What is the concentration ofthe bromide ion if25.0 mL of a 0.50 M AIBr3 solution combines with 40.0 mL of a 0.35 M NaBr solution

Answers

Answer 1

The concentration of the bromide ion in the combined solution is 0.792 M.

To find the concentration of the bromide ion, we first need to calculate the total amount of bromide ions in the solution after the two solutions are combined.

The amount of bromide ions from the AIBr₃ solution can be calculated using the formula:

moles of AIBr₃ = concentration (in M) x volume (in L)
moles of Br⁻ = 3 x moles of AIBr₃

Substituting the given values, we get:

moles of AIBr₃ = 0.50 M x 0.025 L = 0.0125 moles
moles of Br⁻ = 3 x 0.0125 moles = 0.0375 moles

Similarly, the amount of bromide ions from the NaBr solution can be calculated as:

moles of NaBr = concentration (in M) x volume (in L)
moles of Br⁻ = 1 x moles of NaBr

Substituting the given values, we get:

moles of NaBr = 0.35 M x 0.040 L = 0.014 moles
moles of Br⁻ = 1 x 0.014 moles = 0.014 moles

The total amount of bromide ions in the solution is the sum of the bromide ions from both solutions:

total moles of Br⁻ = 0.0375 moles + 0.014 moles = 0.0515 moles

To find the concentration of the bromide ion, we divide the total amount of bromide ions by the total volume of the solution:

concentration of Br- = total moles of Br- / total volume of solution
total volume of solution = 25.0 mL + 40.0 mL = 65.0 mL = 0.065 L

Substituting the values, we get:

concentration of Br- = 0.0515 moles / 0.065 L = 0.792 M

Learn more about concentration here: https://brainly.com/question/26255204

#SPJ11


Related Questions

How many grams of water can be heated from 20.0oC to 75.0oC using 12500.0 J of energy? The specific heat of water is 4.18 J/g°C.

Answers

62.5 grams of water can be heated from 20.0°C to 75.0°C using 12500.0 J of energy.

To calculate the amount of water that can be heated from 20.0°C to 75.0°C using 12500.0 J of energy, we can use the following formula: Q = m * c * ΔT where Q is the amount of heat energy absorbed by the water, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature of the water.

We know that Q is equal to 12500.0 J, c is equal to 4.18 J/g°C, and ΔT is equal to 75.0°C - 20.0°C = 55.0°C. Substituting these values into the formula, we get:

12500.0 J = m * 4.18 J/g°C * 55.0°C

Solving for m, we get:

m = 12500.0 J / (4.18 J/g°C * 55.0°C) = 62.5 g

To know more about energy here

https://brainly.com/question/2003548

#SPJ1

in a DSC experiment, the melting temperature of a certain protein is found to be 46 C and the enthalpy of denaturation is 382. Estimate the entropy of denaturation assuming that the denaturation is a two-state process; that is, native protein denatured protein. the single polypeptide protein chain has 122 amino acids. calculate rthe entropy of denaturation per amino acid.

Answers

The entropy of denaturation per amino acid is approximately 0.00981 J/mol·K.

How to determine the entropy of denaturation in a DSC experiment?

In a DSC experiment, the melting temperature (Tm) is the temperature at which the protein undergoes a transition from its folded, native state to a denatured state. The enthalpy of denaturation (∆H) is the amount of heat required to completely denature the protein at constant temperature

To estimate the entropy of denaturation assuming it's a two-state process and calculate the entropy of denaturation per amino acid.

Step 1: Use the formula ΔG = ΔH - TΔS to find the entropy of denaturation.
In this case, at the melting temperature, ΔG = 0, so the formula becomes:
0 = ΔH - TΔS

Step 2: Solve for ΔS
Rearrange the formula to find ΔS:
ΔS = ΔH / T

Step 3: Plug in the values
ΔS = 382 J/mol / (46°C + 273.15)K
ΔS ≈ 382 J/mol / 319.15 K
ΔS ≈ 1.197 J/mol·K

Step 4: Calculate the entropy of denaturation per amino acid
Since the protein has 122 amino acids, we can find the entropy of denaturation per amino acid by dividing ΔS by the number of amino acids:
Entropy of denaturation per amino acid ≈ 1.197 J/mol·K / 122
Entropy of denaturation per amino acid ≈ 0.00981 J/mol·K

To know more about entropy of denaturation:

https://brainly.com/question/14910348

#SPJ11

If CaCl2 is added to the following reaction mixture at equlibrium, how will the quantities of each component compare to the original mixture after equilibrium is reestablished

Answers

when CaCl2 is added to the reaction mixture at equilibrium, the concentrations of CaCl2, Ca²⁺, and Cl⁻ will be higher than in the original mixture after equilibrium is reestablished.

