Which of the following describes what happens to the solubility of a slightly soluble ionic compound when a common ion is added to the solution?
a) The solubility of the ionic compound is reduced.
b) The ionic compound dissolves more rapidly.
c) The solubility of the ionic compound is increased.
d) There is no effect on the solubility of the ionic compound.
e) More of the ionic compound dissolves.

Answers

Answer 1

Answer:

a) The solubility of the ionic compound is reduced.

Explanation:

Let AB be the ionic compound . It will ionise as follows in solution .

         AB    ⇄    A⁺  +  B⁻

In solution AB , A⁺ and B⁻ maintain a state of equilibrium . Now if we add A⁺ ion as common ion to the solution , the equilibrium will be shifted to the left ie less of AB will ionise to maintain equilibrium . Hence the solubility of AB will be reduced .

Answer 2

The solubility of an ionic compound reduces when any common ion is being added to any solution.

Solubility:

Solubility my be defined as the act of dissolving anything in it. It is the ability of a substance to dissolve a solvent in order to form a solution.

Ionic compound :

Ionic compounds are chemical compounds.They are made up of ionic compounds which held them together.

When some common ion adds into a solution, the solubility of a slightly soluble ionic compound gets reduced due to :

common ion effectreverse reaction to the ionization process

Learn More :

https://brainly.com/question/24057916

Which Of The Following Describes What Happens To The Solubility Of A Slightly Soluble Ionic Compound

Related Questions

Witch two substances are needed for cellular respiration

Answers

Answer:

Oxygen and glucose

Explanation:

____________

What type of matter is pepperoni pizza

Answers

Answer:

Heterogeneous Mixture. Have a good day! =)

Explanation:

What is the density of an object with a mass of 83 g and a volume of 34 mL?
Type your answer with at least 2 decimal places.

Answers

The density of an object with a mass of 83g and volume of 34 mL is 152.40
Really hope this helps you :)

Calculate the Ka for the following acid. Determine if it is a strong or weak acid.
HNO2(aq) dissolves in aqueous solution to form H+(aq) and NO2−(aq). At equilibrium, the concentrations of each of the
species are as follows:
[HNO2]=0.68M
[H+]=0.022M
[NO2−]=0.022M
Calculate the for the following acid. Determine if it is a strong or weak acid.
dissolves in aqueous solution to form and . At equilibrium, the concentrations of each of the species are as follows:
a) Ka=7.1×10−4; This is a weak acid because the acid is not completely dissociated in solution.
b) Ka=1405; This is a strong acid because the Ka is very large.
c) Ka=1405; This is a weak acid because the acid is not completely dissociated in solution.
d) Ka=7.1×10−4; This is a strong acid because the acid is completely dissociated in aqueous solution.

Answers

Answer:

a) Ka= 7.1 × 10⁻⁴; This is a weak acid because the acid is not completely dissociated in solution.

Explanation:

Step 1: Write the dissociation reaction for nitrous acid

HNO₂(aq) ⇄ H⁺(aq) and NO₂⁻(aq)

Step 2: Calculate the acid dissociation constant

Ka = [H⁺] × [NO₂⁻] / [HNO₂]

Ka = 0.022 × 0.022 / 0.68

Ka = 7.1 × 10⁻⁴

Step 3: Determine the strength of the acid

Since Ka is very small, nitrous acid is a weak acid, not completely dissociated in solution.

hich of these processes are chemical reactions? boiling an egg crushing spices vegetables rotting chopping vegetables dew forming

Answers

Answer:

Boiling an egg is a chemical reaction

Vegetable rotting is a chemical reaction.

Chemical reaction: In this Chemical reaction takes place and new products is formed.

Explanation:

Boiling an egg is a chemical reaction

Vegetables rotting is a chemical reaction

In a chemical change chemical reaction occurs and new products are formed

Hope this helped! :)

a) A reaction container holds 5.33 g of P4 and 3.77 g of O2 and reaction A occurs. If enough oxygen is available then the P4O6 reacts further to undergo reaction B. What is the limiting reactant for the formation of P4O6? b) What mass of P4O6 is produced (theoretical yield in grams)? c) If 7.12g of P4O6 were obtained what is the percent yield? d) Will reaction B occur? Why or why not? What mass of excess reactant is left in the reaction container?

Answers

The given question is incomplete, the complete question is:

Balance the following chemical equations: A) P4+ O2 → P406 B) _P406+ LO2 → P4010 a) A reaction container holds 5.33 g of P4 and 3.77 g of O2 and reaction A occurs. If enough oxygen is available then the P406 reacts further to undergo reaction B. What is the limiting reactant for the formation of P406? b) What mass of P406 is produced (theoretical yield in grams)? c) If 7.12g of P406 were obtained what is the percent yield? d) Will reaction B occur? Why or why not? What mass of excess reactant is left in the reaction container?

