Answer:
Explanation:
The image is real light rays actually focus at the image location). As the object moves towards the mirror the image location moves further away from the mirror and the image size grows (but the image is still inverted).
A ball of mass 0.1kg is thrown vertically upwards with an initial velocityof 80 m/s. calculate the pontential energy (i) half way up (ii) at its maximum height. what is its kinetic energy as it leaves the ground
Answer:
Stated below:
Explanation:
Let's calculate the maximum height
.
H=v^2/2g=320mH=v
2
/2g=320m
PE=mgh=0.1*10*320=320 J
at halfway up PE will be half of max = 320/2=160 J
KE will be equal to PEmax=320 J.
Hope I helped! ☺
1. Earth releases about 44-46 Tw of heat, in fact heat can be converted into
other forms of energy that follows the law of conservation of energy. At present
a part of electrical energy in the Philippines is derived from electrical energy.
Briefly explain why our country cannot depend on this alternative source of
energy alone.
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if all of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.
*
An accurate description of a thing or an event.
Opinion
Inference
Hypothesis
Observation
Answer:
opinion
Explanation:
A two-liter bottle of your favorite beverage has just been removed from the trunk of your car. The temperature of the beverage is 35°C, and you always drink your beverage at 10°C. (a) How much heat energy must be removed from your two liters of beverage (in kJ)? (b) You are having a party and need to cool 10 of these two-liter bottles in one-half hour. What rate of heat removal, in kW, is required? (c) Assuming that your refrigerator can accomplish this and that electricity costs 8.5 cents per kW-hr, how much will it cost to cool these 10 bottles (in $)?
Answer:
a) 209.3 kilojoules must be removed from two liter of beverage, b) A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles, c) Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.
Explanation:
a) How much heat energy must be removed from your two liters of beverage?
At first we suppose that the beverage has the mass and specific heat of water and that there are no energy interactions between the bottle and its surroundings.
From the First Law of Thermodynamics and definition of sensible heat, we get that amount of removed heat ([tex]Q[/tex]), measured in kilojoules, is represented by the following formula:
[tex]Q = \rho \cdot V\cdot c\cdot (T_{o}-T_{f})[/tex] (Eq. 1)
Where:
[tex]\rho[/tex] - Density of the beverage, measured in kilograms per cubic meter.
[tex]V[/tex] - Volume of the bottle, measured in cubic meters.
[tex]c[/tex] - Specific heat of water, measured in kilojoules per kilogram-Celsius.
[tex]T_{o}[/tex], [tex]T_{f}[/tex] - Initial and final temperatures, measured in Celsius.
If we know that [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]V = 2\times 10^{-3}\,m^{3}[/tex], [tex]c = 4.186\,\frac{kJ}{kg\cdot ^{\circ}C}[/tex], [tex]T_{o} = 35\,^{\circ}C[/tex] and [tex]T_{f} = 10\,^{\circ}C[/tex], then:
[tex]Q = \left(1000\,\frac{kg}{m^{3}}\right)\cdot (2\times 10^{-3}\,m^{3})\cdot \left(4.186\,\frac{kJ}{kg\cdot ^{\circ}C} \right) \cdot (35\,^{\circ}C-10\,^{\circ}C)[/tex]
[tex]Q = 209.3\,kJ[/tex]
209.3 kilojoules must be removed from two liter of beverage.
b) You are having a party and need to cool 10 of these two-liter bottles in one-half hour. What rate of heat removal, in kW, is required?
The total amount of heat that must be removed from 10 2-L bottles is:
[tex]Q_{T} = 10\cdot (209.3\,kJ)[/tex]
[tex]Q_{T} = 2093\,kJ[/tex]
If we suppose that bottles are cooled at constant rate, then, rate of heat removal is determined by this formula:
[tex]\dot Q = \frac{Q_{T}}{\Delta t}[/tex] (Eq. 2)
Where:
[tex]Q_{T}[/tex] - Total heat, measured in kilojoules.