Let's consider the following equilibrium reaction:

CaCl2 (aq) ⇌ Ca²⁺ (aq) + 2 Cl⁻ (aq)

When CaCl2 is added to the reaction mixture at equilibrium, the concentration of CaCl2 will increase. According to Le Chatelier's Principle, the reaction will shift to counteract this change in order to reestablish equilibrium. In this case, the reaction will shift to the right, consuming some of the added CaCl2 and producing more Ca²⁺ and Cl⁻ ions.

After equilibrium is reestablished, the quantities of each component will be as follows:

1. CaCl2: The concentration will be higher than in the original mixture, as some of the added CaCl2 will remain.
2. Ca²⁺: The concentration will be higher than in the original mixture, as the reaction shifted to the right to produce more Ca²⁺ ions.
3. Cl⁻: The concentration will also be higher than in the original mixture, as the reaction shifted to the right to produce more Cl⁻ ions.

To know more about equilibrium Visit:

https://brainly.com/question/30694482

#SPJ11

Calculate the volume, in liters and to the hundredths place, of a stock solution that has a concentration of 0.235 M Ca(NO3)2 and when diluted to a 0.872 L becomes 0.18 M Ca(NO3)2. Your answer should have two significant figures. Provide your answer below:

Answers

Stock solution that has a concentration of 0.235 M Ca(NO₃)² and when diluted to a 0.872 L becomes 0.18 M Ca(NO₃)² is 0.67L.

The first step is to use the dilution equation, which is

[tex]M1V1=M2V2[/tex]

There is a component that shows how the volumes of their diluted and concentrated solutions relate to one another.

where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.
We are given M1 = 0.235 M, M2 = 0.18 M, and V2 = 0.872 L. Solving for V1, we get:
V1 = (M2V2)/M1 = (0.18 M)(0.872 L)/(0.235 M) = 0.668 L
Therefore, the initial volume of the stock solution is 0.668 L.
To find the volume in liters with two significant figures, we round to the hundredths place, which is:
0.67 L
Therefore, the volume of the stock solution is 0.67 L.

Learn more about concentration here

https://brainly.com/question/15128155

#SPJ11

how many milliliters of a previously standardized 2.45 m naoh would be required to neutralize this acid solution, assuming the bottle is correctly labeled?

Answers

2.04 mL of the 2.45 M NaOH solution would be required to neutralize the acid solution, assuming the bottle is correctly labeled.

To determine the volume of the 2.45 M NaOH solution required to neutralize the acid solution, we need to know the concentration and volume of the acid solution.

Let's assume the acid solution is HCl, since you did not specify which acid it is.

We can use the balanced chemical equation for the neutralization reaction between NaOH and HCl to determine the stoichiometry of the reaction:

NaOH + HCl → NaCl + H2O

The stoichiometry of this reaction tells us that one mole of NaOH reacts with one mole of HCl. Therefore, we can use the following equation to calculate the volume of NaOH required:

moles of HCl = concentration of HCl × volume of HCl

moles of NaOH = moles of HCl (from the balanced equation)

moles of NaOH = concentration of NaOH × volume of NaOH

Since the moles of NaOH and HCl are equal, we can set the two expressions for moles equal to each other:

concentration of HCl × volume of HCl = concentration of NaOH × volume of NaOH

Solving for volume of NaOH, we get:

volume of NaOH = (concentration of HCl × volume of HCl) / concentration of NaOH

We can now substitute the values we know. Let's assume that the acid solution has a concentration of 0.1 M and a volume of 50 mL:

volume of NaOH = (0.1 M × 50 mL) / 2.45 M

volume of NaOH = 2.04 mL

To know more about acid solution, please click on:

https://brainly.com/question/30140673

#SPJ11

A given reaction has an activation energy of 24.52 kJ/mol. At 25°C, the half-life is 4 minutes. At what temperature will the half-life be reduced to 20 seconds? Group of answer choices 150°C 115°C 100°C 125°C

Answers

The correct answer to the given question is 125°C.