Answer:

The balanced reaction will be,

A) P₄ + 3O₂ ⇒ P₄O₆

B) P₄O₆ + 2O₂ ⇒ P₄O₆

a) Based on the given information, the reaction container holds 5.33 grams of P₄ and 3.77 grams of oxygen. Thus, the moles of P₄ will be,

Moles = mass of P₄/Molar mass of P₄ = 5.33 grams/124 g/mole = 0.043 mole

Now the moles of O₂ will be,

Moles = mass of O₂/Molar mass of O₂ = 3.77 grams/32 g/mol = 0.112 mole

Now the moles of P₄O₆ formed when 0.043 moles of P₄ react completely will be = 1/1 × 0.043 = 0.043 mole of P₄O₆

Similarly, the moles of P₄O₆ formed, when 0.112 moles of O₂ react completely will be = 1/3 × 0.112 = 0.0373 mole of P₄O₆

Thus, from the analysis, the maximum moles of P₄O₆ formed will be 0.0373 moles. Therefore, oxygen will be the limiting reagent, which will react completely in the reaction.

b) From the above findings, the maximum moles of P₄O₆ produced is 0.0373 mole. Thus, the theoretical yield of P₄O₆ produced will be,

= Moles of P₄O₆ × Molar mass of P₄O₆

Theoretical yield = 0.0373 mole × 220 g/mole = 8.206 grams

c) Based on the given information, the actual mass of P₄O₆ produced is 7.12 grams.

Hence, percent yield = Actual yield/Theoretical yield * 100

= 7.12/8.206 × 100 = 86.77 %

d) In the given case, reaction B will not take place. This is due to the fact that oxygen is not left for reaction B, which was the limiting regent for reaction A. Here P₄ is the excess reactant, which was left in the reaction.

The initial moles of P₄ is 0.043, O₂ is 0.112, and P₄O₆ is O. The final moles of P₄ is 0.043 -1/3 × 0.112 = 0.0057 mole, O₂ is 0, and P₄O₆ is 0.0373 mole.

Thus, moles of P₄ left is 0.0057 mole. Hence, the mass of P₄ left will be,

= 0.0057 mole × Molar mass of P₄

= 0.0057 mole × 124 g/mole = 0.7068 grams.

how does matter form different types of mixtures?

Answers

Answer:

pure substances and mixtures

Explanation:

pure substances are further broken down into elements and compound....... A mixture is composed of different types of atoms or molecules that are not chemically bonded.

Heterogeneous and homogeneous mixtures are the two types of mixtures. While homogeneous mixtures seem consistent throughout, heterogeneous mixtures have clearly discernible components. A solution, which can be a solid, liquid, or gas, is the most typical kind of homogenous mixture.

Explain about the types of mixtures?

Mixtures are materials made up of two or more different types of matter. Physical means can be used to separate them. Examples include a salt-water solution, a sugar-water solution, various gases, air, etc. The many components of any mixture do not come together by any sort of chemical transformation.

Solutions, suspensions, and colloids are the three categories into which mixtures can be divided based on particle size. A mixture's constituent parts maintain their unique physical characteristics

Answer:

both pure materials and mixes

Explanation:

The breakdown of pure substances into their component components and compounds continues. Different kinds of unchemically linked atoms or molecules make up a mixture.

To learn more about types of mixtures refer to:

https://brainly.com/question/24869423

#SPJ2

A sheet of aluminum foil weighs 2.07g. If the sheet is 24cm long and 20cm wide, how thick is the sheet in micrometers? The density of aluminum is 2.7 g/cm3.

Answers

Answer:

[tex]h=1.60\mu m[/tex]

Explanation:

Hello,

In this case, given the density and the mass of the aluminum foil, we can compute the occupied volume as shown below:

[tex]\rho =\frac{m}{V}\\ \\V=\frac{m}{\rho}=\frac{2.07g}{2.7g/cm^3} =0.767cm^3[/tex]

Next, since the volume is defined as:

[tex]V=24cm*20cm*h[/tex]

Whereas [tex]h[/tex] accounts for its thickness, we can find it to be:

[tex]h=\frac{V}{24cm*20cm}=\frac{0.767cm^3}{20cm*24cm}\\ \\h=1.60x10^{-3}cm*\frac{10000\mu m}{1cm} \\\\h=1.60\mu m[/tex]

Regards.

Calculate the pZn of a solution prepared by mixing 25.0 mL of 0.0100 M EDTA with 50.0 mL of 0.00500 M Zn2 . Assume that both the Zn2 and EDTA solutions are buffered with 0.100 M NH3 and 0.176 M NH4Cl.

