Which oi the following statements best describes the mechanism by which the ced-9 protein in the nematode C . elegans prevents apoptosis in normal cells? Ced-9 remains inactive until it is stimulated by ced-3 and other caspases. Active ced-9 prevents activation of the caspase activity of cod-3. Cod. 9 inhibits the cell mombrane receptor for the death-signaling molecule. Ced.g is cleaved to produce the active cod-3 caspase.
The statement that best describes the mechanism by which the ced-9 protein in the nematode C. elegans prevents apoptosis in normal cells is that Active ced-9 prevents activation of the caspase activity of ced-3.
What is apoptosis? Apoptosis is a form of programmed cell death that is critical for the elimination of unwanted or damaged cells from an organism. The death of these cells is induced by signaling pathways, the loss of which can result in a range of human illnesses.
Caspases are enzymes that have been implicated in apoptosis. Caspase activity leads to cell death, and as a result, caspase activity must be tightly regulated in the cell. One of the key players in the regulation of caspase activity is the C. elegans protein Ced-9.
What is Ced-9 protein?Ced-9 is an apoptosis inhibitor protein that is homologous to Bcl-2, a protein found in mammalian cells. Ced-9 protein is known to prevent caspase activity, which can lead to cell death, in C. elegans cells.
What is the function of Ced-9 protein? Active ced-9 prevents activation of the caspase activity of ced-3. Ced-3 is a caspase enzyme that is capable of inducing cell death. In the absence of active ced-9, ced-3 activity is unchecked, resulting in uncontrolled apoptosis.
Ced-9 protein's function is to maintain cell viability in the nematode C. elegans by suppressing caspase activity. Ced-9 is a critical regulator of apoptosis in C. elegans and is essential for the maintenance of cell viability.
To know more about nematode C, refer here:
https://brainly.com/question/19711007#
#SPJ11
Safflower, corn, soybean, and cottonseed oils are all rich in _____ fat. Diets high in this type of fat may lead to the reduction of total cholesterol, LDL, and HDL cholesterol
More effective at lowering LDL-C were safflower, sunflower, rapeseed, flaxseed, corn, olive, soybean, palm, and coconut oils as well as beef fat.
What type of fat enhances HDL and reduces LDL?Plant-based monounsaturated fats may increase good cholesterol while lowering bad cholesterol. They might also help with blood sugar regulation. Monounsaturated fats can replace saturated fats in the diet, which may help decrease triglycerides and harmful cholesterol levels.
Which fats raise LDL levels?Saturated lipids. We consume many forms of fat in our food, and saturated fats are the ones that cause blood cholesterol to rise. Several meals, notably animal foods like meat, butter, and dairy products, as well as items produced with them such cakes and cookies, are high in saturated fat.
To know more about LDL-C visit:-
brainly.com/question/15074420
#SPJ1
True or False: Air inspired through the nasal cavity will travel through the nasopharynx, oropharynx, and then the laryngopharynx before entering the larynx.
True. When we inhale, the air enters the body through the nasal cavity. From there, it passes through the nasopharynx, which is the upper part of the pharynx (throat) that is located behind the nasal cavity.
The nasopharynx helps to warm and moisten the air before it reaches the lower respiratory tract.
After passing through the nasopharynx, the air then enters the oropharynx, which is the middle part of the pharynx located behind the mouth. The oropharynx also plays a role in swallowing food and helping to prevent choking.
Finally, the air travels through the laryngopharynx, which is the lower part of the pharynx located between the hyoid bone and the esophagus. This is the last stop before the air enters the larynx (voice box), which is a muscular structure located at the top of the trachea (windpipe). The larynx plays a critical role in speech production, as well as in protecting the lower respiratory tract from food or other foreign objects.
So, air inspired through the nasal cavity will travel through the nasopharynx, oropharynx, and then the laryngopharynx before entering the larynx.
