What is the power in a circuit that has a current of 12 amps and a resistance of 100 ohms? a. 14,400 watts b. 8.3 watts c. 144 watts d. 1200 watts

Answers

Answer 1

Answer:

a. 14,400 Watts

Explanation:

Power is current times voltage.

P = IV

Voltage is current times resistance.

V = IR

Substitute:

P = I²R

P = (12 A)² (100 Ω)

P = 14,400 W


Related Questions

A large, cylindrical water tank with diameter 2.40 mm is on a platform 2.00 mm above the ground. The vertical tank is open to the air and the depth of the water in the tank is 2.00 mm. There is a hole with diameter 0.600 cmcm in the side of the tank just above the bottom of the tank. The hole is plugged with a cork. You remove the cork and collect in a bucket the water that flows out the hole.
A) When 1.00 gal of water flows out of the tank, what is the change in the height of the water in the tank?
B) How long does it take you to collect 1.00 gal of water in the bucket?

Answers

Answer:

Explanation:

A ) radius of tank r = 1.2 m

depth of water in the tank = 2 m

1 gal of water =  1 / 264.17 m³

= 3.785 x 10⁻³ m³

Let h be the change in height of water in the tank .

volume of water flowing out

= π r² x h = 3.785 x 10⁻³

3.14 x 1.2² x h = 3.785 x 10⁻³

h = 83.71 x 10⁻⁵ m

= .84 mm .

B )

change in height is negligible .

velocity of efflux of water from the hole at the bottom

v = √ 2 gh

h is height of water level which is 2 m

v = √ (2 x 9.8 x 2 )

= 6.26 m / s

radius of hole = .3 x 10⁻² m

area of cross section

= π r²

= 3.14 x ( .3 x 10⁻² )²

= 28.26 x 10⁻⁶ m²

volume of water flowing through the hole per unit area

= area of cross section x velocity of efflux

= 28.26  x 10⁻⁶ x 6.26

If t be the time required ,

28.26  x 10⁻⁶ x 6.26 x t   = 3.785 x 10⁻³

t = 21.4 s

What amount of heat is required to increase the temperature of 75.0 grams of gold from 150°C to 250°C? The specific heat of gold is 0.13 J/g°C.A. 750 joulesB. 980 joulesC. 1300 joulesD. 1500 joulesE. 2500 joules

Answers

Answer:

B. 980 joules

Explanation:

Given the following data

initial temperature T1= 150 °C

final temperature T2= 250 °C

specific heat of gold c= 0.13 J/g°C

mass of gold m= 75.0 grams

we can use the expression stated below to solve for the quantity of heat

[tex]Q= mc(T2-T1)---------1[/tex]

Substituting our known data into the expression we can solve for the value of Q

[tex]Q= 75*0.13(250-150)---------1\\\\Q= 75*0.13(100)\\\\Q= 975 Joules[/tex]

The quantity of heat need to raise the temperature from 150°C to 250°C  is 975 J

Answer:

B. 980 joules

Explanation:

(II) A baseball pitcher throws a baseball with a speed of 43 m????s. Estimate the average acceleration of the ball during the throwing motion. In throwing the baseball, the pitcher accelerates it through a displacement of about 3.5 m, from behind the body to the point where it is released

Answers

Answer:

a = 264.14 m/s²

Explanation:

From the question;

Initial velocity; u will be 0 m/s since the ball will start from rest.

Final velocity; v = 43 m/s

distance covered by the motion; s = 3.5m

To get the acceleration, we will make use of Newton's third equation of motion which is;

v² = u² + 2as

Making a the subject, we have;

a = (v² - u²)/2s

Plugging in the relevant values to give;

a = (43² - 0)/(2 × 3.5)

a = 264.14 m/s²

The average acceleration of the ball during the throwing motion is 265.14m/s².

In order to get the acceleration, the Newton's third law of motion will be used. This will be:

v² = u² + 2as

We'll make a to be the subject of the formula and this will be:

a = (v² - u²) / 2s

We'll plug in the value into the equation and this will be:

a = (43² - 0) / (2 × 3.5)

a = 1849 / 7

= 264.14 m/s²

Therefore, the acceleration is 265.14m/s.