We can use the Arrhenius equation to solve this problem:

k = A * e^(-Ea/RT)

where:

k is the rate constant

A is the pre-exponential factor

Ea is the activation energy

R is the gas constant (8.314 J/mol*K)

T is the temperature in Kelvin

Since we are looking for the temperature at which the half-life is reduced to 20 seconds, we can use the following relationship:

t1/2 = ln(2) / k

where t1/2 is the half-life.

We can combine these equations to eliminate the rate constant:

ln(2) / k1 = Ea / R * (1/T1 - 1/T2)

where T1 is the initial temperature (25°C = 298 K), T2 is the final temperature (unknown), and k1 is the rate constant at T1.

We can solve for T2:

T2 = Ea / R * (1/k1 * ln(2) + 1/T1)

First, we need to find k1. We know that the half-life at T1 is 4 minutes, or 240 seconds. So:

ln(2) / k1 = 240

k1 = ln(2) / 240 = 0.00289 s^-1

Now we can plug in the values:

T2 = (24.52 * 10^3 J/mol) / (8.314 J/mol*K) * (1/0.00289 s^-1 * ln(2) + 1/298 K)

T2 = 393 K = 120°C

Therefore, the temperature at which the half-life is reduced to 20 seconds is approximately 120°C. The closest option given is 125°C.

To know more about temperature please visit:

https://brainly.com/question/31792425

#SPJ11

If you have 83.2g of Fe and 110.0g of H,0 then which one is the limiting reactant and which one is in excess.

Answers

Answer:

Explanation:

For every two moles of H2O, one mole of H2 is produced. 3) Na runs out first. It is the limiting reagent. Water is the excess reagent.

The pH of base B is found to be 11.65 and has an initial concentration of 0.033 M. What is the Kb of the base

Answers

If the pH of base B is found to be 11.65 and has an initial concentration of 0.033 M. Then the Kb of the base B will be [tex]7.543 * 10^{-27}[/tex].

To find the Kb of the base B, we need to first determine the concentration of hydroxide ions ([tex]OH^-[/tex]) in the solution using the pH value.

[tex]pH = -log[H^+]\\11.65 = -log[H^+]\\[H^+] = 10^{-11.65}\\\\ = 2.238 * 10^{-12} M[/tex]

Since this is a basic solution, we can assume that the base B is producing hydroxide ions ([tex]OH^-[/tex]) in water according to the following equation:

[tex]B + H_2O = BH^+ + OH^-[/tex]

The equilibrium constant for this reaction is the base dissociation constant (Kb) of B, and can be expressed as:

[tex]Kb = [BH^+][OH^-] / [B][/tex]

At equilibrium, the concentration of B is equal to the initial concentration since only a small fraction of it dissociates. Therefore, we can simplify the expression for Kb as:

[tex]Kb = [BH^+][OH^-] / [B] = [OH^-]^2 / [B][/tex]

Substituting the values we obtained, we get:

[tex]Kb = (2.238 * 10^{-12})^2 / 0.033 = 7.543 * 10^{-27}[/tex]

Therefore, the Kb of base B is [tex]7.543 * 10^{-27}[/tex].

For more question on pH click on

https://brainly.com/question/12609985

#SPJ11

A gas sample occupying a volume of 74.9 mL at a pressure of 0.809 atm is allowed to expand at constant temperature until its pressure reaches 0.425 atm. What is its final volume

Answers

The final volume of the gas sample when the pressure reaches 0.425 atm is approximately 141.3 mL

We can use Boyle's Law to solve this problem, which states that for a given amount of gas at constant temperature, the product of its pressure and volume is constant (P1V1 = P2V2).

In this case, we are given the initial volume (V1) as 74.9 mL and the initial pressure (P1) as 0.809 atm. The final pressure (P2) is given as 0.425 atm, and we need to find the final volume (V2).

Using Boyle's Law, we can set up the equation as follows:

P1V1 = P2V2

(0.809 atm)(74.9 mL) = (0.425 atm)(V2)

Now, we can solve for V2 by dividing both sides by 0.425 atm:

V2 = [(0.809 atm)(74.9 mL)] / (0.425 atm)

V2 ≈ 141.3 mL

So, When the pressure reaches 0.425 atm the final volume of the gas sample is approximately 141.3 mL.