Learn more about nasopharynx here:
https://brainly.com/question/14041691
#SPJ4
what roles do the parts of flowers play in pollination?
Answer:Pollen from a flower's anthers (the male part of the plant) rubs or drops onto a pollinator. The pollinator then take this pollen to another flower, where the pollen sticks to the stigma (the female part). The fertilized flower later yields fruit and seeds.
Explanation:
Answer:
Pollen from a flower's anthers (the male part of the plant) rubs or drops onto a pollinator. The pollinator then take this pollen to another flower, where the pollen sticks to the stigma (the female part). The fertilized flower later yields fruit and seeds.
Explanation:
Hope this helps!! Mark me brainliest!!
Make a food chain using the following organisms: Grasshopper, Snake, Grass, Frog, and Hawk. Put them in order in which it shows the flow of energy from one organism to the next
Food chain is given below-
Grass ===> Grasshopper ===> Frog ===> Snake ===> Hawk
The group of organisms that each trophic level's members form in an ecosystem to transfer food and energy is known as the food chain. The grass is the producer, on which the grasshopper depends, making it the principal consumer. The frog eats on the grasshopper, the snake feeds on the frog, and the hawk, which is at the top of the food chain, gets its nutrients from the snake.
An apex predator species (like grizzly bears or killer whales), detritivores (like earthworms or woodlice), or decomposer species are at the end of a food chain, which is a linear network of links in a food web starting from producer organisms (such as grass or algae that produce their own food through photosynthesis) (such as fungi or bacteria).
To know more about food chain click here:
https://brainly.com/question/7564953
#SPJ4
Stimulation of the aortic baroreceptors reflexively results in?.increased activity by the parasympathetic nervous system.stimulation of the cardioaccelerator center in the brain.increased heart rate.increased sympathetic stimulation of the heart.stimulation of the vasoconstrictive center.
Stimulation of the aortic baroreceptors reflexively results in increased activity by the parasympathetic nervous system.
Option A is correct.
What are the aortic baroreceptors?The aortic baroreceptors and carotid baroreceptors are located in the adventitia layer of the aortic arch and carotid arteries, respectively.
The aortic baroreceptors are stretch receptors located in the aortic arch that are sensitive to changes in blood pressure.
In the situation where blood pressure increases, the aortic baroreceptors are stimulated, which then sends signals to the cardiovascular control center in the brainstem.
Learn more about aortic baroreceptors at: https://brainly.com/question/8963123
#SPJ1
the property of sensory receptors that allows us to distinguish between a hard and a soft stimulus is known as ? adequate stimulation temporal stimulation sensory adaptation sensory conflict none of the above
The property of sensory receptors that allows us to distinguish between a hard and a soft stimulus is known as adequate stimulation. Thus, option a is correct.
A sensory receptor is a specialized neuron that senses and transmits information to the central nervous system as a response to a particular physical stimulus, like pressure, heat, light, or sound.
Adequate stimulation is defined as the intensity and form of stimulus needed to activate a sensory receptor adequately.
For example, the skin has different receptors for touch, pressure, and temperature, and each one requires specific stimulation to activate it.
The sensation of hardness or softness is transmitted through the receptors in the skin that detects pressure.
When a hard stimulus is applied to the skin, the receptors receive and transmit the information to the brain.
The brain then interprets the information and gives the appropriate response to the body.
In conclusion, adequate stimulation is the property of sensory receptors that enables us to differentiate between hard and soft stimuli. So, option a is correct.
Learn more about sensory receptors here:
brainly.com/question/25753221
#SPJ11
A ____________ is a synergist muscle that will stabilize a joint when another contracting muscle exerts a force on something else.
A fixator muscle is a synergist muscle that will stabilize a joint when another contracting muscle exerts a force on something else.
The blank is filled with the word “fixator” which refers to a synergist muscle that will stabilize a joint when another contracting muscle exerts a force on something else.Synergist muscles are the muscles that work in conjunction with prime mover muscles.