Answers

Answer:

[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]

Explanation:

Using the approach of Henderson-HasselBalch equation, we have :

[tex]pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}[/tex]

where;

the pKa of [tex]NH^+_4[/tex] = 9.26

concentration of [tex]NH_3[/tex] = 0.100 M

concentration of [tex]NH_4Cl[/tex] = 0.176 M

the pH of the buffered solution is :

[tex]pH = 9.26 + log \dfrac{[0.100]}{[0.176]}[/tex]

[tex]pH = 9.26 + log (0.5682)[/tex]

[tex]pH = 9.26 +(-0.2455)[/tex]

[tex]pH =9.02[/tex]

The Chemical equation for the reaction of [tex]Zn ^{2+}[/tex] and EDTA is :

[tex]Zn^{2+}_{(aq)} + Y^{4-}_{(aq)} \iff ZnY^{2-} _{(aq)}[/tex]

Here;

[tex]Y^{4-}_{(aq)}[/tex] denotes the fully deprotonated form of the EDTA

The formation constant [tex]K_f[/tex] of the equation for the reaction can be represented as:

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex]      ----- (1)

The logarithm of the formation constant of Zn - EDTA complex = 16.5

[tex]K_f[/tex]  = [tex]10^{16.5}[/tex]

[tex]K_f[/tex]  = [tex]3.16 \times 10^{16}[/tex]

Since the formation constant in the above equation signifies that the EDTA is present in  [tex]Y^{4-}[/tex],

Then:

[tex]\alpha _{Y^{4-} }= \dfrac{Y^{4-}}{C_{EDTA}}[/tex]

[tex]{Y^{4-}}= \alpha_ {Y^{4-}} \times {C_{EDTA}}[/tex]

From (1)

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex]  

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \ \alpha_ {Y^{4-}} \times {C_{EDTA}}}[/tex]

[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

where;

[tex]K_f'[/tex] = conditional formation constant

[tex]\alpha _Y{^4-}[/tex] = the fraction of EDTA that exit in the form of the presences of the 4 charges .

So at equivalence point :

all the [tex]Zn^{2+}[/tex] initially in titrand  is now present in [tex]ZnY^{2-}[/tex]

[tex]K_f' = K_f \times \alpha _Y{^4-}[/tex]

Obtaining the data for the value of [tex]\alpha _Y{^4-}[/tex] at the reference table:

[tex]\alpha _Y{^4-}[/tex]  =  [tex]5.4 \times 10^{-12}[/tex]

[tex]K_f' = 3.16 \times 10^{16} \times 5.4 \times 10^{-2}[/tex]

[tex]K_f' = 1.7064 \times 10^{15}[/tex]

To calculate the moles of  EDTA ,[tex]Zn^{2+}[/tex]  , [tex]ZnY^{2-}[/tex] ; we have:

moles of  EDTA = 0.0100 M × 0.025 L

moles of  EDTA = [tex]2.5 \times 10^{-4} \ mole[/tex]

moles of [tex]Zn^{2+}[/tex] = 0.00500 M  × 0.050 L

moles of [tex]Zn^{2+}[/tex] = [tex]2.5 \times 10^{-4} \ mole[/tex]

moles of  [tex]ZnY^{2-}[/tex]  =  [tex]\dfrac{initial \ mole}{total \ volume}[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.025 + 0.050 }[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.075 }[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = 0.0033333 M

Recall that:

[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

[tex]K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

Assume Q² is the amount of complex dissociated in [tex]ZnY^{2-}[/tex]

[tex]ZnY^{2-} \iff Zn^{2+} + C_{EDTA}[/tex]  

i.e [tex]Q^2 = Zn^{2+} + C_{EDTA}[/tex]

[tex]1.707 \times 10^{15}= \dfrac{0.0033333}{Q}[/tex]

[tex]Q= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]

[tex]Q^2= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]

[tex]Q^2= 1.9527 \times 10^{-18}[/tex]

[tex]Q= \sqrt{1.9527 \times 10^{-18}}[/tex]

Q = [tex]1.397 \times 10^{-9}[/tex] M

[tex][Zn^{2+}]= 1.39 \times 10^{-9} \ M[/tex]

[tex]pZn ^{2+} =- log [Zn^{2+}][/tex]

[tex]pZn ^{2+} = - log (1.39 \times 10^{-9} ) \ M[/tex]

[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]

Write the structural and condensed formulas as well as the names for all isomers of C3H7Cl and C3H6Cl2.?