[tex]\Delta t[/tex] - Time, measured in seconds.
[tex]\dot Q[/tex] - Rate of heat removal, measured in kilowatts.
If we know that [tex]Q_{T} = 2093\,kJ[/tex] and [tex]\Delta t = 1800\,s[/tex], we find that rate of heat removal is:
[tex]\dot Q = \frac{2093\,kJ}{1800\,s}[/tex]
[tex]\dot Q = 1.163\,kW[/tex]
A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles.
c) Assuming that your refrigerator can accomplish this and that electricity costs 8.5 cents per kW-hr, how much will it cost to cool these 10 bottles (in $)?
A kilowatt-hour equals 3600 kilojoules. The electricity cost is equal to the removal heat of 10 bottles ([tex]Q_{T}[/tex]), measured in kilojoules, and unit electricity cost ([tex]c[/tex]), measured in US dollars per kilowatt-hour. That is:
[tex]C = c\cdot Q_{T}[/tex]
If we know that [tex]c = 0.085\,\frac{USD}{kWh}[/tex] and [tex]Q_{T} = 2093\,kJ[/tex], the total cost of cooling 10 bottles is:
[tex]C = \left(0.085\,\frac{USD}{kWh}\right)\cdot \left(2093\,kJ\right)\cdot \left(\frac{1}{3600}\,\frac{kWh}{kJ} \right)[/tex]
[tex]C = 0.049\,USD[/tex]
Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.
BLANK charges repel each other.
Answer:
like
Explanation:
Have a good day!!
Answer: negitive
Explanation:
Which of the following is a characteristic of electromagnetic waves? (2 points)
ILL GIVE BRAINLIEST AND 5 POINT STAR RATING!!!! Which cultural region of the United States has the most Native American influence today? 1.South 2.Northeast 3.Midwest 4.West
Answer:
The answer is 4, the west.
Answer:
The west
Explanation:
hopes this helps you and your questions
Nervous tissue makes up most of the
Brain
Lungs
Kidneys
Stomach
Answer:
, Nervous tissue is composed of two types of cells, neurons and glial cells. Neurons are the primary type of cell that most anyone associates with the nervous system. They are responsible for the computation and communication that the nervous system provides.
Which statement correctly identifies the scientific question and describes why the question is scientific?
Answer:
i had this question as well!
Explanation:
Answer:
1. to the Mystic 2. A Theme or social value 3. Something that can be valued 4. Can’t be observed/ Noticed.
Explanation:
HELP! IDENTIFY AND DRAW A CONCLUSION FOR THIS PROBLEM PLS! ASAP.
Answer:
the conclusion is that the plant that had been given fertilizer B grew more than the plant with fertilizer A and the plant without fertilizer. so in conclusion fertilizer B is better for growing plants fastly.
the problem is that you noticed your tomatoes were not growing properly.
Hope this helps!❤
Why can concave mirror is used in cosmetic mirror
Answer:
"When face is placed between the concave mirror and its focus, it produces a magnified image. This enlarged image of face is helpful in makeup as even pores of skin are clearly visible."
You are sitting still at a stoplight. The light turns green and you
accelerate to 35 m/s and it takes you 3.2 sec. What is your acceleration? *
Answer:
Your accleration would be 3.2 seconds because it takes you that long to reach 35 miles per hour.
Explanation:
I really hopes this helps.
PLEASE HELP ASAP
A 744N object falling in the air experiences 434N of air resistance. what is the amount if net force of the falling objec
Answer:
The amount of net force of the falling object is -310 N, or 310 N downwards
Explanation:
Net Force
Being the force a vector, the net force is the sum of all the force vectors acting on an object at a given time:
[tex]\vec F_n=\vec F_1+\vec F_2+\vec F_3+.....\vec F_m[/tex]
When the forces are acting in one axis, say the y-axis, the direction of the forces can be considered by the sign of the magnitude of the force.