Synergist muscles are those that contribute to the movement by helping the agonist perform the action more efficiently. As the agonist does its thing, the synergist works to stabilize the joint and helps with movement accuracy.
A fixator muscle, on the other hand, stabilizes a bone so that a contracting muscle can act more effectively. When a muscle contracts, the fibers shorten, and the muscle pulls on the bone to which it is attached. This creates a leverage system where the muscle belly serves as the lever arm and the tendon as the attachment to the bone.
Fixator is a synergist muscle that will stabilize a joint when another contracting muscle exerts a force on something else. The primary function of a fixator muscle is to stabilize a bone so that the prime mover or agonist muscle can exert a more effective force.
Learn more about synergist muscles here:
brainly.com/question/14309565
#SPJ11
Tabulate 3 differences and 3 similari cells and ammal cells Draw and label a) a typical plant cell b) a typical animal cell Describe the functions of each of t by b) mitochondria Chloroplast ame the
There are three variations in plant and animal cells:
Animal cells lack a cell wall, but plant cells have one comprised of cellulose.Chloroplasts are present in plant cells but not in animal cells. In plants, photosynthesis is carried out by chloroplasts.Animal cells do not have a big central vacuole like plant cells do. In the plant cell, the vacuole contains waste materials, nutrients, and water.There are three ways that plant and animal cells are similar:
Both plant and animal cells have a nucleus, which contains the genetic material of the cell.The plasma membrane, which is present in both plant and animal cells, controls how substances enter and exit the cell.Animal and plant cells both feature mitochondria, which are in charge of producing energy in the cell through cellular respiration.Roles of organelles:Mitochondria: Via cellular respiration, mitochondria are in charge of producing energy in the cell. They do this by converting glucose and other nutrients into ATP, which serves as the cell's main energy source.
Chloroplasts: In plant cells, chloroplasts are in charge of performing photosynthesis. They include chlorophyll, which turns light energy into chemical energy in the form of glucose by absorbing light energy.
Vacuoles: Water, nutrients, and waste materials are stored in vacuoles in plant cells. Additionally, they aid in preserving the cell's turgor pressure, which is crucial for the support and structure of plants. Animal cells have smaller, more numerous vacuoles that serve a variety of purposes, including transport and storage.
Cellular respiration.The process through which cells turn glucose and other nutrients into ATP (adenosine triphosphate), the cell's main energy source, is known as cellular respiration. The citric acid cycle, oxidative phosphorylation, and glycolysis are the three phases of cellular respiration.
The process of breaking down glucose into two molecules of pyruvate is known as glycolysis, and it takes place in the cytoplasm. A little quantity of ATP and the electron-carrying molecule NADH (nicotinamide adenine dinucleotide) are produced during this process.
In the mitochondria, pyruvate is broken down into carbon dioxide and water as part of the citric acid cycle. As a result, more ATP and NADH are produced.
learn more about cellular respiration here
https://brainly.com/question/14158795
#SPJ1
this pressure system brings cloudy and stormy weathera. high pressureb. low pressurec. stationary pressured. air pressure.
This pressure system brings cloudy and stormy weather that are brought on by low pressure systems. The core of a low pressure system has lower pressure than the surroundings. Option b is Correct.
As winds blow in the direction of a low pressure area, the air where they meet rises in the atmosphere. The water vapor in the air condenses as it rises, creating clouds and frequently precipitation. Clouds and precipitation are frequently indicative of low pressure. Air that is sinking is related with high pressure.
Because it is pressing DOWN on the earth, air pressure is higher. High-pressure regions are linked to calmer winds and clear sky, whereas low-pressure regions are frequently connected with unfavorable weather (such as overcast, windy, with potential for rain or storms). Hence, Option b is Correct.
