as [tex]23.69 - 0.885 < \mu < 23.69+ 0.885\\22.805 < \mu < 24.575\\[/tex]
Hence the confidence interval is expressed as [tex]22.805 < \mu < 24.575\\[/tex]
solve for z? 2x-4y+4z-6w=4 6w-4x+4y-4z=-12 6w+4x-2y+6z=64 4z+2w+6y-4x=56
Answer:
9.22
Step-by-step explanation:
The calculation of z is shown below:-
Given that
2x-4y+4z-6w=4 .... (1)
6w-4x+4y-4z=-12 ..... (2)
6w+4x-2y+6z=64 ...... (3)
4z+2w+6y-4x=56 .... (4)
Here we need to decrease the equations with the help of canceling out a few variables.
Now we need to add equations 1 and 2 that is
(2x - 4x) + (-4y + 4y) + (4z - 4z) + (-6w + 6w) = 4 + 12
Now we solve the above equation
-2x + 0 = 16
-2x = 16
x = -8
Now, equation 2 minus 3
6w - 6w + (-4x - 4x) + 4y + 2y + (-4z - 6z) = 12 - 64
-8x + 6y - 10z = -52
Now we will put the value of x
-8(-8) + 6y - 10z = -52
64 + 6y - 10z = -52
6y - 10z = -52 - 64
6y - 10z = -116
3y - 5z = -58 ... 5
Equation 3 × 1 and equation 4 × 3
6w + 4x - 2y + 6z = 64 ..... (3)
4z + 2w + 6y - 4x = 56 .... (4)
6w + 4x - 2y + 6z = 64
12z + 6w + 18y - 12x = 168
Now we will subtract both equations that are
16x - 20y - 6z = -104
8x - 10y - 3z = -52
8(-8) - 10y - 3z = -52
-64 - 10y - 3z = -52
-10y - 3z = -52 + 64
-10y - 3z = 12 ....... (6)
equating 5 and 6 and solving that is
3y - 5z = -58 ... 5 × 10
-10y - 3z = 12 ....... 6 × 3
30y - 50z = -580
-30y - 9z = 36
we will add both equation
-50z - 9z = -580 + 36
-59z = -544
z = -544 ÷ -59
After solving z value we will get
= 9.22
POSSIBLE
The temperature on Mars ranges from -68°F during the day to - 176°F at night. Which temperature is not likely to be measured on Mars?
-76F
-100°F
- 150 °F
PLEASE RESPONDDD
Answer:
49 -- No. 71 U.S. Naval Base, Guantanamo Bay, Cuba Wednesday, June 23, 1993 ... them while developing possible options for the future fo the Gen URL Community. ... The Independence Day from the fall of 1993 to the Throughout the day, after ... *MARS Station. ... Add 40 to original temperature (F or C, doesn't matter). 2.
Answer:
49 -- No. 71 U.S. Naval Base, Guantanamo Bay
Step-by-step explanation:
5^3 x 2^5 x 10^2 as a product of prime
Answer:
2^7 × 5^5
Step-by-step explanation:
10 = 2×5, so your product is ...
5^3 × 2^5 × (2×5)^2
= 5^3 × 2^5 ×2^2 ×5^2
= 2^7 × 5^5
_____
If you remember that the exponent tells you how many times the base is a factor of the product, you should have no trouble with this.
5^3 × 2^5 × 10^2 = (5·5·5)(2·2·2·2·2)(2·5)(2·5) = 2^7 × 5^5
How much should I leave for a tip?
Answer:
$8.40 tip and $56 bill = $64.40 (including tip)
Step-by-step explanation:
15% of 56 is 56*0.15 = 8.4 tip
2.
A square-shaped park has an area of 324 yd. What are the dimensions of the park? Write and solve an equation.
Use the pen tool to write and solve the equation,
Then fill in the blank with the correct dimensions
Answer:
The dimensions of the park is 18yd by 18yd
Step-by-step explanation:
A square-shaped park has an area of 324 yd.
A square is composed of equal length dimensions so if the area is 324 yd² ,the dimensions or length if one side of the square will be the root of 324 yd².
Length= √324
Length= 18 yd
Dimensions of the park is 18 yd by 18 yd
The dimensions of the park is 18yd by 18yd
Given that,
A square-shaped park has an area of 324 yd.Based on the above information, the calculation is as follows:
[tex]Length= \sqrt 324[/tex]
= 18 yd
Therefore, Dimensions of the park is 18 yd by 18 yd
Learn more: https://brainly.com/question/1691136?referrer=searchResults
mark rode his bike 22/8 miles. which mixed number shows the fraction of miles he rode his bike
Answer:
Hey there!