Read related link on:

https://brainly.com/question/17071337

Water flows through a valve with inlet and outlet velocities of 3 m/s. If the loss coefficient of the valve is 2.0, and the specific weight of water is 9800 N/m3, the pressure drop across the valve is most nearly:

Answers

Answer:

9,000 kg/ms^2

Explanation:

The computation of the pressure fall across the valve is shown below:

It is to be computed by using the following formula

[tex]\Delta P = \frac{1}{2}\times K\times P\times v^2[/tex]

where,

[tex]\Delta P[/tex] = Fall in pressure

k = Coefficent loss

P = Loss of density

V = velocity of water

But before reach to the final solution first we have to determine the loss of density which is

[tex]P = \frac{r}{g}\\\\ = \frac{9,800 N/m^{3}}{9.81 m/s^{2}}\\\\ = 999kg/m^{3}\\\\ = 1000kg/m^{3}[/tex]

Now put all other values to the given formula

So,

[tex]= 2 \times \frac{1}{2} \times 1000 \times 3^2 \\\\ = 9,000 kg/ms^2[/tex]

If you ride quickly down a hill on a bicycle your eardrums are pushed in before they pop back. Why is this?

Answers

Answer:

The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.

Explanation:

First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn.  At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.

If a car is travelling 120 miles southbound for 3 hours, what is the velocity?

Answers

Answer:

40 miles / hour south

Explanation:

120 miles/3 hours = 40 miles / hour

Answer:

v = 40 miles / hour

Explanation:

using velocity formula v = d / t

where d = distance and t = time

      120 miles

v = --------------

       3 hours

v = 40 miles / hour

Land, labor, and capital are examples of...​

Answers

Answer:

The factors of production are resources that are the building blocks of the economy; they are what people use to produce goods and services. Economists divide the factors of production into four categories: land, labor, capital, and entrepreneurship

If the diameter of a radar dish is doubled, what happens to its resolving power assuming that all other factors remain unchanged?

Answers

Answer:

      θ’ = θ₀ / 2

we see that the resolution angle is reduced by half

Explanation:

The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.

The first minimum occurs for m = 1, so the diffraction equation of a slit remains

        a sin θ = λ

in general, the diffraction patterns occur at very small angles, so

        sin θ = θ

          θ = λ / a

in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.

        θ = 1.22 λ /a

In this exercise we are told that the opening changes

         a’ = 2 a

we substitute

          θ ‘= 1.22  λ / 2a

          θ' = (1.22 λ / a) 1/2

          θ’ = θ₀ / 2

we see that the resolution angle is reduced by half

an electromagnetic wave has an electric field with peak value 120. What is the averge energy delievered to a surface

Answers

Answer:

The average energy delivered to a surface is 19.116 W/m².

Explanation:

Given;

maximum electric field, E₀ = 120 v/m

The average energy delivered by the wave to a surface is given by

[tex]I_{avg} = \frac{c\epsilon_ o E_o^2}{2}[/tex]

where;

c is the speed of light, = 3 x 10⁸ m/s

ε₀ is the permittivity of free space = 8.85 x 10⁻¹² c²/Nm²

[tex]I_{avg} = \frac{c\epsilon_ o E_o^2}{2} \\\\I_{avg} = \frac{(3*10^8)(8.85*10^{-12})( 120)^2}{2}\\\\ I_{avg} =19.116 \ W/m^2[/tex]

Therefore, the average energy delivered to a surface is 19.116 W/m².

Two plastic projectiles have the same mass M and speed V when they hit a glass window pane at a right angle. The interaction between both projectiles and the glass pane takes time T. Projectile A bounces off of the window (in the opposite direction) with the same speed V it had at the beginning. Projectile B sticks to the window pane and stops. Describe the likely damage to the glass pane by selecting all the true statements below.

a. Projectile B has the greater likelihood of breaking the glass since its final momentum is smaller
b. Projectiles A & B have the same likelihood of breaking the glass since they have the same initial momentum
c. Projectile A has the greater likelihood of breaking the glass since its momentum change is larger
d. Projectile A has the greater likelihood of breaking the glass since its momentum change is smaller

Answers

Answer:

b. Projectiles A & B have the same likelihood of breaking the glass since they have the same initial momentum

.

c. Projectile A has the greater likelihood of breaking the glass since its momentum change is larger.

Explanation:

for option b, the two projectiles have the same initial mass and velocity, hence they posses the same amount of momentum that if sufficient enough could break the glass.

for option c, projectile A changes direction, maintaining the same speed v. Its momentum changes from from mv to -mv, since its speed changed direction.

the difference in momentum becomes

Δp = -mv - mv = -2mv

this is twice the initial momentum.

projectile B changes momentum from mv to 0

Δp = 0 - mv = -mv.

this is half of the final momentum of projectile A.