Learn more about pressure system Visit: brainly.com/question/15301106
#SPJ4
Correct Question:
This pressure system brings cloudy and stormy weather
a. high pressure
b. low pressure
c. stationary pressure
d. air pressure.
which muscle is a superficial anterior flexor muscle?
in a small number of patients whose families appear to have all the classical characteristics of fap, a mutation cannot be found in the apc cdna. what are two possible reasons for why mutations may not be found in some patients whose families appear to have fap
Mutations in DNA sequence regions not amplified by PCR primers and stop codons resulting in truncated proteins may explain why mutations are not found in some patients with FAP.
There are two possible reasons why mutations may not be found in some patients whose families appear to have familial adenomatous polyposis (FAP). These reasons are as follows:
DNA sequence mutations in regions that are not amplified by the polymerase chain reaction (PCR) amplification primers are the first possible reason why mutations may not be found in some patients whose families appear to have FAP. These mutations may result from deletions, insertions, duplications, or other DNA rearrangements. In addition, these mutations may occur in regions that are not amplified by the PCR amplification primers.
DNA sequence mutations that cause stop codons, which usually result in truncated proteins, are the second possible reason why mutations may not be found in some patients whose families appear to have FAP. Mutations that generate a premature termination codon, also known as a nonsense mutation, result in truncated proteins.
The nonsense mutation results in the termination of translation and the production of a truncated protein that lacks essential protein domains and functions. The mRNA molecules that result from nonsense mutations are rapidly degraded by a cellular mechanism known as nonsense-mediated mRNA decay.
Learn more about mutations: https://brainly.com/question/26928446
#SPJ11
For an enzyme-catalyzed reaction, the initial velocity was determined at two different concentrations of the substrate. Which of the following would be closest to the value of Km?
[S] (mM) Vo(mM/min)
1.0 2.0
4.0 2.8
A. 2.7 mM
B. 5.7 mM
C. 0.17 mM
D. 0.60 mM
C. 0.17 mM, D. 0.60 mM, and 5.7 mM. The initial velocity of an enzyme-catalyzed reaction was calculated at two distinct substrate concentrations.
What is the initial velocity for an enzyme-catalyzed reaction?The product of the concentration of the enzyme and its substrate and the catalytic rate constant is known as the instantaneous velocity, or catalytic rate. The initial velocity of a reaction is the amount of product produced in a given amount of time at the start of the reaction. This characteristic is necessary for all enzyme-catalyzed reactions.
Is the enzyme's Km value equal to the concentration of the substrate?Practically speaking, Km is the substrate concentration that enables the enzyme to reach half of Vmax. Since a high Km enzyme has a low substrate affinity, it needs a greater concentration of substrate to achieve Vmax.
To know more about enzyme-catalyzed visit:-
brainly.com/question/11102534
#SPJ1
NEED ASAP PLEASE HELP ITS DUE TMRW:How many orbiting telescopes does NASA have and what are their names? WILL GIVE 5 STARS AND THANKS
a bacterium or other particle taken up by phagocytosis is
A bacterium or other molecule is taken up by phagocytosis directed to lysosomes for debasement. Phagocytes are capable of ingesting not only apoptotic cells but also microbial pathogens.
The process of phagocytosis involves the recognition and ingestion of particles larger than 0.5 m into a phagosome, a vesicle derived from the plasma membrane.
The recognition and ingestion of microbial pathogens larger than 0.5 m into a phagosome-derived vesicle mark the beginning of phagocytosis. Several receptors that recognize specific microorganism-associated molecular patterns enable this recognition.
Phagocytosis is a process that phagocytic cells use to identify invading microbes and kill them once they have entered the body. It is a receptor-driven process that dates back to evolution. The bacterial infection's survival depends on the expression of the phagocytosis receptor Eater, which is only found in Drosophila phagocytes.
To learn more about phagocytes here
https://brainly.com/question/16185213
#SPJ4
the nasal cavity opens into the nasopharynx through which structure?