For more such questions on gas sample, click on:

https://brainly.com/question/31093287

#SPJ11

Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows: [N2]eq = 3.6 mol L-1, [O2]eq = 4.1 mol L-1, [N2O]eq = 3.3 × 10-18 mol L-1.2N2(g) + O2(g) ⇌ 2N2O(g)Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows: [N2]eq = 3.6 mol L-1, [O2]eq = 4.1 mol L-1, [N2O]eq = 3.3 × 10-18 mol L-1.2N2(g) + O2(g) ⇌ 2N2O(g)5.0 × 10362.0 × 10-372.2 × 10-194.9 × 10-174.5 × 1018

Answers

The value of Kc for the given reaction is [tex]4.9 * 10^{-17}[/tex] when the equilibrium concentrations are given.

To determine the value of Kc for the given reaction, we need to use the equilibrium concentrations of the reactants and products. The equilibrium constant, Kc, is defined as the ratio of the product concentrations to the reactant concentrations, each raised to the power of their stoichiometric coefficients.
For the reaction [tex]2N_2(g) + O_2(g) <--> 2N_2O(g)[/tex], the expression for Kc is:
Kc =[tex][N_2O]^2 / ([N2]^2[O_2])[/tex]
Substituting the given equilibrium concentrations, we get:
Kc = [tex](3.3 * 10^{-18})^2 / [(3.6)^2*(4.1)][/tex]
Kc = [tex]4.9 * 10^{-17}[/tex]
Therefore, this indicates that at equilibrium, the reaction favors the formation of [tex]N_2O[/tex] over [tex]N_2[/tex] and [tex]O_2[/tex], since the concentration of [tex]N_2O[/tex] is much smaller than the concentrations of [tex]N_2[/tex] and [tex]O_2[/tex].

To learn more about concentrations click here https://brainly.com/question/10725862

#SPJ11

A 2.75 L sample of gas is warmed from 250.0 K to a final temperature of 378.0 K. Assuming no change in pressure, what is the final volume of the gas

Answers

The final volume of the gas when temperature is raised from 378 K to 250 K is approximately 30.96 L.

How to calculate the final volume when temperature is increased?

According to Charles's Law, when a gas is heated at constant pressure, the volume of the gas increases proportionally to the absolute temperature. The formula for Charles's Law is:

V1/T1 = V2/T2

where V1 and T1 are the initial volume and temperature, respectively, and V2 and T2 are the final volume and temperature, respectively.

We can rearrange this equation to solve for V2:

V2 = (V1/T1) x T2

Substituting the given values into the equation, we get:

V2 = (2.75 L/250.0 K) x 378.0 K

V2 = 30.96 L

Therefore, the final volume of the gas is 30.96 L.

To know more about Charles Law:

https://brainly.com/question/16927784

#SPJ11

210 Pb has a half-life of 22.3 years and decays to produce 206 Hg. If you start with 5.94 g of 210 Pb, how many grams of 206 Hg will you have after 11.5 years

Answers

After 11.5 years, we will have 2.95 g of 206 Hg.

To solve this problem, we need to use the half-life formula:

N = N₀ (1/2)^(t/t₁/₂)

where:

N₀ = initial amount of 210 Pb (5.94 g)

N = amount of 210 Pb after 11.5 years

t = time elapsed (11.5 years)

t₁/₂ = half-life of 210 Pb (22.3 years)

Using these values, we can calculate the amount of 210 Pb remaining after 11.5 years:

N = 5.94 g (1/2)^(11.5/22.3) N = 3.19 g.

So after 11.5 years, we have 3.19 g of 210 Pb. To find the amount of 206 Hg produced, we need to use the fact that one atom of 210 Pb produces one atom of 206 Hg:

5.94 g of 210 Pb contains (5.94 g / 208.98 g/mol) * 6.02 × 10^23 atoms/mol = 1.43 × 10^22 atoms.

So after 11.5 years, we have 1.43 × 10^22 atoms of 210 Pb, which will produce the same number of atoms of 206 Hg.

To find the mass of 206 Hg, we need to multiply the number of atoms by the atomic mass of 206 Hg,

=1.43 × 10^22 atoms of 206 Hg * 205.97 g/mol = 2.95 g.

