The log2 function is a mathematical function that returns the logarithm of a given number to the base 2.
It is used to calculate the power to which a number must be raised to get a particular result.
For example, the log2 of 16 is 4, since 2^4 = 16. It can also be expressed as log2 16 = 4. Log2 is used in many areas of mathematics, including number theory, probability theory, and calculus.
It is also used in computer science and engineering to solve complex problems. Furthermore, it is used in cryptography to calculate the key sizes of encryption algorithms. In general, it is an essential tool for solving mathematical and scientific problems.
To know more about Log2 function:
brainly.com/question/30091985
#SPJ4
What is the 36th term of 12,17 and 22
a=12,d=17-12=5
nth term =a+(n-1)d
36th term=12+(36-1)5
=12+(35×5)
12+175
36th term=187
Answer: 187
Step-by-step explanation: 17 - 12 = 5 and 22 - 17 = 5
aₙ = a₁ + (n - 1) d
where a₁ = 12, n = 36, d = 5
a₃₆ = 12 + (36 - 1) 5
a₃₆ = 12 + 35 × 5
a₃₆ = 12 + 175
a₃₆ = 187
187 is the 36th term
[tex]h + 54 = 4 {}^{2} - 16 \div 4[/tex]
Value of h = ???
Answer:
[tex]h = -42[/tex]
Step-by-step explanation:
First, subtract 54 from both sides.
[tex]h = 4^2 - 16 \div 4 - 54[/tex]
Then, evaluate the right-hand expression using the order of operations:
Parentheses
Exponents
Multiplication
Division
Addition
Subtraction
We'll first evaluate the exponent in 4²:
[tex]4^2 = 4 \times 4 = 16[/tex]
[tex]h = 16 - 16 \div 4 - 54[/tex]
Next, we can evaluate the division:
[tex]16 \div 4 = 4[/tex]
[tex]h = 16 - 4 - 54[/tex]
Finally, perform the subtraction.
[tex]16 - 4 - 54 = -42[/tex]
[tex]h = -42[/tex]
Answer:
[tex] \sf \: h = - 42[/tex]
Step-by-step explanation:
Given equation,
→ h + 54 = 4² - 16 ÷ 4
Now the value of h will be,
→ h + 54 = 4² - 16 ÷ 4
→ h + 54 = 16 - 4
→ h + 54 = 12
→ h = 12 - 54
→ [ h = -42 ]
Hence, value of h is -42.
10 Two cyclists are traveling along a track in the same direction. Their motions are described
by the linear equations d = 10t and d-8t= 2, where t hours is the time and d miles is the
distance from a point on the track.
b When will the cyclists meet?
Answer:
They will meet in 1 hour
Step-by-step explanation:
(1) d = 10t
(2) d - 8t = 2 rearrange this equation to: d = 8t + 2
Set equation (1) equal to equation (2):
10t = 8t + 2
Solve for t:
10t - 8t = 2
2t = 2
t = 2/2 = 1 hr
8^x/2 divided by 4^x/3 equals 2^-5/2
The solution to the exponential equation 8^(x/2)/4^(x/3) = 2^(-5/2) is given as follows:
x = -6/5.
How to solve the exponential equation?The exponential equation for this problem is defined as follows:
[tex]\frac{8^{\frac{x}{2}}}{4^{\frac{x}{3}}} = 2^{-\frac{5}{2}}[/tex]
Both 8 and 4 are powers of 2, as follows:
8 = 2³.4 = 2².Applying the power of power rule (multiplying the exponents), the expression on the left side can be rewritten as follows:
[tex]\frac{2^{\frac{3x}{2}}}{2^{\frac{2x}{3}}} = 2^{-\frac{5}{2}}[/tex]
When two terms with the same base and different exponents are divided, we keep the base and subtract the exponents, hence:
[tex]\frac{2^{\frac{3x}{2}}}{2^{\frac{2x}{3}}} = 2^{\frac{3x}{2} - \frac{2x}{3}}[/tex]
The subtraction is obtained as follows:
3x/2 - 2x/3 = 9x/6 - 4x/6 = 5x/6.
(as the least common factor of 2 and 3 is of 6).
Then the simplified expression is of:
[tex]2^{\frac{5x}{6}} = 2^{-\frac{5}{2}}[/tex]
As the exponential function y = 2^x is injective, the solution is obtained as follows:
5x/6 = -5/2.
10x = -12
x = -6/5.