The nasal cavity is a very crucial structure located in the upper respiratory tract that helps to filter, warm, and humidify air before it enters the lungs. The air first enters the nostrils or nares and passes through the nasal vestibules lined with vibrissae, a series of hairs that help to trap larger particles.
The nasal cavity has a surface area of about 150cm2 and is lined with ciliated pseudostratified columnar epithelium, with goblet cells that secrete mucus to help trap and remove foreign particles. The nasal cavity is divided into two parts by the nasal septum, which is formed by the vomer bone and perpendicular plate of the ethmoid bone. The upper part of the nasal cavity is the olfactory region, which contains the olfactory epithelium, the region responsible for smell. The lower part of the nasal cavity is responsible for respiratory functions.
The nasal cavity opens into the nasopharynx through a structure called the choanae. The nasopharynx is the part of the pharynx situated behind the nasal cavity and above the soft palate. It forms the upper part of the throat and functions as a passage for both air and food. The pharynx is divided into three regions: the nasopharynx, oropharynx, and laryngopharynx. The nasopharynx is separated from the oropharynx by the soft palate and from the laryngopharynx by the epiglottis.
The nasopharynx contains the pharyngeal tonsil, which plays a role in immune function by producing white blood cells that help fight infections. The opening of the auditory tube, a structure that connects the middle ear to the nasopharynx, is also found in the nasopharynx. It is responsible for equalizing air pressure between the middle ear and the environment. In summary, the nasal cavity opens into the nasopharynx through a structure called the choanae, which is located behind the nasal cavity and above the soft palate.
For more such questions on nasal cavity
https://brainly.com/question/13959132
#SPJ11
the ____ is used to indicate that the datagram is allowed to be fragmented or to indicate that the datagram has already been fragmented.
The flag field is used to indicate whether or not a datagram can be fragmented, as well as whether or not it has previously been fragmented.
What is a flag for fragmentation?Whether or not an IP router may fragment this IP packet is indicated by the May Fragment flag. For a variety of reasons, an application may decide to stop a datagram from fragmenting.
What does the datagram's flag field mean?If a datagram is a fragment, whether fragmentation is allowed, and whether the datagram is the last fragment or there are still further fragments are all indicated by single-bit flags in the flags field. This field's leading bit is always zero.
To know more about fragmentation visit:-
https://brainly.com/question/13948708
#SPJ1
what happened to the r-strain bacteria when avery and his colleagues inactivated dna in the s strain bacteria?
Even in the absence of the RNA or proteins from the S-strain, the R-strain transformed the dangerous S-strain. The S-DNA strains were inactivated, but the R-strain did not change when the researchers did so. Hence, it was determined that DNA is what determines an organism's traits.
What is meant by r-strain bacteria?strain R. The R bacteria developed colonies, or groups of related bacteria, when cultivated in a petri dish, and these colonies had distinct borders and a rough look (hence the abbreviation "R"). The R bacteria were nonvirulent, which means that when administered to a mouse, they did not result in illness. In Frederick Griffith's experiment, Streptococcus pneumoniae (pneumococcus) bacteria of the S-strain have a mucous (polysaccharide) coat while those of the R-strain have not. Consequently, S-strain bacteria create smooth, shiny colonies, whereas R-strain bacteria create rough, unappealing colonies. Griffith deduced from the data that S strain bacteria had changed R strain bacteria. The S strain bacteria were killed by heat, but the R strain inherited a "transforming principle" that gave them their virulence.To learn more about r-strain bacteria, refer to:
https://brainly.com/question/30635028
which structure of the ear converts sound waves into vibrations?
Answer:
The Cochlea
Explanation:
The ear is the organ of hearing and equilibrium in vertebrates, in humans consisting of an external ear that gathers sound vibrations, the middle ear in which the vibration resonate against the tympanic membrane, a fluid-filled internal ear that maintains balance and that conducts the tympani vibrations to the auditory nerve, which transmits them as impulses to the brain. The Cochlea is a spiral-shaped cavity forming a division of the internal ear in humans and in most other mammals.