Also we know that force is proportional to to the rate of change of momentum, which is greater in projectile A, therefore projectile A impacts more force on the glass. Projectile A therefore has the greater likelihood of breaking the glass since its momentum change is larger.

In certain metal, the stopping potential is found to be 3.70 V. When 235 nm light is incident on the metal, electrons are emitted. What is the maximum kinetic energy given to the electrons in eV and J?

Answers

Answer:

3.7 eV

5.92*10^-19 J

Explanation:

Given that.

Potential difference of the metal, V = 3.7 V

Wavelength of the light, n = 235 nm

maximum kinetic energy given to the electrons is giving them the formula

K(max) = e.V(s), where

KE(max) is the maximum kinetic energy needed

V = potential difference of the metal

KE(max) = e * 3.7

KE(max) = 3.7eV

converting our answer to Joules, we have

3.7eV = 3.7eV * 1.6*10^-19 J/eV

3.7eV = 5.92*10^-19 J

Therefore, the maximum kinetic energy in both eV and Joules is 3.7eV and 5.92*10^-19 Joules respectively

Answer:

Explanation:

d dnnd

A large, cylindrical water tank with diameter 3.00 m is on a platform 2.00 m above the ground. The vertical tank is open to the air and the depth of the water in the tank is 2.00 m. There is a hole with diameter 0.420 cm in the side of the tank just above the bottom of the tank. The hole is plugged with a cork. You remove the cork and collect in a bucket the water that flows out the hole.
A. When 1.00 gal of water flows out of the tank, what is the change in the height of the water in the tank? Express your answer in millimeters.
B. How long does it take you to collect 1.00 gal of water in the bucket? Express your answer in seconds.

Answers

Answer:

1999.46 mm

45.59 s

Explanation:

given that

cylindrical water tank with diameter, D = 3 m

Height of the tank above the ground, h = 2 m

Depth of the water in the tank, d = 2 m

Diameter of hole, d = 0.420 cm

We start by calculating the volume of water in the tank, which is given as

Volume = πr²h

V = (πD²)/4 * h

V = (3.142 * 3²)/4 * 2

V = 28.278/4 * 2

V = 7.07 * 2

V = 14.14 m³

If 1.0 gal of water is equal to 0.0038m³, then

1 gal is 0.0038 = A * h

the area of the tank is 7.07 m²

therefore, 0.0038 = 7.07 * h

h₁ =0.00054 m = 0.54 mm is the height of water that flow out

the change in height of water in the tank = h - h₁ = 2 - 0.00054 = 1.99946 m

b)

Like we stated earlier, 1.0 gal of water is 0.0038m³

to solve this we use the formula

Q = Cd * A * √2gH

where Cd is a discharge coefficient, and is given by 0.9 for water

A is the area of the small hole

A = (πD²)/4

A = (π * 0.0042²)/4

A = 5.54*10^-5 / 4

A = 1.39*10^-5 m²

H= height of the hole from the tank water level = 2m - 0.0042 = 1.9958 m

g = 9.8 m/s²

Q = 0.9 * 1.39*10^-5 m² * √2 * 9.8 * 1.9958

Q = 1.251*10^-5 * 6.25

Q = 7.82*10^-5 m³/s

Q = V/t

t = V/Q = 0.0038m³ / 7.82*10^-5 m³/s

t = 45.59 s

A calculator draws a current of 0.0008 A for 8 min. How much charge flows through it?

Answers

Answer:

The charge that flow through the calculator is 0.384 C

Explanation:

Given;

current drawn by the calculator, I = 0.0008 A

time of current flow, t = 8 min = 8min x 60s = 480 s

The charge that flow through the calculator is given;

q = It

where;

q is the charge that flow through the calculator

I is the current drawn

t is the time

q = 0.0008 x 480

q = 0.384 Coulombs

Therefore, the charge that flow through the calculator is 0.384 C

A 0.20-kg baseball is thrown with a speed of 20 m / s. If the speed of the ball at the start of the throw is zero, calculate the net work during the throw.