For example, the weight of the object is usually assigned a negative direction. In our problem:
W=-744 N
The air resistance always opposes the direction of motion. Since the object is falling, the air resistance is positive:
Fa = +434 N
The net force is the sum of both, including their signs:
Fn = -744 N + 434 N = -310 N
The amount of net force of the falling object is -310 N, or 310 N downwards
A building's 10th floor (34.5 m high) is blazing with fire. A fire truck arrived at the scene and the fire
men shoots water from their hose. The water leaves the hose at the speed of 29 m/s, at an angle
of
63° and is held at 0.90 m from the ground. Will the water reach the fire? If so, how far from the
building should the hose be so the fire could be put out?
Answer:
Yes, the water will be reach the fire.
The hose should be at 34.7 m from the building
Explanation:
Given that,
Height of building's =34.5 m
Speed = 29 m/s
Angle = 63°
Distance from the ground = 0.90 m
We need to calculate the actual height
Using formula of height
[tex]H=\dfrac{u^2\sin^2\theta}{2g}[/tex]
Put the value into the formula
[tex]H=\dfrac{29^2\sin^2{63}}{2\times9.8}[/tex]
[tex]H=34.0\ m[/tex]
The height from the ground will be
[tex]H'=34+0.90[/tex]
[tex]H'=34.9\ m[/tex]
We can say that, the water gun attained the maximum height that is 0.4 m more than the 10th floor.
So, yes, the water will be reach the fire.
We need to calculate the range
Using formula of range
[tex]R=\dfrac{u^2\sin2\theta}{g}[/tex]
Put the value into the formula
[tex]R=\dfrac{29^2\times\sin(2\times63)}{9.8}[/tex]
[tex]R=69.4\ m[/tex]
The house should be at half of R.
[tex]\dfrac{R}{2}=\dfrac{69.4}{2}[/tex]
[tex]\dfrac{R}{2}=34.7\ m[/tex]
Hence, Yes, the water will be reach the fire.
The hose should be at 34.7 m from the building
you describe a friend's position by including distance direction and what other term
Answer:
How would you describe where you are right now? You
might say that you are sitting one meter to the left of your
friend. You might explain that you are at home, which is two
houses north of your school.
Explanation:
Hope this helps!
what was the main idea of Malthus theory of population
Answer:
The idea that population growth is potentially exponential while the growth of the food supply or other resources is linear.
Explanation:
A 60kg woman on skates throws a 3.9kg ball with a velocity of
37m.s west. What is the velocity of the woman?
Answer:
2.405 m/s
Explanation:
Given that,
Mass of a women, m₁ = 60 kg
Mass of a ball, m₂ = 3.9 kg
Velocity of the ball, v₂ = 37 m/s
We need to find the velocity of the woman. It is a concept based on the conservation of linear momentum. Let v₁ is the velocity of the woman. So,
[tex]m_1v_1=m_2v_2\\\\v_1=\dfrac{m_2v_2}{m_1}\\\\v_1=\dfrac{3.9\times 37}{60}\\\\v_1=2.405\ m/s[/tex]
So, the velocity of the woman is 2.405 m/s.
d2 = 20 m, d1= 50m
What is the magnitude of the resultant?
Answer:
53.85m
Explanation:
If we are assuming that d1 is one side of a triangle, and d2 is the other, and we are looking for the magnitude, which is essentially the hypotenuse, we use Pythagorean Theorem. a^2+b^2=c^2. 20^2 + 50^2 = 2900.
The square root of 2900 is 53.85164. Therefore, that is your hypotenuse.
The acceleration of an object is ____________________ related to the net force exerted upon it and _____________________ related to the mass of the object. In equation form: a = Fnet / m.
a. directly, inversely b. inversely, directly c. directly, directly d. inversely, inversely
Answer:
b
Explanation:
I took this unit last year and i think b is the right answer
Acceleration of an object is directly related to the net force exerted upon it and inversely related to the mass of the object.
Newton's second law of motion states that the acceleration of an object as produced by a net force, is directly proportional to the magnitude of the net force, and inversely proportional to the mass of the object.