Which type of bond occur between bases in a DNA base-pair?
a. covalent bonds
b. ionic bonds
c. hydrogen bonds
The type of bond that occurs between bases in a DNA base-pair is hydrogen bonds. Therefore the correct option is option C.
DNA is a double-stranded helix that is made up of nucleotides that are paired with complementary nucleotides via hydrogen bonds. The base pairs, adenine, and thymine or guanine and cytosine, are held together by hydrogen bonds.
Nucleotides are small molecules that function as the building blocks of DNA. The nucleotides found in DNA are comprised of three distinct components: a nitrogenous base, a five-carbon sugar called deoxyribose, and a phosphate group. The nitrogenous bases are compounds that contain nitrogen and other elements.
There are four different nitrogenous bases in DNA, each of which has a unique structure and chemical composition. Adenine (A), thymine (T), guanine (G), and cytosine (C) are the four nitrogenous bases that are present in DNA.
In DNA, the nucleotides are joined together by covalent bonds between the sugar of one nucleotide and the phosphate group of the next nucleotide. The base pairs are held together by hydrogen bonds. Therefore the correct option is option C.
For such more question on DNA:
https://brainly.com/question/16099437
#SPJ11
choose mechanisms that remove neurotransmitters in the synaptic cleft.
There are several mechanisms that remove neurotransmitters from the synaptic cleft. These mechanisms work together to ensure that neurotransmitters are quickly removed from the synaptic cleft, preventing excessive stimulation of the postsynaptic neuron
Reuptake: This mechanism involves the reabsorption of neurotransmitters by the presynaptic neuron through transporter proteins. This is the primary mechanism for the removal of neurotransmitters like serotonin, dopamine, and norepinephrine. Enzymatic degradation: Some neurotransmitters like acetylcholine are broken down by enzymes like acetylcholinesterase, which hydrolyzes the neurotransmitter into choline and acetate. Diffusion: Neurotransmitters can also diffuse away from the synaptic cleft and into the extracellular fluid. However, this mechanism is not as efficient as reuptake or enzymatic degradation. Glial uptake: Certain types of glial cells, such as astrocytes, can take up neurotransmitters and metabolize them.
To learn more about neurotransmitters refer to:
brainly.com/question/9725469
#SPJ4
a species of fly has teo alleles for the length of their legs. the allele for ling legs is dominant and is represented by p. the allele for short legs is recessive and is represented by q. if 33 of 100 organisms have short legs what is p
Answer: We know that the frequency of the recessive allele (q) is 0.33, because 33 out of 100 organisms have short legs, which means that they must be homozygous recessive (q).
Let's assume that the frequency of the dominant allele (p) is x. We can calculate the frequency of the homozygous dominant (pp) individuals as x^2, and the frequency of the heterozygous (pq) individuals as 2x(1-x), using the Hardy-Weinberg equation:
p^2 + 2pq + q^2 = 1
Substituting q=0.33 and simplifying, we get:
x^2 + 2x(1-x)(0.33) + 0.33^2 = 1
Solving for x, we get:
x = 0.67
Therefore, the frequency of the dominant allele (p) is 0.67.
A muscle that is being regularly contracted during exercise will attract blood flow by dilating arterioles. Which of these factors would contribute to the effect?increased levels of carbon dioxideheat loss from the muscleincreased levels of oxygenan increase in sympathetic tone
Increased levels of carbon dioxide lead to the dilation of arterioles, which allows for greater blood flow to the muscle. The muscles require more oxygen to produce energy, and as a result, increased carbon dioxide levels lead to an increase in blood flow.
During exercise, the muscles require more oxygen to produce energy. The increased carbon dioxide levels lead to the dilation of arterioles, allowing for greater blood flow to the muscle.