Answers

Answer:

[tex]C_3H_7Cl[/tex] = Two structures

[tex]C_3H_6Cl_2[/tex] = Four structures

Explanation:

We must remember that in an isomer we have the same molecular formula but different structures. Thus, for the molecule [tex]C_3H_7Cl[/tex] we can draw a linear structure of 3 carbons and change the position of the chlorine atom, obtaining two different structures.

For the molecule [tex]C_3H_6Cl_2[/tex], we can use similar logic. Place a chain of 3 carbons and change the position of the chlorine atoms in such a way that for this formula we will have 4 different structures.

See figures 1 and 2 for further explanations.

The percent by mass of methanol (MM = 32.04 g/mol) in an aqueous solution is 21.1%. What is the molality of the methanol solution?

Answers

Answer:

Molality of the methanol solution = 8.33 m

Explanation:

Given:

Mass % = 21.1 %

Molar mass of methanol = 32.04 g / mol

Find:

Molality of the methanol solution?

Computation:

Moles of methanol = Mass / Molar mass

Moles of methanol =  = 21.1 / 32.04

Moles of methanol = 0.658

Assume.

Mass of solution = 100 g

Mass of solvent  = 100 -21.1 = 78.9 g  = 0.0789 kg

Molality of the methanol solution = 0.658 / 0.0789

Molality of the methanol solution = 8.33 m

The molality of the methanol solution will be "8.33 m".

Given values:

Mass percentage = 21.1%Methanol's molar mass = 32.04 g/mol

Now,

Moles of methanol:

= [tex]\frac{Mass}{Molar \ mass}[/tex]

= [tex]\frac{21.1}{31.04}[/tex]

= [tex]0.658[/tex]

then,

Mass of solution:

= [tex]100-21.1[/tex]

= [tex]78.9 \ g \ or \ 0.0789 \ kg[/tex]

hence,

The molality will be:

= [tex]\frac{0.658}{0.0789}[/tex]

= [tex]8.33 \ m[/tex]

Thus the answer above is correct.

Learn more about molality here:

https://brainly.com/question/17218475

What energy transfer is occurring when a battery powered toy rolls across the floor ?

Answers

the energy transfer would be positive

A buffer solution is 0.413 M in HF and 0.237 M in KF. If Ka for HF is 7.2×10-4, what is the pH of this buffer solution?

Answers

Answer:

2.90

Explanation:

Any buffer system can be described with the reaction:

[tex]HA~->~H^+~+~A^-[/tex]

Where [tex]HA[/tex] is the acid and [tex]A^-[/tex] is the base. Additionally, the calculation of the pH of any buffer system can be made with the Henderson-Hasselbach equation:

[tex]pH=pKa~+~Log\frac{[A^-]}{[HA]}[/tex]

With all this in mind, we can write the reaction for our buffer system:

[tex]HF~->~H^+~+~F^-[/tex]

In this case, the acid is [tex]HF[/tex] with a concentration of 0.413 M and the base is [tex]F^-[/tex] with a concentration of 0.237 M. We can calculate the pKa value if we do the "-Log Ka", so:

[tex]pKa~=~-Log(7.2X10^-^4)=~3.14[/tex]

Now, we can plug the values into the Henderson-Hasselbach

[tex]pH=~3.14~+~Log(\frac{[0.237~M]}{[0.413~M]})~=~2.90[/tex]

The pH value would be 2.90

I hope it helps!

Al2O3 (s) + 6 NaOH (aq) + 12HF (g) → 2 Na3AlF6 (s) + 9 H2O (l) In an experiment; 6.55 g Al2O3 and excess HF were dissolved in 1.75 L of 0.15 M NaOH. If 20 g Na3AlF6was obtained, a Which one is the limiting reagent? b What is the actual yield? c What is the theoretical yield? d What is the percent yield for this experiment?

Answers

Answer:

A.  NaOH

B.  20 g

C.  18.4 g

D.  108%

Explanation:

Al₂O₃  +  6 NaOH  +  12 HF  ⇒  2 Na₃AlF₆  +  9 H₂O

A.  Since you have excess HF, this is not the limiting reagent.  The two possibilities are Al₂O₃ and NaOH.  Find out how many moles you have of each.  Then, use the mole ratio in the chemical equation to find out how much product each reagent can produce.  The reagent the produces the least is the limiting reagent.  The molar mass of Al₂O₃ is 101.96 g/mol.

(6.55 g Al₂O₃)/(101.96 g/mol Al₂O₃) = 0.06424 mol Al₂O₃

(0.06424 mol Al₂O₃) × (2 mol Na₃AlF₆/1 mol Al₂O₃) = 0.12848 mol Na₃AlF₆

(1.75 L NaOH) × (0.15 M NaOH) = 0.2625 mol NaOH

(0.2625 mol NaOH) × (2 mol Na₃AlF₆/6 mol NaOH) = 0.0875 mol Na₃AlF₆

NaOH produces less product, making it the limiting reagent.