Answers

Explanation:

Work = change in energy

W = ½ mv²

W = ½ (0.20 kg) (20 m/s)²

W = 40 J

800 g of water and 160 g of alcohol are placed in a container. Knowing that the density of alcohol is 0.8 g / mL then the density (in g / mL) of the mixture obtained is:

Answers

Answer:

0.96 g/mL

Explanation:

The volume of 800 g of water is:

(800 g) / (1 g/mL) = 800 mL

The volume of 160 g of alcohol is:

(160 g) / (0.8 g/mL) = 200 mL

Density = mass / volume

ρ = (800 g + 160 g) / (800 mL + 200 mL)

ρ = 0.96 g/mL

A 36.5 mA current is carried by a uniformly wound air-core solenoid with 430 turns, a 18.5 mm diameter, and 11.5 cm length. (a) Compute the magnetic field inside the solenoid. (b) Compute the magnetic flux through each turn. Tm2 (c) Compute the inductance of the solenoid. mH (d) Which of these quantities depends on the current?i) magnetic field inside the solenoid ii) magnetic flux through each turn inductance of the solenoid

Answers

Answer:

Explanation:

a )

magnetic field inside the solenoid B = μ₀ n I where n is no of turns per unit length , I is current and  μ₀ = 4 π x 10⁻⁷ .

Putting the values in the equation

B =  4 π x 10⁻⁷ x (430 / .115 )  x 36.5 x 10⁻³

= 1.7  x 10⁻⁴ T  .

b ) magnetic flux through each turn

= B x A where A is cross sectional area of solenoid .

=  1.7  x 10⁻⁴  x π x 9.25²  x 10⁻⁶

= 456.73 x 10⁻¹⁰ Tm² .

c ) Inductance of solenoid

L = flux associated with all turns / current

= 456.73 x 10⁻¹⁰ x 430 / (36.5 x 10⁻³)

= 5381 x 10⁻⁷

= 538 x 10⁻⁶ H

= 538 μH .

d )

magnetic field inside the solenoid depends upon current

magnetic flux through each turn depends upon current

inductance of the solenoid does not depend upon current because current is divided from total flux with solenoid.

A thin rod of mass M and length l hangs from a pivot at its upper end. A ball of clay of mass m and of horizontal velocity v strikes the lower end at right angles andremains stuck (total inelastic collision).

Required:
How high will the rod swing after this collision?

Answers

Answer:

 P = 2923.89 W

Explanation:

Power is

     P = F v

so This exercise will solve them in parts using the conservation of momentum and then using the conservation of energy

To use the conservation of the momentum we must define a system, formed by the bodies, so that the forces during the collision have internal forces and the moment is conserved

initial instant, before the crash

        p₀ = m v

final instant. Right after the crash

       [tex]p_{f}[/tex] = (M + m) v₂

       p₀ =p_{f}

       m v = (M + m) v₂

       v₂ = m / (m + M) v

this is the speed with which two come out, now we can apply the conservation of energy to the system formed by the two bodies together

Starting point. Lower

        Em = K = ½ (M + m) v²

Final point. Highest point

        Em = U = (M + m) g h

        Eo₀ = [tex]Em_{f}[/tex]

         ½ (M + m) v2 = (M + m) g h

          h = 1/2 v2 / g

         

          h = ½ [m / (m + M) v] 2 / g

         

          h = 1/2 (m / m + M) 2 / g we must calculate the force, let's use Newton's second law, let's set a coordinate system with a parallel axis flat and the other axis (y) perpendicular to the plane

X Axis

         Fe - Wₓ = 0

         F = Wₓ

Y Axis

         N - [tex]W_{y}[/tex] = 0

let's use trigonometry for the components of the weight

         sin 6 = Wₓ / W

         cos 6 = [tex]W_{y}[/tex] / W

         Wx = W sin 6

         W_{y}= W cos 6

          F = mg cos 6

          F = 75 9.8 cos 6

          F = 730.97 N

let's calculate the power

        P = F v

        P = 730.97 4.0

        P = 2923.89 W

In the photoelectric effect, electrons are ejected from a metal surface when light strikes it. A certain minimum energy, Emin, is required to eject an electron. Any energy absorbed beyond that minimum gives kinetic energy to the electron. It is found that when light at a wavelength of 540 nm falls on a cesium surface, an electron is ejected with a kinetic energy of 260 x 10-20 1 When the wavelength is 400 nm, the kinetic energy is 1.54 x 10-19 J. (a) Calculate Emin for cesium in joules. (b) Calculate the longest wavelength, in nanometers, that will eject electrons from cesium.