The dilation of arterioles occurs when the level of carbon dioxide is high in the blood. The concentration of carbon dioxide in the blood increases due to the release of carbon dioxide during respiration, which occurs as a result of increased energy demand during exercise. The relaxation of the smooth muscle cells in the walls of arterioles that supply the muscles with blood is caused by the higher levels of carbon dioxide. Consequently, the diameter of the arterioles that supply blood to the muscles expands, resulting in a higher amount of blood flow, which provides oxygen to the muscles.
The sympathetic tone regulates vascular tone, which can be defined as the arterial vessel's degree of constriction, mainly those that supply skeletal muscle. Sympathetic activity regulates blood flow in different regions of the body to meet the demands of the body's organs and tissues. However, the increase in sympathetic tone does not dilate the arterioles but constricts them. Hence, the increase in sympathetic tone would not contribute to the effect of muscle contraction during exercise.
You can learn more about the Carbon Dioxide at: https://brainly.com/question/2926412
#SPJ11
the pressure in the lymphatic duct is __________ the surrounding tissues.
The pressure in lymphatic duct is lower than the surrounding tissues. The lymphatic system is a network of vessels and organs that helps to maintain fluid balance in the body and defend against infections.
Lymph, which is a clear fluid that contains white blood cells and other immune system cells, circulates through the lymphatic vessels and eventually drains into the lymphatic ducts, which are larger vessels that empty into the bloodstream. The pressure in the lymphatic ducts is maintained at a lower level than the surrounding tissues, which helps to draw lymph into the ducts and prevent it from accumulating in the tissues. This is important for preventing edema, which is the swelling of tissues due to fluid accumulation.
Learn more about “ lymphatic ducts “ visit here;
https://brainly.com/question/13160586
#SPJ4
Which of these forms by intramembranous bone formation?
humerus
carpal bones
long bones
mandible
Mandible. The left and right mandibular prominences fuse to create the bone in the developing baby, and the mandibular symphysis, a slight ridge that marks the location of this union, may be seen.
The flat bones of the skull, including the mandible, maxilla, and clavicles, undergo intramembranous ossification throughout development; rather than cartilage, the bone is created from connective tissue, such as mesenchyme tissue.
The largest and most powerful facial bone is the mandible. The lower jaw and a portion of the mouth are formed by it. Only the mandible, which is connected to the muscles used for eating and other mouth movements, is movable within the skull. Known as lowerjaw bone, it also serves to support the bottom teeth.
Learn more about Mandible here:
https://brainly.com/question/13174927
#SPJ4
Twelve pairs of bones that surround the heart and lungs. Ribs. Lateral bone of the lower leg. Fibula. Two bones that form the pelvic girdle.
The twelve pairs of bones that surround the heart and lungs are called the ribs (option 1). The ribs are curved, flat bones that connect to the spine at the back and to the sternum at the front.
Ribs provide protection for the heart and lungs, as well as support for the chest wall. The lateral bone of the lower leg is called the fibula. It is a long, thin bone that runs parallel to the larger tibia bone, on the outer side of the lower leg. The fibula provides stability and support to the ankle joint, as well as attachment points for muscles and ligaments in the lower leg.
The two bones that form the pelvic girdle are the ilium and the ischium. The pelvic girdle is the bony structure that connects the spine to the lower limbs. It is formed by the fusion of the two hip bones, each of which is made up of three bones: the ilium, the ischium, and the pubis. The ilium is the largest and most superior of the three bones, while the ischium is the most inferior and posterior.
Know more about Ribs here: https://brainly.com/question/31197541
#SPJ4
The Turnover Pulse hypothesis states that _____ eaters faced high rates of extinction during the ice ages. a)Generalist b) insect c) fruit d) specialist
The Turnover Pulse hypothesis states that specialist eaters faced high rates of extinction during the ice ages. So the correct option is D.