B.  The actual yield is 20 g.  This information is given in the problem.

C.  Since you know how much product you will get, convert moles of Na₃AlF₆ to grams to find actual yield.  Use the value found for Na₃AlF₆ that you got from the limiting reagent.  The molar mass is 209.94 g/mol.

(0.0875 mol Na₃AlF₆) × (209.94 g/mol Na₃AlF₆) = 18.4 g Na₃AlF₆

D.  To find the percent yield, divide the actual yield by the theoretical yield  and multiply by 100%.

(20 g)/(18.4 g) × 100% = 108%

If your percent yield is greater than 100% when performing a reaction, there has been a mistake somewhere.  Either you recorded the numbers incorrectly or there has been some human error in your experiment.  This might be the right answer for this problem, but you might want to double check to make sure the numbers you gave me were right.

Which of the following compounds will have the highest molar solubility in pure water?

a. PbS, Ksp = 9.04 × 10^-29
b. CuS, Ksp = 1.27 × 10^-36
c. Al(OH)3, Ksp = 3 × 10^-34
d. ZnS, Ksp = 1.6 × 10^-24
e. Ag2S, Ksp = 8 × 10^-4

Answers

Answer:

ZnS, Ksp=2.0×10−25

Explanation:

The Ksp is a constant that let us know the capacity of the compound to easily dissociates in water. The higher the Ksp, the more soluble the compound is. In the exercise giving, the highest Ksp is 2.0×10−25, that means ZnS will dilutes easily than others

Fructose‑2,6‑bisphosphate is a regulator of both glycolysis and gluconeogenesis for the phosphofructokinase reaction of glycolysis and the fructose‑1,6‑bisphosphatase reaction of gluconeogenesis. In turn, the concentration of fructose‑2,6‑bisphosphate is regulated by many hormones, second messengers, and enzymes.

Answers

Answer:

Activate glycolysis/Inhibit gluconeogenesis: Increased levels of fructose-2,6-bisphosphate, activation of PFK-2

Activate gluconeogenesis/Inhibit glycolysis: Increased levels of glucagon, Increased levels of cAMP, Activation of fructose-2,6-bisphosphatase (FBPase-2)

Note: The question is incomplete. The complete question is given below and in the attachment.

Fructose‑2,6‑bisphosphate is a regulator of both glycolysis and gluconeogenesis for the phosphofructokinase reaction of glycolysis and the fructose‑1,6‑bisphosphatase reaction of gluconeogenesis. In turn, the concentration of fructose‑2,6‑bisphosphate is regulated by many hormones, second messengers, and enzymes. How do the following affect glycolysis and gluconeogenesis?

Explanation:

Fructose-2,6-bisphosphate is an allosteric effector for the enzymes phosphofructokinase-1 (PFK-1) and fructose-1,6-bisphosphatase (FBPase-1). It increases the affinity of PFK-1 for fructose-6-phosphate thereby activating glycolysis. However, it reduces the affinity of FBPase-1 for its substrate, fructose-1,6-bisphosphate thereby inhibiting gluconeogenesis.

Activation of phosphofructokinase-2 activates glycolysis and inhibits gluconeogenesis by catalyzing the phosphorylation of fructose-6-phosphate to form fructose-2,6-bisphosphate.

Increased levels of glucagon stimulates the synthesis of cAMpP which activates cAMP-dependent ptrotein kinase which phosphorylates the bifunctional enzyme PFK-2/FBPase-2. The phosphorylation of this enzyme inhibits its PFK-2 activity and activates its FBPase-2 activity. This results in the activation of gluconeogenesis and inhibition of glycolysis.

Fructose-2,6-bisphosphatase breaks down fructose-2,6-bisphosphate to fructose-6-phospshate and a phosphoryl group. This results in the activation of gluconeogenesis and the inhibition of glycolysis.

The quantity of antimony in an ore can be determined by an oxidation-reduction titration with an oxidizing agent. The ore is dissolved in hot, concentrated acid and passed over a reducing agent so that all the antimony is in the form Sb3 (aq). The Sb3 (aq) is completely oxidized by an aqueous solution of BrO3–(aq). Complete and balance the equation for this reaction in acidic solution.
6H+ +Bro3- +3Sb3+----------> Br- +3Sb5+3H2O

Answers

Answer:

3Sb^3+(aq) + BrO3^-(aq) + 6H^+(aq)----->3Sb^5+(aq) + Br^-(aq) 3H2O(l)

Explanation:

When we want to balance redox reaction equations, we must ensure that the number of electrons lost in the oxidation half reaction equation is equal to the number of electrons gained in the reduction half reaction equation.