Answers

Answer:

A) E_min = 36.21 × 10^(-20) J

B) 549 nm

Explanation:

A) The formula for energy of a photon is given as;

E = hc / λ

Where;

h is Planck's constant = 6.626 x 10^(-34) J.s

c is the speed of light = 3 × 10^(8) m/s

λ is wavelength

Wavelength is given as; 540 nm = 540 × 10^(-9) m

Thus;

E = (6.626 × 10^(-34) × 3 × 10^(8))/(540 × 10^(-9))

E = 36.81 × 10^(-20) J

We are given kinetic energy as;2.60 x 10^(-20) J

Now formula for E_min is;

E_min = E - K.E

E_min = (36.81 × 10^(-20)) - (2.60 x 10^(-20))

E_min = 36.21 × 10^(-20) J

B) the longest wavelength, in nanometers, that will eject electrons from cesium would have an energy that would be equal to E_min.

Thus,

36.21 × 10^(-20) = (6.626 × 10^(-34) × 3 × 10^(8))/λ

Making λ the subject gives;

λ = (6.626 × 10^(-34) × 3 × 10^(8))/36.21 × 10^(-20) = 549 x 10(-9) = 549 nm

The minimum energy of the electron is [tex]E_{min} = 34.2 \times 10^{(-20)} \;\rm J.[/tex]

The longest wavelength of the electron is 549 nm.

Given that, in the photoelectric effect, electrons are ejected from a metal surface when light strikes it. A certain minimum energy, Emin, is required to eject an electron. Also given wavelength of the light is 540 nm. The kinetic energy ejected by the electron is 260 x 10-20 J.

When the wavelength is 400 nm, the kinetic energy is 1.54 x 10-19 J.

The energy of the electron can be calculated as,

[tex]E = hc/\lambda[/tex]

Where, [tex]E[/tex] is the energy of the electron, [tex]h=6.626\times10^{(-34)} \;\rm Js[/tex] is plank's constant, [tex]c[/tex] is the speed of light that is [tex]3 \times 10^8 \;\rm m/s[/tex] and [tex]\lambda[/tex] is the wavelength.

So the energy of the electron is,

[tex]E = \dfrac{6.626\times 10^{(-34)} \times 3\times 10^8}{540\times 10^{(-9)}}[/tex]

[tex]E = 3.68 \times 10^{(-19)} \;\rm J[/tex]

The energy of the electron is  [tex]E = 3.68 \times 10^{(-19)} \;\rm J[/tex].

The Emin can be calculated as given below.

[tex]E_{min} = E - KE[/tex]

Where [tex]KE[/tex] is the kinetic energy of the electron that is given as [tex]260 \times 10^{(-20)} \;\rm J.[/tex]

So [tex]E_{min} = 3.68\times 10^{(-19)} - 2.60\times 10^{(-20)}[/tex]

[tex]E_{min} = 36.8\times 10^{(-20)} - 2.60\times 10^{(-20)}[/tex]

[tex]E_{min} = 34.2 \times 10^{(-20)} \;\rm J.[/tex]

The minimum energy of the electron is [tex]E_{min} = 34.2 \times 10^{(-20)} \;\rm J.[/tex]

For the longest wavelength, the electron will have its minimum energy that is Emin.

Hence, the longest wavelength can be calculated as given below.

[tex]\lambda = \dfrac {h\times c} {E_{min}}[/tex]

[tex]\lambda=\dfrac{6.626\times 10^{(-34)} \times 3\times 10^8} {34.2 \times 10^{(-20)}}[/tex]

[tex]\lambda = 549 \times 10^{(-9)} \;\rm m\\\lambda = 549 \;\rm nm[/tex]

The longest wavelength of the electron is 549 nm.

For more details, follow the link given below.

https://brainly.com/question/19634968.

How many significant figures are in 246.32

Answers

Answer:5

Explanation:

Decimal :2

Significant notation :2.4632× 10^2

Please answer all and will give Brainly and get points.

Answers

Answer:

16 is D, 17 is A, 18 is C, 19 is B    ( would approve of brainliest)

Explanation:

16 is D, 17 is A, 18 is C, 19 is B

In the First option, distance is constant so D shows the correct graph,

In the second option, distance is increasing with time so, the velocity graph A is correct,

In the third option distance is constantly increasing with time, so C is the correct option.

In the last option distance is decreasing with time, so option B is the correct.

What is Distance time graph?

A distance-time graph is defined as how far an object has traveled in a given amount of time which is a simple line graph that shows the plot of distance versus time on a graph. Distance is plotted on the Y-axis while time is plotted on the X-axis.

