Answer:
(S)-3-chloro-2,3-dimethylpentane
Explanation:
When sodium chloride is treated with bromo dimethylpentane in presence of water, then chloro dimethylpentane is formed. This chemical reaction is stable reaction in water because of its solvency.
Cathode rays are beams of?
electrons
protons
anions
neutrons
Answer:
Electrons
Explanation:
Electrons are produced when light with enough energy is directed onto the cathode where electrons are ejected as beam towards the screen.
The volume of a single tantalum atom is 1.20×10-23 cm3. What is the volume of a tantalum atom in microliters?
Answer:
1.20x10⁻²⁰μL
Explanation:
1cm³ is equal to 1milliliter. As we must know, 1milliliter = 1000 microliters, 1000μL. To convert the 1.20x10⁻²³mL we need to use the conversion factor: 1mL = 1000μL.
The volume of tantalum in μL is:
1.20x10⁻²³mL * (1000μL /1L) = 1.20x10⁻²⁰μL
Predict the reactants of this chemical reaction. That is, fill in the left side of the chemical equation. Be sure the equation you submit is balanced. (You can edit both sides of the equation to balance it, if you need to.)
______________ → BaBr2 + H2O
Answer:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Explanation:
We have the products of a reaction and we have to predict the reactants. Since the products are binary salt and water, this must be a neutralization reaction. In neutralizations, acids react with bases. The acid that gives place to Br⁻ is HBr, while the base the gives place to Ba²⁺ is Ba(OH)₂. The balanced chemical equation is:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=[tex]P_4S_6[/tex]
The molar ratio of HPO42- to H2PO4- in a solution is 1.4. Calculate the pH of the solution. Phosphoric acid (H3PO4) is a triprotic acid with 3 pKa values: 2.14, 6.86, and 12.4.
Given is the ratio of conjugate base and conjugate acid of phosphoric acid. pH of a substance is the concentration of the hydrogen ions in its solution and higher this concentration lower is the value of pH.
pKa value is a measure of the strength of acid, it is the negative log of acid dissociation constant Ka.
An atom has 6 protons and 9 neutrons in its nucleus. Calculate the mass number of the atom
Answer:
6+9=15
mass number =15
mass number = no. protons + no. of neutrons
What differences does distillation rely on to separate out parts of a solution?
O A. Different densities
O B. Different molecular masses
C. Different boiling points
O D. Different molecular sizes
Different boiling point.
Because in distillation the substance with lower boiling point is evaporated, leaving the other material(s).
Distillation relies on different boiling points to separate out parts of a solution.
the pressure of a sample of helium in a 0.150 L container is 1520 torr. if the helium is compressed to the volume of 0.012 L without changing the temperature what would be the pressure of the gas
Answer:
19000 torr
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 0.150 L
Initial pressure (P₁) = 1520 torr
Final volume (V₂) = 0.012 L
Temperature = constant
Final pressure (P₂) =?
The final pressure of the gas can be obtained by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
1520 × 0.150 = P₂ × 0.012
228 = P₂ × 0.012
Divide both side by 0.012
P₂ = 228 / 0.012
P₂ = 19000 torr
Thus, the final pressure of the gas is 19000 torr
The enthalpy of Sodium is 235 calories. The enthalpy Chlorine is 435 calories. The enthalpy of Sodium chloride 670 joules, what is the change in enthalpy for this reaction?
Answer:
ΔH = -2446J
Explanation:
Based on the reaction:
2 Na(s) + Cl2(g) → 2NaCl
We can find the enthalpy of this reaction using Hess's law:
The enthalpy of a reaction is equal to the sum of the enthalpy of products times their reaction quotient subtracting the enthalpy of reactants times their reaction quotient. For the reaction of the problem:
ΔH = 2ΔH(NaCl) - [2ΔH(Na) + ΔHCl2)]
ΔH(NaCl) = 670J
ΔH(Na) = 235cal * (4.184J/1cal) = 983J
ΔHCl2 = 435cal * (4.184J/1cal) = 1820J
ΔH = 2*670J - [2*983J + 1820J]
ΔH = 1340J - [3786J]
ΔH = -2446JAnswer:
the heat content of a system at constant pressure
Explanation:
Draw the skeletal structure for: (E)-hept-5-en-2-one
Answer:
Draw the skeletal structure for: (E)-hept-5-en-2-one
Explanation:
The root word hept indicates that the given compound has seven carons in its longest chain.