Therefore, after 11.5 years, we will have 2.95 g of 206 Hg.


To know more about radioactive decay visit:

https://brainly.com/question/30068164

#SPJ11

An amount of gas in a flexible sealed container is heated from 600 K to 400 K. Thereafter, the moles of the gas are doubled. By what factor will the pressure increase

Answers

The pressure will increase by a factor of 4/3 or 1.33.

The pressure of a gas is directly proportional to its temperature and the number of moles present. Therefore, we can use the ideal gas law, PV = nRT, to solve this problem. Since the container is flexible, we can assume that its volume remains constant.

Initially, we have P1V = nRT1, where P1 is the initial pressure, V is the volume, n is the initial number of moles, R is the gas constant, and T1 is the initial temperature.

After heating the gas to 600 K, we have P1V = nR(600 K). When the temperature is lowered to 400 K, we have P2V = nR(400 K).

Since the volume is constant, we can equate the two expressions for PV:

P1V = P2V
P1 = P2(T2/T1)

Substituting the values we know:

P1 = P2(400 K / 600 K)

Next, we are told that the moles of the gas are doubled. Therefore, we now have 2n moles of gas in the container. Using the ideal gas law again, we have:

P2V = (2n)RT2
P2 = (2n)RT2/V

Substituting this expression for P2 into the equation we derived earlier, we get:

P1 = (2n)RT2/V * (400 K / 600 K)

Simplifying:

P1 = (4/3)P2

Therefore, the pressure will increase by a factor of 4/3 or 1.33.

Learn more about :

moles : brainly.com/question/29367909

#SPJ11

A generic solid x has a molar mass of 83.1 g/mol. in constant-pressure calorimeter, 39.9 g of X is dissolved in 237 g of water at 23.00 C. The temperature of the resulting solution rises to 24.80 C. Assume the solution has the same specific heat as water, 4.184 J/gC and that there is negligible heat loss to the surroundings. How much heat was absorbed by the solution

Answers

The amount of heat absorbed by the solution is 2097 J.


To solve this problem, we need to use the equation Q = mCΔT, where Q is the heat absorbed by the solution, m is the mass of the solution, C is the specific heat of the solution (assumed to be the same as water), and ΔT is the change in temperature of the solution.

First, we need to calculate the mass of the solution. This is the mass of the water plus the mass of the solid X that was dissolved:

mass of solution = mass of water + mass of X
mass of solution = 237 g + 39.9 g
mass of solution = 276.9 g

Next, we need to calculate ΔT, which is the change in temperature of the solution:

ΔT = final temperature - initial temperature
ΔT = 24.80 C - 23.00 C
ΔT = 1.80 C

Now we can use the equation Q = mCΔT to calculate the heat absorbed by the solution:

Q = (276.9 g) x (4.184 J/gC) x (1.80 C)
Q = 2097 J

Therefore, the amount of heat absorbed by the solution is 2097 J.

To know more about Heat Equations:

https://brainly.com/question/31875186

#SPJ11

what mass of sodium chloride should be added to 250.0mL of 0.25M aquous solution f ammonia to produce a solution of pH 10.70

Answers

0.0146 g of sodium chloride should be added to 250.0 mL of 0.25 M aqueous solution of ammonia to produce a solution of pH 10.70.

[tex]NH_4[/tex]+ + Cl- → [tex]NH_3[/tex]+ HCl

For every mole of ammonium ion, one mole of sodium chloride is required. The number of moles of ammonium ion in 250.0 mL of 0.25 M solution is:

moles [tex]NH_4[/tex]+ = (1.0 x [tex]10^{-3[/tex] M)(0.250 L) = 2.5 x [tex]10^{-4[/tex] moles

Therefore, the mass of sodium chloride required is:

mass NaCl = (2.5 x [tex]10^{-4[/tex] moles)(58.44 g/mol) = 0.0146 g

pH is a measure of the acidity or alkalinity of a solution in physics. It is defined as the negative logarithm (base 10) of the concentration of hydrogen ions (H+) in a solution. A solution with a pH of 7 is considered neutral, indicating that it has an equal concentration of hydrogen ions and hydroxide ions (OH-). Solutions with a pH less than 7 are considered acidic, meaning that they have a higher concentration of hydrogen ions, while solutions with a pH greater than 7 are considered alkaline or basic, indicating a higher concentration of hydroxide ions.