More can be learned about exponential expressions at https://brainly.com/question/25537936
#SPJ1
The sample points of a sample space are a equally likely events. b equally unlikely events. c simple events. d complex events.
The correct option is option A , the sample points of a sample space are equally likely events.
In probability when two the occurrence of two events are having a 50 - 50 possibility then those two events are said to be equally likely events. Example , on tossing a coin the probability of getting a H or a tail is 1/2 . Therefore, these events are said to be equally likely events.
Probability is a field of mathematics which tells us about the possibility of occurrence of an event. P = number of favorable outcomes / total number of outcomes , is the formula to calculate probability.
To learn more about probability
brainly.com/question/9969491
#SPJ4
For the 1996 General Social Survey, conducted by the National Opinion Research Center NORC, 842 replied "yes" and 982 replied "no. " Let π denote the population proportion who would reply "yes. " Find the P-value for testing H0 : π = 0. 5 using the score test, and construct a 95% confidence interval for π. Interpret the results
At a significance level of 0.05, the sample data is not consistent with the null hypothesis that the proportion of population who would respond "yes" is 0.5. The P-value of 0.0005 is less than 0.05, and also the sample proportion 0.4616 is not in the interval (0.477, 0.523) which we found as 95% Confidence interval.
Therefore, we reject the null hypothesis and conclude that the population proportion of "yes" responses is different from 0.5.
The P-value for a score test for H0: π = 0.5 can be found using the z-score and a standard normal table. The z-score is calculated as
[tex]z = \frac{x-0.5}{0.5\sqrt{\frac{x-0.5}{n} } }[/tex], that is
z = (x - 0.5) / (√(0.5(1 - 0.5) / n)
where x is the sample proportion of "yes" responses (842 / (842 + 982) = 0.4616), π is the population proportion of "yes" responses, and n is the sample size (842 + 982 = 1824).
[tex]z = \frac{0.4616-0.5}{0.5\sqrt{\frac{0.4616-0.5}{1824} } }[/tex]
= (0.4616 - 0.5)/ (√(0.5(1 - 0.5) / 1824)
This gives a z-score of -3.28.
To find the P-value, we can use the standard normal table to find the probability of observing a z-score less than -3.28. This P-value is approximately 0.0005, which is less than the commonly used significance level of 0.05. Therefore, we would reject the null hypothesis that π = 0.5.
To construct a 95% confidence interval for π, we can use the formula for a normal approximation interval:
π ± z×(√(π(1-π) / n)) that is
[tex]\pi \frac{+}{} z\frac{\pi (1 -\pi )}{n}[/tex]
Where π = 0.5, z = 1.96 (for a 95% confidence level), and n = 1824.
This gives a 95% confidence interval of (0.477, 0.523)
To know more on confidence interval
https://brainly.com/question/15584123
#SPJ4
Radicals
How Do I Simplify
(3√5+√3)(√5+ √3)
Answer:
18 + 4√15
Step-by-step explanation:
(3√5+√3)(√5+ √3)
= 3√5 (√5+ √3) + √3 (√5+ √3)
= 3√5 √5 + 3√5 √3 + √3 (√5+ √3)
= 3√5 √5 + 3√5 √3 + √3 √5 + √3 √3
= 18 + 4√15
If you can, please give me a Brainliest, thank you!
How do you solve complex fraction equations?
To solve complex fractions there are two methods -
1 - Divide the numerator by the denominator by multiplying the numerator by the reciprocal of the denominator and then simplify further if necessary.
2 - Multiply the numerator and denominator of the overall complex fractions and then simplify further if necessary.
What is a complex fraction?
A rational expression with a fraction in the numerator, denominator, or both is referred to as a complex fraction.
There are two ways to solve a complex fraction -
Method 1 : Take an example - (1/3-1/4)/(1/8+1/2)
Step 1 - If necessary, combine the denominator and numerator into a single fraction.
Add the numerator -
=1/3-1/4
=(4-3)/12
=1/12
Add the denominator -
=1/8+1/2
=(1+4)/8
=5/8
Combine back to form a complex fraction -
=(1/12)/(5/8)
Step 2: Multiply the numerator by the denominator's reciprocal, then divide the result by the denominator.
Step 3: Simplify the rational expression if necessary.
=(1/12)×(8/5)
=8/60
=2/15
Method 2: Take an example - [(2x+1)/(x^2-25)]/[(4x^2-1)/(x-5)]
Step 1 - Divide the LCD of the smaller fractions by the numerator and denominator of the total complex fractions.