-en- primary suffix indicates that the compound has one double bond in it.
2-one indicates that the compound has -C=O bond in the second carbon.
The prefix (E) indicates that the highest priority groups are on the opposite direction of the double bond.
The structure of the given molecule is:
The time required to pass one Faraday of electricity through a solution with a current of 0.3A is
Answer:
89.35 hour
Explanation:
Recall :
Charge on 1 electron = 1.6 × 10^-19 C
1 mole contains = 6.023 × 10^23
Therefore, the charge on 1 mole of electron will be :
Charge per electron × 1 mole :
(1.6 × 10^-19) * (6.023 * 10^23) = 96500 C = 1 Farad
1 Farad = 96500 C
Using the formula :
Q = Current(I) * time(t)
Q = I*t
t = Q/I
Current, I = 0.3 A
t = 96500 / 0.3
t = 321666.66 second
t = 321666.66 / 3600 = 89.35 hour
one mole of a perfect gas at 300K as an initial pressure at 15 atm and is allowed to contract isothermally to a pressure of 1atm. calculate the entropy change from this contraction
Answer:
-46.67 J.
Explanation:
We are given;
Initial Pressure = 15atm = 15 × 10^(3) J
Final pressure = 1atm = 1 × 10^(3) J
Temperature = 300k
The pressures were converted to Joules.
Formula for the entropy change is;
∆S_system = ∆S_surrounding = -(dQ)/T
-(dQ)/T = (-(15 × 10^(3)) - (1 × 10^(3))/300)
= -46.67 J.
. The nucleophile in the reaction is _______ b. The Lewis acid catalyst in the reaction is ______ c. This reaction proceeds___________(faster or slower) than benzene. d. Draw the structure of product D
Answer:
a. eletrophile
b. able to impose regioselectivity and stereo selectivity.
c. faster
Explanation:
Necleophile reaction is chemical reaction in which electron rich chemical specie replaces functional group with another electron deficient molecule. Lewis acid catalyst is organic chemical reaction which lewis acid act as electron pair acceptor. Nucleophile reaction proceeds about 25 times more faster than benzene.
a sample of salt has 1.74 moles of sodium chloride. how many formula units of the ionic compound are in the sample?
Answer:
A sample of salt has 1.74 moles of sodium chloride. how many formula units of the ionic compound are in the sample?
Explanation:
Given, 1.74 moles of NaCl.
Since one mole of NaCl consists of --- [tex]6.023 * 10^2^3[/tex] formula units.
Then, 1.74mol of NaCl contains how many formula units of NaCl?
[tex]1.74 mol x \frac{6.023x10^2^3}{1 mol} \\=10.5x10^2^3[/tex]formula units.
Hence, the given sample has 10.5x10^23 formula units.
43.0 mL of 1.49 M perchloric acid is added to 14.0 mL of calcium hydroxide, and the resulting solution is found to be acidic.
29.1 mL of 0.498 M barium hydroxide is required to reach neutrality.
What is the molarity of the original calcium hydroxide solution?
Answer:
2.29 M
Explanation:
Equation of the reaction;
Ca(OH)2(aq) + 2HClO4(aq) → 2H2O(l) + Ca(ClO4)2(aq)
Concentration of acid CA = 1.49 M
Concentration of base CB= ????
Volume of acid VA= 43.0 ml
Volume of base VB= 14.0 ml
Number of moles of acid NA = 2 moles
Number of moles of base NB = 1 mole
CAVA/CBVB = NA/NB
CAVANB =CBVBNA
CB= CAVANB/VBNA
CB= 1.49 × 43.0 × 1/14.0 × 2
CB= 2.29 M
The doctor has ordered Claforan 1 g in 100 ml D5W to run IV piggyback for 30 minutes twice daily. The pharmacy sends Claforn 2 g in a powdered form, which when reconstituted has a concentration of 180 mg Claforan per ml. How much Claforn will you add to the bag of D5W
Answer:
0.111 g
Explanation:
1 g = 1000 mg
Doctor ordered the following concentration of Claforan:
C = 1 g/100 mL x 1000 mg/1 g = 10 mg/mL
If we add 2 g iof Claforan, we obtain:
2 g Claforn ---- 180 mg/mL Claforan
To reach a concentration equal to C (10 mg/mL), we need:
10 mg/mL Claforan x 2 g Claforn/(180 mg/mL Claforan) = 0.111 g Claforn
Therefore, we have to add 0,111 g (111 mg) of Claforn to the bag of 100 ml D5W to obtain the ordered concentration of 10 mg/mL Claforan.