From this law, it means that once the acceleration is doubled, the force exerted on the object is equally doubled.
Also when the mass is increased, the acceleration is reduced.
Therefore, mathematically:
F =ma
where, f = force
m = mass
a= acceleration
Therefore, acceleration of an object is directly related to the net force exerted upon it and inversely related to the mass of the object.
Learn more here:
https://brainly.com/question/12043464
Which statements about the kinetic energy of a moving object are true?
Answer:
it a most depends on the moving objects mass
Answer:
Its amount depends on the moving object’s mass,
It can be transferred from one object or body to another, and Its amount depends on the moving object’s speed.
Explanation:
ILL GIVE BRAINLIEST AND 5 POINT STAR RATING!!! Acid rain has a pH lower than 5.0 The lower the pH, the more acidic the rain. Which region of the United States receives the most acid rain? 1.Midwest 2.West 3.Northeast 4.South
Answer:
ome acid rain occurs naturally, but sulfur dioxide and nitrogen oxide emissions from smokestacks combine with rain to make sulfuric and nitric acid in amounts that harm the environment. The region of the United States most harmed by acid rain is the East Coast, including the Appalachian Mountains and the Northeast.
Explanation:
pls give me brainlist
I WILL MARK YOU AS BRAINLIEST IF RIGHT
A 2300 kg bus travels 15 miles in 0.75 hours . What is the average speed of the bus?
When jumping straight down, you can be seriously injured if you land stiff-legged. One way to avoid injury is to bend your knees upon landing to reduce the force of the impact. A 60.0-kg man just before contact with the ground has a speed of 4.18 m/s. (a) In a stiff-legged landing he comes to a halt in 1.00 ms. Find the magnitude of the average net force that acts on him during this time. (b) When he bends his knees, he comes to a halt in 0.245 s. Find the magnitude of the average net force now. (c) During the landing, the force of the ground on the man points upward, while the force due to gravity points downward. The average net force acting on the man includes both of these forces. Taking into account the directions of the forces, find the magnitude of the force applied by the ground on the man in part (b).
Answer:
a) The average force that acts on the man is [tex]2.508\times 10^{8}[/tex] newtons.
b) The average force that acts on the man is 1023.673 newtons.
c) The force of the ground on the man is 1612.093 newtons upwards.
Explanation:
a) After a careful reading of the statement we construct the following model by applying Impact Theorem, that is:
[tex]m\cdot \vec v_{A} + \vec F \cdot \Delta t = m\cdot \vec v_{B}[/tex] (Eq. 1)
Where:
[tex]m[/tex] - Mass of the man, measured in kilograms.
[tex]\vec v_{A}[/tex] - Initial velocity of the man, measured in meters per second.
[tex]\vec v_{B}[/tex] - Final velocity of the man, measured in meters per second.
[tex]\Delta t[/tex] - Impact time, measured in seconds.
[tex]\vec F[/tex] - Average net force, measured in newtons.
Now we proceed to clear average net force within expression:
[tex]\vec F \cdot \Delta t = m\cdot (\vec v_{B}-\vec v_{A})[/tex]
[tex]\vec F = \frac{m}{\Delta t}\cdot (\vec v_{B}-\vec v_{A})[/tex] (Eq. 2)
If we know that [tex]m = 60\,kg[/tex], [tex]\vec v_{A} = -4.18\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex], [tex]\vec v_{B} = 0\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex] and [tex]\Delta t = 1\times 10^{-6}\,s[/tex], we obtain the following vector:
[tex]\vec F = \frac{60\,kg}{1\times 10^{-6}\,s} \cdot (4.18\,\hat{j})\,\,\,\left[\frac{m}{s} \right][/tex]
[tex]\vec F = 2.508\times 10^{8}\,\hat{j}\,\,\,[N][/tex]
The average force that acts on the man is [tex]2.508\times 10^{8}[/tex] newtons.