(x^2-25)=(x+5)(x-5)
The denominator of the denominator’s fraction has the following factor -
(x-5)
Using the highest exponent and combining all the other factors, we arrive at the LCD shown below for all the little fractions -
(x+5)(x-5)
By multiplying the LCD by the numerator and denominator -
=[{(2x+1)/(x+5)(x-5)}×(x+5)(x-5)]/[{(2x+1)(2x-1)/(x-5)}×(x+5)(x-5)]
=(2x+1)/(2x+1)(2x-1)(x+5)
Step 2 - Simplify the rational expression if necessary.
=(2x+1)/(2x+1)(2x-1)(x+5)
=1/(2x-1)(x+5)
Therefore, there are two methods to solve complex fractions.
To learn more about complex fraction from the given link
https://brainly.com/question/30154926
#SPJ4
13yd 2ft 6in x 15 =
i need to know the answer to this problem
Using the unit conversion and converting all the distance units to inches, The final answer is 7575 inches.
What do you mean by unit conversion?Divide the smaller unit's value by the quantity of smaller units required to create the larger unit. Multiply to change from a larger to a smaller unit. Divide to change from a smaller unit to a larger one. We need to convert between units in order to ensure accuracy and prevent measurement misinterpretation. For example, we do not measure a pencil's length in kilometers. In this situation, one must convert from kilometers (km) to centimeters (cm).
What do you mean by equations?An algebraic expression in mathematics is an expression created using variables, constant algebraic numbers, and algebraic operations. A collection of one or more linear equations containing the same variables is known as a system of linear equations in mathematics.
13 yard = 468inches
2ft = 24 inches
total 268+24+13 = 505inches
505*15 = 7575 inches
To learn more about unit conversion visit:
https://brainly.com/question/19420601
#SPJ1
How do you write a function in Gee?
This is a function that takes in a geometry object as an input and calculates its area. It then returns the calculated area as an output.
1. Create a function with the desired name and parameters. In this case, the function is called “getArea” and takes in a geometry object as a parameter:
function getArea(geometry)
2. Calculate the area of the geometry using the “area” function in GEE:
var area = geometry.area();
3. Return the calculated area:
return area;
4. End the function:
This function will take in a geometry object and return its area. This can be used to calculate the area of any geometry, such as a polygon or a line. This is a useful function for GEE applications, as it can be used to quickly calculate the area of any given geometry.
Learn more about function here
https://brainly.com/question/29633660
#SPJ4
What is the range of the function y = startroot x 5 endroot? y greater-than-or-equal-to negative 5 y greater-than-or-equal-to 0 y greater-than-or-equal-to startroot 5 endroot
The range of the function y = √(x +5) is y ≥ 0
What is the range of the function?The domain of a function is the set of all possible values of x
The range of a function is the complete set of all possible resulting values of y, after we have substituted the domain.
we have
y = √(x +5)
Remember that the radicand of the function must be greater than or equal to zero
so (x +5) ≥ 0
solve for x
x ≥ -5
The domain is the interval ----> [-5,∞)
For x= -5
y = √(-5 +5) = 0
so
The range is the interval ----> [0,∞)
y ≥ 0
To learn more about range of the function visit:
brainly.com/question/17440903
#SPJ4
A card is picked at random from a standard deck of cards. What is the sample space for this experiment if you were trying to find P(face card)? a. Sample space = 12 b. Sample space = c. Sample space = d. Sample space = 52
The sample space of the experiment is 52.
What is probability?The possibility that an event will occur among all potential events is known as probability. It ranges from 0 to 1. The probability is calculated by dividing the number of things by all of the items. Population includes the sample. When studying the entire population is challenging, it is studied.
52 cards in a deck
There are 12 face cards.
The experiment needs a sample space of 52 to find the face cards.
Given that a regular deck of cards is available.
The sample space required for the experiment to determine the probability of face cards must be found.
A face card may or may not be revealed when we pull a card from the deck. So, in order to rule out the possibility that a face card is present at the end of the deck, we must draw every card from a regular deck.
52 samples are therefore required for the experiment.
To know more about probability visit:-
brainly.com/question/11234923
#SPJ4
Given the circle below with chords NO and PQ. Find the length of OR. Round to the nearest tenth if necessary.
Therefore , the solution of the given problem of circle comes out to be PQ length is 20.5 units.