After we have done this, we can now write the overall balanced reaction equation without including the number of electrons lost or gained. Hence;

Oxidation half equation;

3Sb^3+(aq) -----> 3Sb^5+(aq) +6e

Reduction half equation;

BrO3^-(aq) + 6H^+(aq) + 6e ----> Br^-(aq) 3H2O(l)

Overall balanced reaction equation;

3Sb^3+(aq) + BrO3^-(aq) + 6H^+(aq)----->3Sb^5+(aq) + Br^-(aq) 3H2O(l)

Consider the reaction of 1-butanol with K2Cr2O7, H2SO4, heat. Draw only the organic product derived from 1-butanol.

Answers

Answer:

Butanoic acid.

Explanation:

Hello,

In this case, when a primary alcohol such as 1-butanol (OH is bonded to a primary carbon) is oxidized in the presence of a strong oxidizing media such as potassium dichromate (K2Cr2O7) and sulfuric acid, the stepwise oxidation goes to the corresponding aldehyde with a further oxidation to the corresponding carboxylic acid:

[tex]R-CH_2-OH\longrightarrow R-COH\longrightarrow R-COOH[/tex]

Therefore, on the attached picture you can find that the formed aldehyde is butanal and the inly organic product, due to the strong oxidizing media is finally butanoic acid.

Best regards.

Which of the following solutions would have the highest osmotic pressure?

a) 0.35 m CH4N2O

b) pure water

c) 0.15 m Zn(CH3COO)2

d) 0.10 m Cr2(SO4)3

e) 0.16 m BaI2

Answers

Answer:

Option d. 0.10 m Cr₂(SO₄)₃

Explanation:

Formula for the osmotic pressure is determined as:

π = M . R . T . i

So you have to take account the i (Van't Hoff factor, numbers of ions dissolved)

CH₄N₂O → 0.35 m

Urea is an organic compound, so the i value is 1

H₂O → The i is also 1Zn(CH₃COO)₂ → 0.15 m

Zync acetate can be dissociated:

Zn(CH₃COO)₂  →  1Zn²⁺  + 2CH₃COO⁻

In this case, the i is 3. (you see, the stoichiometry of ions)

Cr₂(SO₄)₃ →  0.10 m

Chromium sulfate is dissociated:

Cr₂(SO₄)₃ →  2Cr³⁺  +  3SO₄⁻²

i = 5

BaI₂ → 0.16 m

BaI₂ →  1Ba²⁺  +  2I⁻

i = 3

Calculate the solubility of BaCO3 (a) in pure water and (b) in a solution in which [CO32-] = 0.289 M. Solubility in pure water = M Solubility in 0.289 M CO32- = M

Answers

Answer:

the solubility of BaCO₃ in pure  water  and in a solution is 4.472 × 10⁻⁵ M and 6.9204 × 10⁻⁹ M respectively.

Explanation:

To calculate the solubility of BaCO₃ in:

(a) pure water and (b) in a solution in which [CO₃²⁻] = 0.289 M

The [tex]ksp[/tex] (i.e solubility constant ) for BaCO₃= 2.0 × 10⁻⁹

BaCO₃   → Ba²⁺  + CO₃²⁻

ksp = s × s

s² = ksp

s = [tex]\sqrt{ksp}[/tex]

s = [tex]\sqrt{2.0 \times 10^{-9}}[/tex]

s = 4.472 × 10⁻⁵ M

(b) The solubility of BaCO₃ in a solution in which [CO₃²⁻] = 0.289 M

BaCO₃   → Ba²⁺  + CO₃²⁻

ksp = s × s

2.0 × 10⁻⁹ = s × 0.289

s = 2.0 × 10⁻⁹/0.289

s = 6.9204 × 10⁻⁹ M

Thus, the solubility of BaCO₃ in pure  water  and in a solution is 4.472 × 10⁻⁵ M and 6.9204 × 10⁻⁹ M respectively.

What information about earthquakes do scientists gain from seismographs?

Answers

Answer:

how strong it is

Explanation:

Seismographs are not able to say when earthquake will happen, but they help humans to know how strong it is or if it is happening or not

they learn how strong it is

hen solid NH4NO3 is dissolved in water, the temperature of the water and beaker gets noticeably colder. The formation of an aqueous solution of ammonium nitrate is __________

Answers

Answer:

The formation of an aqueous solution of ammonium nitrate is An endothermic process

Explanation:

An exothermic process produce energy when occurs. As there is energy that is released, the temperature of the arounds increases.

In the other hand, an endothermic process absorb energy when occurs doing the temperature of the around colder than the initial temperature.