What is the empirical formula of a compound that has a pseudoformula of C3.5H8?
Answer:
The ratio of carbon and hydrogen atoms = 3.5 : 8
= 7 : 16
Then,the empirical formula is C7H16
In the reactionpyruvate lactatethat is catalyzed by the enzyme lactate dehydrogenase, the compound on which the enzyme works, pyruvate, is called the _______.
Answer:
Substrate
Explanation:
In biochemical sciences, a substrate is a substance that is acted upon by an enzyme to yield a product. Enzymes are known for catalyzing biochemical reactions. The substances that are usually worked with during this catalytic process are termed as SUBSTRATES.
Substrates, which are usually changed during the process, binds to the active site on the enzyme and form an enzyme-substrate complex.
According to this question, pyruvate is converted to lactate in a reaction that is catalyzed by the enzyme lactate dehydrogenase. This means that the compound on which the enzyme works, pyruvate, is called the SUBSTRATE.
Determine the molarity of the sodium ions when 78.0 g Na2S is dissolved in water for a final volume of 1.0 L.
Answer:
[Na⁺] = 1.99 M
Explanation:
Na₂S is a ionic salt that can be dissociated.
Dissociation equation is:
Na₂S → 2Na⁺ + S⁻²
1 mol of sodium sulfide can give 2 moles of sodium cation.
We convert moles of salt: 78 g . 1mol / 78.06 g = 0.999 moles
As ratio is 1:2, after dissociation we have (0.999 . 2) = 1.998 moles of Na⁺
Molarity is a type of concentration.
It indicates moles of solute in 1 L of solution and in this case, we have 1 L as final voulme.
Moles of Na⁺ are 1.998 moles. Then molarity (mol/L) is:
M =1.99 mol/L
What is the name for CH 3 CH 2 COCHCH 3 CH(CH 3 ) 2 ?
Answer:
Butanoic acid
Explanation:
The IUPAC name of CH3CH2CH2COOH is:
The IUPAC name for a given compound is Butanoic acid.
From the dropdowns, identify whether the compound contains ionic bonds, covalent bonds, or both. a) CBr4 [ Select ] b) copper(II) sulfate [ Select ] c) N2O3 [ Select ] d) phosphorous trichloride
Answer:
a) Covalent bonds
b) Covalent and ionic bonds
c) Covalent bonds
d) Covalent bonds
Explanation:
Metals and non-metals form ionic bonds (electrons are transferred), whereas nonmetals and nonmetals form covalent bonds.
Identify whether the compound contains ionic bonds, covalent bonds, or both.
a) CBr₄. C and Br are nonmetals. Thus, they form covalent bonds.
b) copper(II) sulfate. Sulfate contains S and O (nonmetals), which are bonded through covalent bonds. Sulfate is bonded to copper (metal) through an ionic bond.
c) N₂O₃. N and O are nonmetals. Thus, they form covalent bonds.
d) phosphorous trichloride. P and Cl are nonmetals. Thus, they form covalent bonds.
How much carbon dioxide is released when it is fully combusted with 4Kg of ethanol with more than enough oxygen? How do you work it out?
Answer:
7.640 kg
Explanation:
Step 1: Write the balanced complete combustion equation for ethanol
C₂H₆O + 3 O₂ ⇒ 2 CO₂ + 3 H₂O
Step 2: Calculate the moles corresponding to 4 kg (4000 g) of C₂H₆O
The molar mass of C₂H₆O is 46.07 g/mol.
4000 g × 1 mol/46.07 g = 86.82 mol
Step 3: Calculate the moles of CO₂ released
86.82 mol C₂H₆O × 2 mol CO₂/1 mol C₂H₆O = 173.6 mol CO₂
Step 4: Calculate the mass corresponding to 173.6 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
173.6 mol × 44.01 g/mol = 7640 g = 7.640 kg
Write the balanced half-equations for silver + oxygen= silver oxide:
Answer: The balanced half-equations for silver + oxygen= silver oxide are:
Oxidation-half reaction: [tex]Ag \rightarrow 2Ag^{+} + 2e^{-}[/tex]
Reduction-half reaction: [tex]O_{2} + 2e^{-} \rightarrow 2O^{-}[/tex]
Explanation:
The word equation is as follows.
silver + oxygen = silver oxide
In terms of chemical formulas this equation can be written as follows.