Circle – what is it?A moving point on a plane is followed so that its distance from a specific point remains constant to produce the circular form known as a circle. The English term circle derives from the Greek word kirkos, which meaning hoop or ring. Area of circle= πr²
Here,
For each secant, the sum of the lengths from R to the circle's intersection points is the same:
=>RS*RT = RQ*RP
=>40(40 +31) = (44)(PQ +44)
=>40(71)/44 = PQ +44
=>PQ = 2840/44 -44 = 64 6/11 -44 = 20 6/11
=>PQ ≈ 20.5
Therefore , the solution of the given problem of circle comes out to be PQ length is 20.5 units.
To know more about circle , visit
brainly.com/question/29142813
#SPJ1
Why is commutative property of addition important?
When adding multi-digit numbers, it's a good idea to employ the commutative property. However, counting up becomes simpler if pupils are aware that they can change the order of the addends and begin adding with the larger number FIRST.
What does the addition's commutative property mean?According to the commutative property of addition, the sum is unaffected by changes in the order of the numbers being added. The commutative property of addition can be defined as the fact that adding two integers in any sequence results in the same result. Here, a and b may be fractions, decimals, whole numbers, or even integers.
For instance, 1+2=2+1 and 2x3=3x2.
To know more about commutative property of addition visit: https://brainly.com/question/778086
#SPJ4
Which of the following equations are equivalent? Select three options. 2 + x = 5 x + 1 = 4 9 + x = 6 x + (negative 4) = 7 Negative 5 + x = negative 2
The equations that are equivalent to each other will be 2 + x = 5, x + 1 = 4, and - 5 + x = - 2. Then the correct options are A, B, and E.
What is an equivalent expression?The equivalent is the expression that is in different forms but is equal to the same value.
Simplify all the equations, then we have
A. 2 + x = 5, to simplify the equation, then we have
2 + x = 5
x = 3
B. x + 1 = 4, to simplify the equation, then we have
x + 1 = 4
x = 3
C. 9 + x = 6, to simplify the equation, then we have
9 + x = 6
x = - 3
D. x + (- 4) = 7, to simplify the equation, then we have
x - 4 = 7
x = 11
E. - 5 + x = - 2, to simplify the equation, then we have
- 5 + x = - 2
x = 3
The equations that are equivalent to each other will be 2 + x = 5, x + 1 = 4, and - 5 + x = - 2. Then the correct options are A, B, and E.
More about the equivalent link is given below.
https://brainly.com/question/889935
#SPJ1
(2, -4) and (-3, -3) write the linear equation in slope intercept form given the following
Answer:
y = -1/5x - 3.6
Step-by-step explanation:
(2, -4) and (-3, -3)
m = -3+4/ -3-2
m = 1/-5
m = -1/5
y = -1/5x + b
-4 = -1/5(2) + b
-4 = -0.4 + b
b = -3.6
y = -1/5x - 3.6
tell which number is greater 56%, 5.6.
Answer:
5.6
Step-by-step explanation:
56% = 0.56
5.6 > 56%
How is a right triangle used to find the sine and cosine of an acute angle is there a unique right triangle that must be used?
We find the sine and cosine of an acute angle by taking the ratio of the length of the side opposite to the angle with respect to the length of the side adjacent to the acute angle.
What is the tangent of the angle?
The ratio of the right-angle triangle's base or perpendicular is known as the tangent of the angle.
The ratio of two of the right-angled triangle's three sides is used to define the sine, cosine, and tangent of an acute angle.
Here,
We have to find out how is a right triangle used to find the sine and cosine of an acute angle is there a unique right triangle that must be used.
We concluded that a right triangle can be used to determine the tangent of any acute angle, by taking the ratio of the length of the side opposite to the angle with respect to the length of the side adjacent to the acute angle.
Hence, we find the sine and cosine of an acute angle by taking the ratio of the length of the side opposite to the angle with respect to the length of the side adjacent to the acute angle.
To learn more about the tangent of the angle from the given link
https://brainly.com/question/8846313
#SPJ4
PLEASE HELP GIVING BRAINLIESTTTTTT
Simplify the expreion. The expreion negative one fifth j plu three fourth minu the expreion five halve j plu even eighth negative 27 over 10 time j plu negative 1 over 8 27 over 10 time j plu 1 over 8 negative 23 over 10 time j minu 13 over 8 negative 23 over 10 time j plu 13 over 8
The simplified value of the given expression ⇒ [(-1 / 5 j) + (3 / 4) - 5 / 2j - (7 / 8)] is computed at ⇒ [(-27 / 10 j) - (1/ 5)]
An algebraic expression is one that was created in mathematics by using integer variables, constants, and algebraic operations.