As the dissolution of NH₄NO₃ in water make the temperature of the water colder:

The formation of an aqueous solution of ammonium nitrate is An endothermic process

The formation of an aqueous solution of ammonium nitrate is an endothermic process

The question requires us to determine if reaction process is an endothermic or an exothermic reaction.

To do this,

First we will define the terms Endothermic reaction and exothermic reaction

Endothermic reactions are chemical reactions in which the reactants absorb heat energy from the surroundings to form products. These reactions lower the temperature of their surrounding area, thereby creating a cooling effect. They have a net positive standard enthalpy change.

Exothermic reactions are reactions or processes that release energy, usually in the form of heat or light. They have a net negative standard enthalpy change.

From the question,

When solid NH4NO3 is dissolved in water, the temperature of the water and beaker gets noticeably colder. This means it is an endothermic reaction.

Hence, the formation of an aqueous solution of ammonium nitrate is an endothermic process

Learn more here: https://brainly.com/question/2487822

The following equilibrium is formed when copper and bromide ions are placed in a solution:
heat + Cu(H2O)6 ^+2 (blue) + 4Br- <--> 6H2O + CuBr4^-2 (green)
A) answer the following questions when KBr is added to the solution:
1. What will happen to the equilibrium?
2. What will be the color of the solution?
3. Will the solution be hotter or cooler? Explain.
B) What will be the color of the solution when the solution is heated?

Answers

Answer:

A)

1. Reaction will shift rightwards towards the products.

2. It will turn green.

3. The solution will be cooler..

B) It will turn green.

Explanation:

Hello,

In this case, for the stated equilibrium:

[tex]heat + Cu(H_2O)_6 ^{+2} (blue) + 4Br^- \rightleftharpoons 6H_2O + CuBr_4^{-2} (green)[/tex]

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:

A)

1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.

2. The formation of the green complex is favored, therefore, it will turn green.

3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.

B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.

Regards.

which of the following changes are chemical changes?
A water if frozen
B water is heated up
C gasoline is burned
D water is boiled
E gasoline is evaporated​

Answers

Answer:

the answer is C.

Explanation:

this is because burning anything is going to change the make-up of the object

The following compounds have similar molecular weights. Which has the highest boiling point?
A. CH3OCH3
B. C2H5OH
C. CH3CH2CH3
D. CH3CH=O

Answers

Answer:

[tex]\Huge \boxed{\mathrm{C_2H_5OH}}[/tex]

Explanation:

CH₃OCH₃ (Dimethyl ether) has a boiling point of -23 °C

C₂H₅OH (Ethanol) has a boiling point of 78.37 °C

CH₃CH₂CH₃ (Propane) has a boiling point of -42 °C

CH₃CHO (Acetaldehyde) has a boiling point of 20.2 °C

C₂H₅OH (Ethanol) has the highest boiling point.

Which one of the following statements a about scientific hypothesis is FALSE? A scientific hypothesis is an educated guess about why something happens. In order to be useful, a scientific hypothesis must be testable in a way that is replicable by other scientists. The previously known outcome of an observation or experiment can be used as solid proof that a newly-created scientific hypothesis is absolutely true. A scientific hypothesis is an explanation for a natural phenomenon.

Answers

Answer:

C). The previously known outcome of an observation or experiment can be used as solid proof that a newly-created scientific hypothesis is absolutely true.

Explanation:

A Scientific hypothesis is characterized as the proposed explanation or an educated guess about a natural phenomenon on the basis of previous knowledge as well as observation. All the given statements are true regarding a scientific hypothesis that it is 'an educated guess which explains the reason why a specific phenomenon occurs', 'being testable in a manner that could be replicated by other', 'an explanation for a natural phenomenon' except for that  the 'truth of a scientific hypothesis can never be assured completely with a solid proof as it always has chances of being expanded.' Thus, option C is the correct answer.

What is the density of an object with a mass of 145.8g and an volume of 91.75 mL?

Answers

Answer:

Density = 1.6 g/mL

Explanation:

Density of a substance can be found by using the formula

[tex]Density = \frac{mass}{volume} [/tex]

From the question

mass = 145.8 g

volume = 91.75 mL

Substitute the values into the above formula and solve for the Density

That's

[tex]Density = \frac{145.8}{91.75} [/tex]

= 1.5891

We have the final answer as

Density = 1.6 g/mL

Hope this helps you

An insoluble solid is placed in water and the system allowed to reach equilibrium. The ratio of the rate at which ions join the solution and the rate at which ions join the lattice will be:

Answers

Answer:

One.