(b) If we know that [tex]m = 60\,kg[/tex], [tex]\vec v_{A} = -4.18\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex], [tex]\vec v_{B} = 0\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex] and [tex]\Delta t = 0.245\,s[/tex], we obtain the following vector:
[tex]\vec F = \frac{60\,kg}{0.245\,s} \cdot (4.18\,\hat{j})\,\,\,\left[\frac{m}{s} \right][/tex]
[tex]\vec F = 1023.673\,\hat{j}\,\,\,\left[N\right][/tex]
The average force that acts on the man is 1023.673 newtons.
(c) From Second Newton's Law we find the following equation of equilibrium:
[tex]\vec F = \vec N -\vec W[/tex] (Eq. 3)
Where:
[tex]\vec F[/tex] - Average force that acts on the man, measured in newtons.
[tex]\vec N[/tex] - Force of the ground on the man, measured in newtons.
[tex]\vec W[/tex] - Weight of the man, measured in newtons.
By applying the concept of weight, we expand the previous equation:
[tex]\vec F = \vec N -m\cdot \vec g[/tex] (Eq. 3b)
Where [tex]\vec g[/tex] is the gravitational acceleration, measured in meters per square second.
And then we clear the force of the ground on the man:
[tex]\vec N = \vec F +m\cdot \vec g[/tex] (Eq. 4)
If we get that [tex]\vec F = 1023.673\,\hat{j}\,\,\,\left[N\right][/tex], [tex]m = 60\,kg[/tex] and [tex]\vec g = 9.807\,\hat{j}\,\,\,\left[\frac{m}{s^{2}} \right][/tex], the average force is:
[tex]\vec N = 1023.673\,\hat{j}\,\,\,[N]+(60\,kg)\cdot (9.807\,\hat{j})\,\,\,\left[\frac{m}{s^{2}} \right][/tex]
[tex]\vec N = 1612.093\,\hat{j}\,\,\,\left[N\right][/tex]
The force of the ground on the man is 1612.093 newtons upwards.
Which example illustrates Newton's second law?
Answer:
Newtons third law states, "The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object."
Explanation:
an illustration of this would probably be a missile.
Answer: C. “More mass is added to a wheelbarrow remains, and larger forces required to move it”
An airplane has a maximum airspeed velocity of 140 mph South. If the wind is 60 mph West, what is the resultant velocity (groundspeed) and direction of the airplane?
Answer:
R∠ is 152,3 ∠ 246,8
Explanation:
We need to add (vectorially) these two velocities. We can choose the coordinates system just that speed of the airplane is the negative part of the y-axis, and negative region of the x-axis, for wind speed, according to
this, the module of the resultant velocity R is:
R =√ (60)² + (140)²
R = √( 3600) + ( 19600)
R =√ 23200
R = 152,315 mph
The tangent of the angle (α ) between R and the y-axis is:
tan α = 60/140
tan α = 0,4286
From tangent tables, we get arctan 0.4286
α = 23,2⁰
Then R∠ is 152,3 ∠ 246,8
Answer:
R∠ is 152,3 ∠ 246,8
The speedometer of a car moving east reads 60 mph. It passes another car that travels west at 60 mph do the cars have the same velocity?
Answer:
no but yes at the same time
Explanation:
they are going a different direction but they are the same speed.
The period of a pendulum is measured 16 times. The average value of the period over these 16 trials is calculated to be 1.50 seconds, whereas the standard deviation is found to be 0.24 seconds. The standard error (or standard deviation of the mean) therefore is 0.24 seconds divided by the square root of 16, yielding 0.06 seconds. Assuming that the uncertainty of this period arises solely from random error for these 16 trials, about how many additional trials would need to be completed to reduce the standard error to 0.03 seconds? ______________
Answer:
The additional trials needed is 48 trials
Explanation:
Given;
initial number of trials, n = 16 trials
the standard deviation, σ = 0.24 s
initial standard error, ε = 0.06 s
The standard error is given by;
[tex]\epsilon = \frac{\sigma}{\sqrt{n} }[/tex]
To reduce the standard error to 0.03 s, let the additional number of trials = x
[tex]0.03= \frac{0.24}{\sqrt{n+x} } \\\\0.03= \frac{0.24}{\sqrt{16+x} }\\\\0.03\sqrt{16+x} = 0.24\\\\\sqrt{16+x} = \frac{0.24}{0.03} \\\\\sqrt{16+x} = 8\\\\16+x = 8^2\\\\16+x = 64\\\\x = 64 -16\\\\x = 48 \ trials[/tex]
Therefore, the additional trials needed is 48 trials.