The turnover pulse hypothesis is a scientific concept that hypothesizes the extinction of fauna during the Quaternary ice age as a result of climate change. The Turnover Pulse hypothesis proposes that climate change caused a higher rate of extinction throughout the Quaternary period, with the worst of these happening during the ice ages. This hypothesis states that there are several triggers that can cause extinction, including habitat loss, overhunting, disease, climate change, and others Specialists, according to the Turnover Pulse hypothesis, are among the most prone to extinction because they are limited to eating just one or a few types of food.
Learn more about the turnover pulse hypothesis: https://brainly.com/question/28192443
#SPJ11
A mutation that disrupts cyclic electron flow in the light reactions of photosynthesis will specifically reduce the production of which of the following molecules? A) CO2 B) ATP C) NADPH D) ADP and NADP+ Topic: Photosynthesis converts light energy to the chemical energy of food Bloom's Taxonomy: Levels 3-4: Applying Analyzing Leaming Outcome:10.2: Global LO: G2, V&C LO: VC-PS
Photosynthesis' light reactions transform light energy into chemical energy in the shape of ATP and cause the creation of NADPH from NADP+. In the chloroplast, two kinds of electron flow are involved in the processes.
The physiological importance of photosystem I cyclic electron transport has been underrated, and our understanding of the mechanisms involved is still restricted. Recent genetic methods using Arabidopsis thaliana, on the other hand, have defined the critical roles of this electron flux in both photo protection and photosynthesis. the relationship between photosynthesis and cellular respiration Photosynthesis stores energy in complex organic molecules; cellular respiration releases energy from complex organic molecules. In autumn, chlorophyll is degraded in the leaves of deciduous trees ,To recapitulate, chloroplasts "capture" energy from sunshine in two ways. Light "excites" electrons in pigment molecules and gives the energy to divide water molecules, resulting in more electrons and hydrogen ions. Light-energy-absorbed excited electrons are unstable.
for the two different environments, is there a selective advantage or disadvantage for the red and/or blue phenotypes?
In two different environments, there is a selective advantage or disadvantage for the red and/or blue phenotypes based on the environmental conditions, and the organism's traits or alleles that are favored by natural selection.
Phenotypes are physical characteristics of an organism that are determined by their genes and the environment. The color of a bird's feathers, the height of a person, and the shape of a leaf are all examples of phenotypes. Therefore, the selective advantage or disadvantage for red and/or blue phenotypes in two different environments are based on the following factors:
1. The environmental conditions: The environmental conditions of an organism's habitat, such as the temperature, humidity, soil composition, food availability, and water supply, influence the phenotype of an organism.
For example, if an environment is too dry, organisms that are better adapted to dry conditions, like red phenotypes, may have a selective advantage over organisms with blue phenotypes. Similarly, if an environment is too cold, organisms that are better adapted to colder temperatures, like blue phenotypes, may have a selective advantage over organisms with red phenotypes.
2. The organism's traits or alleles that are favored by natural selection: Natural selection favors traits or alleles that enhance an organism's survival and reproductive success in a given environment.
For example, if red phenotypes have a gene that makes them more resistant to diseases, they may have a selective advantage over blue phenotypes in an environment that has a high prevalence of diseases. Similarly, if blue phenotypes have a gene that makes them more efficient at extracting nutrients from food, they may have a selective advantage over red phenotypes in an environment that has limited food resources.
To know more about Phenotypes here:
https://brainly.com/question/26124553#
#SPJ11
what is the difference between adult and embryonic stem cells in differentiated organs/tissues?
Adult stem cells are found in specialized organs and tissues and are limited to replenishing the particular cell type found in that organ on the other hand, stem cells can differentiate into any type of cell in the body.
Embryonic stem cells are set up in early stage embryos and are undifferentiated, meaning they're able of forming any type of cell. They're used for regenerative purposes, similar as repairing damaged towel and organs,
and can also be used to produce new organs , They're more important than adult stem cells, but also more controversial due to the ethical counteraccusations of using embryonic stem cells.
To know more about stem cells visit:
https://brainly.com/question/11161299
#SPJ4