The graphs which is shown in the question is distance-time graphs for various types of body motion.

When the body is steady or stationary,When thebody is moving non-uniformly with increasing speed,When the body is moving at a uniform speed, andWhen the body is moving non-uniformly with decreasing speed.

Thus, the correct options for 16, 17, 18 and 19 are D, A, C and B respectively.

Learn more about Distance-time graph, here:

https://brainly.com/question/19836052

#SPJ2

Evaluate the final kinetic energy of the supply spacecraft for the actual tractor beam force, F(x)=αx3+βF(x)=αx3+β.
α=6.1×10^−9 N/m^3
β=−4.1×10^6 N

Answers

Answer:

K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

Explanation:

To find the variation of kinetic energy, let's use the work energy theorem

            W = ΔK

           ∫ F .dx = K -K₀

If the body starts from rest K₀ = 0

           ∫ F dx cos θ = K

Since the force and displacement are in the same direction, the angle is zero, so the cosine is 1

we substitute  and integrate

          α ∫ x³ dx + β ∫ dx = K

          α x⁴ / 4 + β x / 1 = K

we evaluate from the lower limit F = 0 to the upper limit F

         α (x⁴ / 4 -0) + β (x -0) = K

        K = αX⁴ / 4 + β x

        K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

in order to finish the calculation we must know the displacement

Answer:

1.1 x 10^10J

Explanation:

∫x2,x1F(x)dx = ∫7.5 x 10^4 m ,0 (αx3+β)dx.

(αx4/4+βx) 7.5 x 10^4 m, 0

((6.1×10−9N/m3)( 7.5×104m)^4)/4 - (4.1×106N)( 7.5×104m) -0)

= 4.825 x 10^10 - 30.75 x 10^10

= 25.925 x 10^10J

= 2.5925 x 10^11J

The kinetic energy KE2 is,

KE2 = KE1 + ∫x2,x1F(x)dx

       = 2.7×1011J - .5925 x 10^11J

        = 0.1065 x 10^11J

        = 1.1 x 10^10J

If a bicyclist, with initial speed of zero, steadily gained speed until reaching a final speed of 13m/s, how far would she travel during the race (in the same amount of time)?

Answers

Answer:

The distance travel during race is 13 m.

Explanation:

Given that,

Initial speed = 0

Final speed = 13 m/s

Unit time = 1 sec

We need to calculate the distance travel during race

Using formula of distance

[tex]d=vt[/tex]

Where, d = distance

v = velocity

t = time

Put the value into the formula

[tex]d=13\times1[/tex]

[tex]d=13\ m[/tex]

Hence, The distance travel during race is 13 m.

What is the wavelength (in 10-15 m) of a proton traveling at 13.2% of the speed of light?

Answers

Answer:

The wavelength is  [tex]\lambda = 10.01 *10^{-15} \ m[/tex]

Explanation:

From the question we are told that

  The  speed is  [tex]v = 0.132 c[/tex]

Where c is the speed of light with value  [tex]c = 3.0 *10^{8} \ m/s[/tex]

Generally the wavelength is mathematically represented as

    [tex]\lambda = \frac{h}{m* v }[/tex]

where m is the mass of the proton with the value  [tex]m = 1.6726 ^{-27} \ kg[/tex]

           h is the Planck's constant with value  [tex]h = 6.626 *10^{-34} \ J\cdot s[/tex]

=>    [tex]\lambda = \frac{6.626 *10^{-34}}{1.6726 *10^{-34}* 0.132*3.0*10^8 }[/tex]

=>   [tex]\lambda = 10.01 *10^{-15} \ m[/tex]

Monochromatic light with wavelength 588 nm is incident on a slit with width 0.0351 mm. The distance from the slit to a screen is 2.7 m. Consider a point on the screen 1.3 cm from the central maximum. Calculate (a) θ for that point, (b) α, and (c) the ratio of the intensity at that point to the intensity at the central maximum.