In a two-slit experiment, the slit separation is 3.00 × 10-5 m. The interference pattern is created on a screen that is 2.00 m away from the slits. If the 7th bright fringe on the screen is a linear distance of 10.0 cm away from the central fringe, what is the wavelength of the light? In a two-slit experiment, the slit separation is 3.00 × 10-5 m. The interference pattern is created on a screen that is 2.00 m away from the slits. If the 7th bright fringe on the screen is a linear distance of 10.0 cm away from the central fringe, what is the wavelength of the light? 214 nm 204 nm 224 nm 100 nm 234 nm
Answer:
The value is [tex]\lambda = 214.3 \ nm [/tex]
Explanation:
From the question we are told that
The slit separation is [tex]d = 3.00 * 10^{-5} m[/tex]
The distance of the screen is [tex]D = 2.00\ m[/tex]
The order of fringe is n = 7
The path difference is [tex]y = 10.0 \ cm = 0.1 \ m[/tex]
Generally the path difference is mathematically represented as
[tex]y = \frac{n * \lambda * D}{ d}[/tex]
=> [tex]0.1 = \frac{7 * \lambda * 2.00 }{ 3.00 * 10^{-5}}[/tex]
=> [tex]\lambda = \frac{0.1 *3.00 * 10^{-5} }{7 * 2.00 }[/tex]
=> [tex]\lambda = \frac{0.1 *3.00 * 10^{-5} }{7 * 2.00 }[/tex]
=> [tex]\lambda = 2.143 *10^{-7} \ m [/tex]
=> [tex]\lambda = 214.3 \ nm [/tex]
1) The equilibrium constant Kc for the reaction N 2(g) + O 2(g) 2NO(g) at 1200 C is 1.00x 10^-5. Calculate the molar concentration of NO, N2 and O2 in equilibrium at 1200 C in a 1.00L container that initially had 0.114 mol of N2 and 0.114 mol of O2
2) A 2.0 mmol sample of Cl2 was closed inside a 2.0 L reaction vessel and heated to 1000k to study its dissociation into Cl atoms, Kc= 1.2x10^- 7 (a) Calculate the composition of the mixture in equilibrium. What is the percentage of decomposition of Cl2? (b) If 2.0 mmol of F2, Kc= 1.2x10^-4, is placed inside the container instead of chlorine, what will be its equilibrium composition at 1000k? Use your results from (a) and (b) to determine which is the most stable with respect to your atoms, Cl2 or F2, at 1000k
Explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
[tex]\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\N_{2}&0.114&-x&0.114-x\\O_{2}&0.114&-x&0.114-x\\NO&0&+2x&2x\end{array}\right][/tex]
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
[tex]\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\Cl_{2}&2.0&-x&2.0-x\\Cl&0&+2x&2x\end{array}\right][/tex]
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
[tex]\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\F_{2}&2.0&-x&2.0-x\\F&0&+2x&2x\end{array}\right][/tex]
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.
Which best illustrates the electromagnetic force in action?
-a football being kicked
-leaves falling from tree
-flashlight
-neutron beta particle and proton
Answer:
neutron beta particle and proton (last option in the list)
Explanation:
The neutron beta particle and proton inside a neutron is a clear example of a negative particle (beta particle) and a positive particle (proton) experiencing electromagnetic force (attraction between positive and negative charges) at a very short distance.
Answer:
I'm pretty sure it's the flashlight because electromagnetic force produces electricity.