However, since they are not produced by using integer constants and algebraic operations, transcendental numbers like such and e are not algebraic. The production of is commonly stated as a geometric expression, although the definition of e requires an infinite number of algebraic operations. An expression can be reduced to a rational fraction by using the properties of arithmetic operations.
You can write the given expression as:
⇒ (-1 / 5 j) + 3 / 4 - 5 / 2j - 7 / 8
When we simplify the formula and apply the fractional operations to the result, we get:
⇒ (-27 / 10 j) - (1/ 5)
To know more about Expressions, refer to this link:
https://brainly.com/question/14083225
#SPJ4
How do you write an expression in factored form?
To write an expression in factored form, its products needs to be deduced.
What is an expression?
A mathematical expression is a phrase that has a minimum of two numbers or variables and at least one mathematical operation.
Factoring is the process of representing a given number or algebraic statement as the product of its components.
For example - Consider the binomial 3x^2-9x.
On simplifying it -
3x^2-9x = 3x(x-3)
So, here 3x^2-9x is the expanded form and 3·x·(x-3) is the factored form.
Another example is - Consider y^2-100.
The terms used here can all be expressed as squares.
y^2 − 100 = y^2 − 10^2
(y + 10)(y − 10)
The factors in this case are (y + 10) and (y - 10).
Therefore, the products are the factors of an expression.
To learn more about expression from the given link
https://brainly.com/question/1859113
#SPJ4
Need answer quick 65 points and brainlyest
Graph using this picture
y+4=25(x−3)
The linear function y = 25x - 79 is plotted on a graph with x - intercept at 3.16
What is Graph of Linear FunctionA graph of a linear function is a line that goes through the origin (0, 0). The line can be described by the equation y = mx + b, where m is the slope of the line and b is the y-intercept. The slope of the line can be positive, negative, zero, or undefined.
In this problem, the linear function given y + 4 = 25(x - 3) can be written in slope - intercept form and then plotted in a graph using a graphical calculator.
y + 4 = 25(x - 3), the linear function can written;
y + 4 = 25(x - 3) = y + 4 = 25x - 75 ;
This becomes y = 25x - 75 - 4;
Collecting like terms
y = 25x - 79
Plotting this on a graph;
The line passes through the x - axis at 3.16 which is the x - intercept
Learn more on graph of linear function here;
https://brainly.com/question/7807573
#SPJ1
need help with these 4
Thus, It is possible to visually assess whether a limit exists as x approaches a by looking at the function f (x) and g (x) graphs, which are 1 and 5 when x is very close to x=a.
How would you define limit?In mathematics, a limit is the value that a function, a sequence, or an index approaches as an input or an index gets closer to a particular value. Limits are essential to the study of calculus and mathematical analysis since they are used to define continuity, derivatives, and integrals.
Here,
From the function f (x) and g graphs shown here ( x)
1) lim f (x) plus lim g ( x )
= -1 + 2 = 1
2) f (-1) + lim g ( x)
= 3 + 2
= 5
Therefore , the solution of the given problem of limit comes out be 5.
To know more about limit visit :-
brainly.com/question/29795597
#SPJ1
The function f is defined by f(x) = mx + b, where m and b are constants. If f(0) = 18 and f(1) = 20, what is the
value of m?
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol.
What are 3 examples of a constant?A few more constant examples are :
The number of days in a week represents a constant.
In the expression 5x + 10, the constant term is 10.In 2a, 2 is a constant.In -7mn, -7 is a constant.In 3x, 3 is constant.A fixed value. In Algebra, a constant is a number on its own, or sometimes a letter such as a, b or c to stand for a fixed number. Example: in "x + 5 = 9", 5 and 9 are constants.There are four major constants that appear within mathematical calculations. These math constants are used in a whole variety of equations and formulae and are repeatedly seen in a variety of areas.The easiest way we can find a constant term in math is to look first for stand-alone numbers, and then for coefficients and variables that can be solved for. A variable cannot be solved for and return only one value if it has an exponent, such as x^2.A function is called no constant if it takes more than one value (if there is more than one element in its range).Substitute:
m*o+b=18
m+b=20
Apply Zero Property of Multiplication:
b=18
m+b=20
Substitute into one of the equations:m+18=20
Rearrange unknown terms to the left side of the equation:m=20-18
Calculate the sum or difference:m=2
The solution of the system is:
b=18
m=2
The answer is b=18 m=2
To learn more about constants refer to:
https://brainly.com/question/28581458
#SPJ1
A sample of 12th grade students who took the National Assessment of Education Progress year 2000 mathematics test had a mean score of 250. What is the population
On solving the provided question, we can say that by mean score the population will be 20192
What is mean?A dataset's mean is the sum of all values divided by the total number of values, often known as the arithmetic mean (as opposed to the geometric mean). Often referred to as the "mean," this is the most often used measure of central tendency. Simply dividing the dataset's total number of values by the sum of all of those values yields this result. Both raw data and data that have been combined into frequency tables can be used for calculations. Average refers to a number's average. It is straightforward to calculate:Divide by how many digits there are after adding up all the digits. the total divided by the count.