There aren't any options, but the correct answer would be 2 6/8, which simplifies to 2 3/4.
Let me know if this helps :)
22/8
8 goes into 22 twice:
8 x 2 = 16
22-16 = 6
22/8 = 2 6/8
6/8 can reduce to 3/4
22/8 = 2 3/4
Question 8 (5 points)
For what values of x is the inequality 6x < 12 true?
Ox<2
x2
Ox>6
x <6
Answer:
x < 2
Step-by-step explanation:
We are given the inequality:
[tex]6x < 12[/tex]
We want to solve for x. We must isolate x on one side of the inequality.
x is being multiplied by 6. The inverse of multiplication is division. Divide both sides of the inequality by 6.
[tex]6x/6 < 12/6[/tex]
[tex]x< 12/6[/tex]
[tex]x<2[/tex]
For the values of x where x<2, the inequality 6x < 12 is true.
Which equation has only 1 solution? A. c+2=c+2 B. c= -c+2 C. c+2=c-2 D. c-c=2 Please explain.
Answer:
B. c= -c+2
Step-by-step explanation:
A. ...................
c+2=c+2 c-c= 2-20=0It has infinitely many solutions as the equation is correct for any value of c.
B. ...................
c= -c+2 c+c= 22c = 2c = 2/2c= 1It has one solution only
C. ...................
c+2=c-2 c-c= -2 - 20 = -4It has no solution as this equation is incorrect
D. ...................
c-c=20 = 2It has no solution as this equation is incorrect
Terry bought a television set, a digital camera and a DVD recorder.
The average cost of the digital camera and the DVD recorder was
$925. He spent an average amount of $1985 on the 3 items. How
much did the television set cost?
Answer:
$1060
Step-by-step explanation:
as the average amount of DVD and digital camera is $925 so the television cost:
$1985-$925
=$1060
2.
Find the LCM of the set of algebraic expressions.
Answer:
[tex] LCM = 70a^2b [/tex]
Step-by-step explanation:
The LCM of [tex] 10a^2, 35ab, 14b [/tex], is the smallest expression of which each of the algebraic expression in the given set is divisible by it.
To find the LCM, follow these steps:
Step 1: Express each of the algebraic expressions in as product of its factors
[tex] 10a^2 = 2*5*a^2 [/tex]
[tex] 35ab = 5*7*a*b [/tex]
[tex] 14b = 2*7*b [/tex]
Step 2: Find the product of each factors with the highest power
[tex] LCM = 2*5*7*a^2*b [/tex]
[tex] LCM = 70a^2b [/tex]
Reduce these answers to simplest form 13/41 + 27/82
Answer:
53/82
Step-by-step explanation:
Answer:
13/41 + 27/82
We reduce to the same denominator.
The common denominator is 82
=(13×2)/(41×2) + 27/82
= 26/82 + 27/82
to calculate the sum of two fractions that have the same denominator, just add the numerators between them .
= 53/82
pt 2 1-7, please help
Hi there! Hopefully this helps!
------------------------------------------------------------------------------------------------------
E = 1.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[tex]2e = 2[/tex]
Divide both sides by 2.
[tex]e = \frac{2}{2}[/tex]
Divide 2 by 2 to get, you guessed it, 1!Two sides of a triangle measure 9 centimeters and 37 centimeters what could the length of the third triangle?
Step-by-step explanation:
One side of a triangle is 9 cm and other side is 37 cm. We need to find what could be the length of the third side of the triangle.
If we add one and other side i.e. 9 cm + 37 cm = 46 cm
If we subtract one and other side i.e. 37 cm - 9 cm = 28 cm
We know that, the length of the third side must be less than the sum of the other two sides and greater than the difference between the other two sides.
Thus, the third side could be between 46 cm and 28 cm.
Write the point-slope form of a linear equation that passes through the two point (3, −5) and (−1, 8)
Answer:
y + 5 = (-13/4)(x - 3)
Step-by-step explanation:
Going from (-1, 8) to (3, -5), x (the 'run') increases by 4 and y (the 'rise') decreases by 13. Thus, the slope of the desired line is m = rise / run = -13/4.
The point-slope formula is
y - k = m(x - h), and here m = -13/4, k = -5 and h = 3:
y + 5 = (-13/4)(x - 3)
What is the slope of the line with points (3, 5) and (8, 2)?