[tex]Ag + O_{2} \rightarrow Ag_{2}O[/tex]
The removal on electron(s) from an atom, ion or molecule in a chemical reaction is called oxidation.
The gain of electron(s) by an atom, ion or molecule in a chemical reaction is called reduction.
Hence, half-reaction equations for the given reaction is as follows.
Oxidation-half reaction: [tex]Ag \rightarrow 2Ag^{+} + 2e^{-}[/tex]
Reduction-half reaction: [tex]O_{2} + 2e^{-} \rightarrow 2O^{-}[/tex]
As the number of atoms participating in the reaction are equal. Hence, the half-equations are balanced.
Thus, we can conclude that the balanced half-equations for silver + oxygen = silver oxide are:
Oxidation-half reaction: [tex]Ag \rightarrow 2Ag^{+} + 2e^{-}[/tex]
Reduction-half reaction: [tex]O_{2} + 2e^{-} \rightarrow 2O^{-}[/tex]
A hypnotist's watch hanging from a chain swings back and forth every 0.98 s. What is the frequency (in Hz) of its oscillation?
Answer:
1.02 Hz
Explanation:
frequency= (1/t) = (1/0.98) = 1.02 hz
11) Methane and oxygen react to form carbon dioxide and water. What mass of water is formed if 0.80 g of methane reacts with 3.2 g of oxygen to produce 2.2 g of carbon dioxide
13. A mixture of MgCO3 and MgCO3.3H2O has a mass of 3.883 g. After heating to drive off all the water the mass is 2.927 g. What is the mass percent of
Answer:
63.05% of MgCO3.3H2O by mass
Explanation:
of MgCO3.3H2O in the mixture?
The difference in masses after heating the mixture = Mass of water. With the mass of water we can find its moles and the moles and mass of MgCO3.3H2O to find the mass percent as follows:
Mass water:
3.883g - 2.927g = 0.956g water
Moles water -18.01g/mol-
0.956g water * (1mol/18.01g) = 0.05308 moles H2O.
Moles MgCO3.3H2O:
0.05308 moles H2O * (1mol MgCO3.3H2O / 3mol H2O) =
0.01769 moles MgCO3.3H2O
Mass MgCO3.3H2O -Molar mass: 138.3597g/mol-
0.01769 moles MgCO3.3H2O * (138.3597g/mol) = 2.448g MgCO3.3H2O
Mass percent:
2.448g MgCO3.3H2O / 3.883g Mixture * 100 =
63.05% of MgCO3.3H2O by massTo what volume (in mL) would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN?
Answer:
To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN
Explanation:
Dilution is the reduction of the concentration of a chemical in a solution and consists simply of adding more solvent.
In a dilution the amount of solute does not vary. But as more solvent is added, the concentration of the solute decreases, as the volume (and weight) of the solution increases.
In a solution it is fulfilled:
Ci* Vi = Cf* Vf
where:
Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volumeIn this case:
Ci= 1.40 MVi= 20 mLCf= 0.088 MVf= ?Replacing:
1.40 M* 20 mL= 0.088 M* Vf
Solving:
[tex]Vf=\frac{1.40 M* 20 mL}{0.088 M}[/tex]
Vf= 318.18 mL
To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN
Rank the following compounds in order of decreasing boiling point: sodium chloride (NaCl), methane (CH4), and iodomethane (CH3I). Rank from highest to lowest boiling point.
Answer:
CH4< CH4I< NaCl
Explanation
NaCl has the boiling point of 1,413°C ( 2,575°F )
CH3I has a boiling point of 42°C ( 107°F )
CH4 has the boiling point of -161.6°C ( -258.9°F )
Based upon the intermolecular forces present, rank the following substances according to the expected boiling point for the substance.
a. HCl
b. NaCl
c. N2
d. H2O
Platinum is one of the most dense elements (d = 21.5 g/cm3). What is the volume of a 10.0 g sample of the metal?
Answer:
0.465
Explanation:
To find the volume of a substance, divide the mass by the density.
M/D = V
10.0 / 21.5 = 0.4651163
Then round to 3 significant figures: and the density is 0.465