Answers

Answer:

0.276

0.9

0.756

Explanation:

Given that

Wavelength of the light, λ = 588 nm

Distance from the slit to the screen, L = 2.7 m

Width of the slit, a = 0.0351 mm

a point on the screen, y = 1.3 cm = 0.013 m

Sinθ = y/L

Sinθ = 0.013/2.7

sinθ = 0.0081

θ = sin^-1 0.00481

θ = 0.276°

α = (π.a.sinθ)/λ

α = (3.142 * 3.51*10^-5 * sin 0.276) / 588*10^-9

α = 5.3*10^-7 / 588*10^-9

α = 0.9 rad

I/i(m) = ((sinα)/α)²

I/I(m) = ((sin 0.9) / 0.9)²

I/I(m) = (0.783/0.9)²

I/I(m) = 0.87²

I/I(m) = 0.756

Note, our calculator has to be set in Rad instead of degree for part C, to get the answer

A ball bearing of radius of 1.5 mm made of iron of density
7.85 g cm is allowed to fall through a long column of
glycerine of density 1.25 g cm. It is found to attain a
terminal velocity of 2.25 cm s-'. The viscosity of glycerine is

Answers

Answer:

[tex] \boxed{\sf Viscosity \ of \ glycerine \ (\eta) = 14.382 \ poise} [/tex]

Given:

Radius of ball bearing (r) = 1.5 mm = 0.15 cm

Density of iron (ρ) = 7.85 g/cm³

Density of glycerine (σ) = 1.25 g/cm³

Terminal velocity (v) = 2.25 cm/s

Acceleration due to gravity (g) = 980.6 cm/s²

To Find:

Viscosity of glycerine ([tex] \sf \eta [/tex])

Explanation:

[tex] \boxed{ \bold{v = \frac{2}{9} \frac{( {r}^{2} ( \rho - \sigma)g)}{ \eta} }}[/tex]

[tex] \sf \implies \eta = \frac{2}{9} \frac{( {r}^{2}( \rho - \sigma)g )}{v} [/tex]

Substituting values of r, ρ, σ, v & g in the equation:

[tex] \sf \implies \eta = \frac{2}{9} \frac{( {(0.15)}^{2} \times (7.85 - 1.25) \times 980.6)}{2.25} [/tex]

[tex]\sf \implies \eta = \frac{2}{9} \frac{(0.0225 \times 6.6 \times 980.6)}{2.25} [/tex]

[tex]\sf \implies \eta = \frac{2}{9} \times \frac{145.6191}{2.25} [/tex]

[tex]\sf \implies \eta = \frac{2}{9} \times 64.7196[/tex]

[tex]\sf \implies \eta = 2 \times 7.191[/tex]

[tex]\sf \implies \eta = 14.382 \: poise[/tex]

When stable air is forced to rise, any clouds that are produced are generally thin and flat lying.
a) true
b) false

Answers

Answer:

a) true

Explanation:

One of the important factors behind the formation of clouds is the stability of the atmosphere. Air gets condensed with the increase in the height, while it becomes warm with a decrease in its height. A stable air is the type of air that can sink. The air which has low temperature has more density than the air it is surrounded by. When clouds are formed with stable air, the clouds formed are thin and horizontal.

A positive point charge Q is fixed on a very large horizontal frictionless tabletop. A second positive point charge q is released from rest near the stationary charge and is free to move. Which statement best describes the motion of q after it is released

Answers

The complete question is;

A positive point charge Q is fixed on a very large horizontal frictionless tabletop. A second positive point charge q is released from rest near the stationary charge and is free to move. Which statement best describes the motion of q after it is released?

A) Its speed will be greatest just after it is released.

B) Its acceleration is zero just after it is released.

C) As it moves farther and farther from Q, its speed will keep increasing

D) As it moves farther and farther from Q, its acceleration will keep increasing.

Answer:

Option C - As it moves farther and farther from Q, its speed will keep increasing.

Explanation:

We are told that when a second positive point charge(q) is released from rest near the stationary charge and it's free to move. Thus, the stationary charge will now exert a repulsive force upon thus second positive point charge and it will go on decreasing because the mobile charge will move away from the stationary charge. Thus, it will have a decreasing but positive acceleration . So we can conclude that it's velocity will keep increasing but it will be at a declining rate.

Thus, the correct answer is;

Option C - As it moves farther and farther from Q, its speed will keep increasing.

A truck filled with gravel parks on a roadside scale that measures 8.00m by 6.80m. If the gravel and truck has a mass of 7,400kg. What pressure does the scale put on the spring below?

Answers

Explanation:

Pressure = force / area

P = (7400 kg × 10 m/s²) / (8.00 m × 6.80 m)

P = 1360 Pa

In a Young's double-slit experiment, light of wavelength 500 nm illuminates two slits which are separated by 1 mm. The separation between adjacent bright fringes on a screen 5 m from the slits is: CONVERT FIRST

Answers

Answer:

Δx = 2.5 x 10⁻³ m = 2.5 mm

Explanation:

The distance between two consecutive fringes, also known as fringe spacing, in Young's Double Slit Experiment, is given as follows:

Δx = λL/d

where,

Δx = distance between consecutive fringes = ?