Explanation:

Hello,

In this case, the equilibrium condition is characterized by the equality of the rates at which a process happen and the contrary process happen, so its ratio is 1. For instance, a chemical reaction at equilibrium will have a contant ratio of the velocity at which the products are formed and the reactants consumed

However, for the described insoluble solid that is allowed the reach equilibrium, the ratio of the rate at which ions join the solution and the rate at which ions join the lattice will be one since it reaches an equilibrium state.

Best regards.

list any five items that can be found in a Science portfolio​

Answers

Answer:

physical projects

Journal entries

Materials

Lab reports

Artworks

Explanation:

Definition of a Portfolio:

Portfolio can be defined as a physical collection of student work that includes materials such as written assignments, completed tests, artwork, lab reports, physical projects and other material evidence of learning progress and academic accomplishment, including awards and honors,

A portfolio is a long-term form of self reflection and assessment that students do together.

Portfolios are a great way to demonstrate the competencies you would list on a resume or talk about in a science interview

How many milliliters of a 1M nitric acid solution are required to prepare 60mL of 6.7M solution?
A) 400 mL
B) 4mL
C) 0.25 mL
D) none of the above

Answers

Answer:

the number of milliliters of a 1M is 402mL

Explanation:

The computation of the number of milliliters could be determined by using the following formula

As we know that

[tex]V_1\times M_1 = V_2\times M_2[/tex]

where,

V_1 and V_2 are the starting and final volumes

And, the M_1 and M_2 are the starting and the final molarities

Now the V_1 is

[tex]V_1 \times 1M = 60mL \times 6.7M[/tex]

So, the V_1 is 402mL

Hence, the number of milliliters of a 1M is 402mL

Other Questions
Discuss how the worldview that Denby describes helps to account for, and make sense of, the violent and vengeful elements of Homers Iliad that may seem cruel and immoral to a contemporary reader. Real life connection: When we see that the Greek aristocracy uses gods and religion in stories about heroes to inspire and manipulate common men to die in war for the aristocracy, does it make us stop to consider that this could or does happen today in our military wars? 1500 + 30.4 = ? Use the correct number of significant figures. plz plz help me I think of a number, multiply it by 4, add 1 and square the result Given T(x, y)=(x+2, y+5), state the translation S(x, y) that would yield the identity transformation, I=S(T(x,y)). Planes A and B intersect.Vertical plane B intersections horizontal plane A at line k. Line k contains points Y and Z. Line m intersects line n at point W.Which describes the intersection of line m and line n?point Wpoint Xpoint Ypoint Z evaluate the following expression x^2+x when x=5 lines 1-5: paraphrase or state in your own words what bradford is trying to communicate in the first sentence. The equation for distance is d = st i. If a car has a speed of 22.3 m/s and drives for 8.5 seconds, how far does it go? (1 point) There is a triangle called XYZ the measurements are 12m 15m and 9m. What 2 kinds of a triangle is that? This would be helpful if someone answered this! UwU Tanks 30 gram of salt is present in 600 gram of solution what is the concentration of the solution Simplify. (3 + 2) + (4 + 3) = A positive number is 5 times another number, if 21 is added to both numbers, then one of the new numbers becomes twice the other new number, what are the numbers? When a legislative body declares, prescribes, or commands something that is a specific law, it is known as Mrs.Vega brought a new aquarium for her turtles. How much space will the turtles have in the aquarium if the length is 5.2 ft, the width is 1.8 ft and the height is 2 ft? please please help, question is in the picture HELP PLEASE.... Find the volume of this triangular pyramid Volume = 1/3(Area of Base)(Height) Enter only the numerical part of your answer in cubic units. Solve the inequality T > L plus D all divided by B for D. Students can be taught through spatial relationships and images. What is the multiple intelligence? Need Help!!! 30 points! You are monitoring coral growth on a specific site for several months. Over time, you notice that some of the coral colonies are beginning to turn white and die. What process could you infer is happening on the coral reef site? (A) The coral reef is experiencing succession, so over time the coral will continue to die off gradually as the zooxanthellae algae leaves the coral polyps. (B)The coral reef is experiencing succession, so the coral will continue to die off quickly as the zooxanthellae algae leaves the coral polyps. C) The coral reef is experiencing climate change, so the rise in ocean temperatures is causing the coral to bleach as the zooxanthellae algae leaves the coral polyps. (D) The coral reef is experiencing climate change, so the coral will die off from seasonal variation, which has no impact on zooxanthellae algae in the coral polyps. Imagine two planets, Planet A and Planet B, in a distant galaxy. Both planets have the same size but Planet A has more mass than Planet B. Two identical spacecrafts land on each of the planets. Which of the statements is true? The weight of the spacecraft is greater on Planet A but the mass is the same on both planetsThe mass of the spacecraft is greater on Planet A but the weight is the same on both planetsBoth the mass and the weight are greater on Planet A.