Answer:
-3/5
Step-by-step explanation:
To find slope we use the formula, slope = (y2-y1)/(x2-x1)
We let (3,5) be the first point so, x1 = 3 and y1 = 5
We let (8,2) be the second point so, x2 = 8 and y2 = 2
Now we plug it in the formula,
slope = (2-5)/(8-3) = -3/5
A plot of land has vertices as follows, where each coordinate is a measurement in feet. find the perimeter of the plot of land (1,7),(7,7),(7,1),(1,1) A.24ft B.32ft C.16ft D.36ft
Answer:
D. 36ft
Step-by-step explanation:
Answer:
the real answer is 24 :)
Step-by-step explanation:
Mari has 8 skirts and 12 pairs of jeans in her closet. Write the ratio of skirts to jeans in simplest form.
Answer:
2 : 3
Step-by-step explanation:
8 skirts : 12 jeans
Divide each side by 4
8/4 : 12/4
2 : 3
Answer: 8:12
Step-by-step explanation:
Given the function f(x) = 5(x+4) − 6, solve for the inverse function when x = 19. (1 point) 1 68 72 84
Answer:
x = 19, y = 1
Step-by-step explanation:
f(x) = 5(x + 4) - 6
y = 5(x + 4) - 6
inverse function:
switch x and y
x = 5(y + 4) - 6
solve for y
x = 5y + 20 - 6
x = 5y + 14
x - 5y = 14
-5y = -x + 14
y = (-x + 14)/-5
y = 1/5x - 2.8
plug 19 in for x
y = 1/5(19) - 2.8
y = 3.8 - 2.8
y = 1
11.Avery and Bradly work at a large electronic manufacturer that produces DVD players. The defective rate on the assembly line has gone up 12% and the manager wants to know the probability that a skid of 50 DVD players will contain at least 3 defective units. Help Avery use the binomial distribution P(x)=n Cx p^x q^n-x to answer this question
Answer:
The probability that a skid of 50 DVD players will contain at least 3 defective units is 0.9487.
Step-by-step explanation:
We are given that Avery and Bradly work at a large electronics manufacturer that produces DVD players. The defective rate on the assembly line has gone up 12% and a skid of 50 DVD players has been selected by the manager.
Let X = Number of defective units of DVD players
The above situation can be represented through the binomial distribution;
[tex]P(X = r) = \binom{n}{r}\times p^{2} \times (1-p)^{n-r}; x= 0,1,2,3,....[/tex]
where, n = number of samples (trials) taken = 50 DVD players
r = number of success = at least 3 defective units
p = probability of success which in our question is the probability
of defective rate, i.e; p = 12%
So, X ~ Binom(n = 50, p = 0.12)
Now, the probability that a skid of 50 DVD players will contain at least 3 defective units is given by = P(X [tex]\geq[/tex] 3)
P(X [tex]\geq[/tex] 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)
= [tex]1 - [ \binom{50}{0}\times 0.12^{0} \times (1-0.12)^{50-0}]-[ \binom{50}{1}\times 0.12^{1} \times (1-0.12)^{50-1}]-[ \binom{50}{2}\times 0.12^{2} \times (1-0.12)^{50-2}][/tex]
= [tex]1 - [ 1 \times 1 \times 0.88^{50}]-[50 \times 0.12^{1} \times 0.88^{49}]-[ 1225 \times 0.12^{2} \times 0.88^{48}][/tex]
= 0.9487
Hence, the probability that a skid of 50 DVD players will contain at least 3 defective units is 0.9487.
(14-2^3) do you have to solve it first before you do the exponent or can you just do the exponent first then solve what's in the parenthesis? Is it all going to be the same?
Answer:
6
Step-by-step explanation:
(14-2^3)
PEMDAS
Parentheses first
We need to follow PEMDAS inside the parentheses
Since there are no parentheses in side the parentheses, we do expoents
14 - 8
Then subtract
6
The order matters.
You have to follow the order of operations
Answer:
6
Step-by-step explanation:
use PEMDAS - (parentheses - exponents) -- (multiplication - division) -- (addition - subtraction)
PE, MD, and AS are interchangeable within their pairs. that means you can do multiplication or division first, or addition after subtraction. however, you cannot do addition/subtraction before multiplication/division.
since the exponent is within the parentheses, solve it first
= (14 - 2³)
= (14 - 8)
= 6