A sample of 12th grade students who took the National Assessment of Education Progress year 2000 mathematics test had a mean score of 250
200/4
= 50
50*e^{-2}
the population will be 20192
To know more about mean visit:
https://brainly.com/question/30094057
#SPJ4
Rewrite 21/3 as a whole number
Answer:
7
Step-by-step explanation:
As we want to find the whole number, and to do so we divide the numerator by the denominator. Since we are only interested in whole numbers, we ignore any numbers to the right of the decimal point.
21/3 = 7
Sienna goes to the mall with $56. She spends $13 on food and $24 on a book. How much money does Sienna have left?
Answer: 19
Step-by-step explanation:
56-13=43
43-24=19
Answer: 19
Step-by-step explanation: 13 + 24 = 37
so (56 - 37 = 19)
What is the Pythagorean triplet of 16?
The Pythagorean triplet of 16 is (8, 15, 17).
This can be calculated using the Pythagorean theorem, which states that in any right triangle, the sum of the squares of the two legs is equal to the square of the hypotenuse. Therefore, given a number, we can find a Pythagorean triplet by calculating the squares of the two legs and then finding the hypotenuse.
Formula:
a² + b² = c²
Find the square of the number.
16² = 256
Subtract the square from the number to get one leg of the triangle.
16 - 256 = -240
Take the square root of the result.
√(-240) = 8
Add the square to the number to get the other leg of the triangle.
256 + 16 = 272
Take the square root of the result.
√(272) = 15
Add the two legs together to get the hypotenuse.
8 + 15 = 23
Take the square of the result.
23² = 529
Subtract the sum of the two legs from the hypotenuse.
529 - 23 = 506
Take the square root of the result.
√(506) = 17
Therefore, the Pythagorean triplet of 16 is (8, 15, 17).
Learn more about Pythagorean triplet here:
https://brainly.com/question/24924762
#SPJ4
Estimate how many times larger 6.1 • 10^7 is than 2.1 • 10^-4
Answer:
Estimation: 300 Billion times bigger
Actual: 290 Billion times bigger
Step-by-step explanation:
Lets group the coefficients together and the exponents together.
[tex](\frac{6.1}{2.1})(\frac{10^7}{10^{-4} })[/tex]
We can round 6.1 to 6.
We can round 2.1 to 2.
[tex](\frac{6}{2})(\frac{10^7}{10^{-4} })[/tex]
[tex](3)(\frac{10^7}{10^{-4} })[/tex]
Subtract the exponent from the denominator from the exponent of the numerator.
[tex](3)(10^{7-4*1} )[/tex]
[tex](3)(10^{7+4} )[/tex]
[tex](3)(10^{11} )[/tex]
[tex]3*10^{11}[/tex]
[tex]10^{11}[/tex] is 100 billion.
3 times 100 billion is 300 billion.
Which segment is the shortest?
the smallest angle will yield the shortest opposite side, likewise the largest angle will yield the largest side, Check the picture below.
I need help on these questions please help . ignore the writing
You will always get one triangle. This is because of the Triangle Angle Sum Theorem, which states that the sum of the measures of the angles of a triangle is always 180°.
What is triangle?A triangle is a polygon since it has three sides and three vertices. It is one of the basic geometric shapes. The name given to a triangle containing the vertices A, B, and C is Triangle ABC. A unique plane and triangle in Euclidean geometry are discovered when the three points are not collinear. Three sides and three corners define a triangle as a polygon.
The triangle's corners are defined as the locations where the three sides converge. 180 degrees is the result of multiplying three triangle angles.
The inner angles of every triangle sum up to 180°, 180°, 180°, 180°. Angles in a triangle are the total (sum) of the angles at each of its three vertices.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1