λ = wavelength of light = 500 nm = 5 x 10⁻⁷ m

L = Distance between slits and screen = 5 m

d = slit separation = 1 mm = 1 x 10⁻³ m

Therefore,

Δx = (5 x 10⁻⁷ m)(5 m)/(1 x 10⁻³ m)

Δx = 2.5 x 10⁻³ m = 2.5 mm

The separation between adjacent bright fringes on a screen 5 m from the slits is: 2.5 mm

We are given;

Wavelength of light; λ = 500 nm = 500 × 10⁻⁹ m

Distance of slit separation; d = 1mm = 0.001 m

Distance between slit and the screen; D = 5 m

Now, formula for fringe width is;

β = λD/d

Plugging in the relevant values gives;

β = (500 × 10⁻⁹ × 5)/0.001

β = 2.5 × 10⁻³ m

Converting to mm gives;

β = 2.5 mm

Read more about fringe widths at; https://brainly.com/question/16749356

I don’t understand can someone break it down for me

Answers

Answer:

a = (v² – v₀²)/ 2(s – s₀)

Explanation:

v² = v₀² + 2a (s – s₀)

We can make 'a' the subject of the above expression as follow:

v² = v₀² + 2a (s – s₀)

Subtract v₀² from both side

v² – v₀² = v₀² + 2a (s – s₀) – v₀²

v² – v₀² = v₀² – v₀² + 2a (s – s₀)

v² – v₀² = 2a (s – s₀)

Divide both side by (s – s₀)

(v² – v₀²)/ (s – s₀) = 2a

Divide both side by 2

(v² – v₀²)/ (s – s₀) ÷ 2 = a

(v² – v₀²)/ (s – s₀) × 1/2 = a

(v² – v₀²)/ 2(s – s₀) = a

a = (v² – v₀²)/ 2(s – s₀)

Other Questions
the regular price of a tshirt is 14.80. today tshirts are on sale for 0.8 of their regular price. how much will eliason spend if he buys 6 tshirts today does a regular pentagon tessellate and why any help is appreciated How is the number five and two hundred three thousandths written in standard form? 5. A suggested and testable explanation for an event is called a1. hypothesis2. variable3. theory4. control HELP WILL NAME BRAINLY POINTSSS POINTS HELP What are you hoping is coming out of distance learning ?? A female client who reports an experience where the world around her appeared distorted as though she was looking at everything from inside a bubble might be describing: Which federally supported credit agency was established to trade student loan debt?A. Fannie Mae. B. Freddie Mac. C. Farmer Mac. D. Sallie Mae. Adams Manufacturing allocates overhead to production on the basis of direct labor costs. At the beginning of the year, Adams estimated total overhead of $368,900; materials of $407,000 and direct labor of $217,000. During the year Adams incurred $415,000 in materials costs, $412,900 in overhead costs and $221,000 in direct labor costs. Compute the amount of overhead applied to jobs during the year. a. $375,700. b. $412,900. c. $368,900. d. $412,890. e. $424,150. Convert 2676 cm into inches (1 in = 2.54 cm) Emily made 75% of the basket she attempted .If she make 9 basket ,how many attempts did she make. After landing an interview with your dream company, you learn that the interview will consist of questions asking you to demonstrate how you would go about organizing your employees, setting goals and achieving those goals. The company is asking you these questions in an effort to determine the extent to which you possess The low temperature last month was -11 degrees farenheight. What is the absolute value of -11? Answers:-a: -11 b: 0 c: 11 d: 22 Kim was waling down a path for 4 minutes the elavation changed at the same rate altogether it dropped 8 feet what was the change in elavation each minute What is the difference between a yard and a meter? give me the actual distancedifference in cm If the line L has a slop of 0, which of the following could be the graph for L? After the Communist Party took control, Beijing was transformed into a producer city. Growth in what sector of the economy put Beijing in that category An elevator in an office building made the following moves: Up 7 floors, down 14 floors, up 6 floors, down 2 floors, up 9 floors, down 5 floors. If the elevator stopped on the 54th floor, what floor did it start on? Provide a summary of the story. What is the central theme, and how is that theme developed? Solve the following equation.Round to the nearest TENTH-3.7 - 9.7x = 7x 5.2