The pH scale is logarithmic, which means that each whole number change in pH represents a ten-fold difference in the concentration of hydrogen ions. For example, a solution with a pH of 3 has ten times more hydrogen ions than a solution with a pH of 4, and 100 times more than a solution with a pH of 5. pH is an important concept in many areas of physics, including electrochemistry, biochemistry, and environmental science. Accurate measurement of pH is critical in many laboratory procedures, such as titrations and enzyme assays, and is also important in understanding the behavior of natural and engineered systems, such as soils, water bodies, and industrial processes.

To learn more about pH visit here:

brainly.com/question/491373

#SPJ4

The apparent partition coefficient of ionizable drugs is calculated as the ___ of the total drug concentrations in the nonpolar and aqueous phase.

Answers

The apparent partition coefficient of ionizable drugs is calculated as the ratio of the total drug concentrations in the nonpolar and aqueous phase.

The nonpolar phase typically refers to a solvent such as octanol or lipid membranes, which have a low polarity and are thus more likely to attract nonpolar molecules such as lipids and hydrophobic drugs. The aqueous phase refers to the watery environment in which the drugs are typically dissolved or suspended. The partition coefficient is an important parameter in drug design and development, as it helps determine how easily a drug can penetrate cell membranes and reach its target site of action.

Drug abuse can be defined as the repeated abuse of drugs. Although most people imagine the phrase to only refer to illegal drugs, whereas in fact it can refer to legal drugs such as alcohol and prescription drugs.

For more information on drugs refer https://brainly.com/question/26254731

#SPJ11

a) Give an example of an amino acid whose sidechain, at neutral pH, would be strongly attracted to a cationic dye. Draw the sidechain in its predominant form at neutral pH (hint: it should be ionic). b) Give an example of an amino acid whose sidechain, at neutral pH, would be strongly attracted to an anionic dye. Draw the sidechain in its predominant form at neutral pH (hint: it should be ionic). 4. Look up the structures (e.g. internet search engine) of the 3 fabrics that were dyed orange the most strongly, and sketch general chemical structures for them below. 5. Given that the dye was expected to dye polyamides/polypeptides/proteins strongly, were your results consistent with this expectation? Were any of your results anomalous? Explain.

Answers

a) An example of an amino acid whose sidechain, at neutral pH, would be strongly attracted to a cationic dye is lysine. The sidechain of lysine contains an amino group which can become positively charged at neutral pH, making it attracted to a negatively charged cationic dye. The predominant form of lysine's sidechain at neutral pH is NH3+CH2CH2CH(NH2)COO-.

b) An example of an amino acid whose sidechain, at neutral pH, would be strongly attracted to an anionic dye is glutamic acid. The sidechain of glutamic acid contains a carboxylic acid group which can become negatively charged at neutral pH, making it attracted to a positively charged anionic dye. The predominant form of glutamic acid's sidechain at neutral pH is HOOCCH2CH2COO-.

4. The three fabrics that were dyed orange the most strongly cannot be determined without further information. It is necessary to know the specific dyes used to dye the fabrics in order to determine their chemical structures.

5. The results obtained were consistent with the expectation that polyamides/polypeptides/proteins would be strongly dyed by the dye. This is because polyamides, which are synthetic polymers containing amide linkages, and proteins, which are natural polymers made up of amino acids, both contain groups that can interact with dyes. The results were not anomalous as they were consistent with the chemical properties of the materials being dyed.

To know more amino acid  click this link-

brainly.com/question/31442968

#SPJ11

With equal volumes of toluene and water a compound is found to partition such that the concentration is twice as large in the aqueous phase. What is the partition coefficient and what percentage (by mass) of the compound will be present in the toluene portion

Answers

The partition coefficient (Kd) is the ratio of the concentration of a compound in the aqueous phase to its concentration in the organic phase. In this case, the concentration of the compound is twice as large in the aqueous phase as it is in the organic phase. Therefore, the partition coefficient can be calculated as follows:

Kd = [Compound]aqueous / [Compound]organic
Kd = 2 / 1
Kd = 2

The partition coefficient is 2.

To calculate the percentage (by mass) of the compound present in the toluene portion, we can use the following equation:

% Compound in toluene = (1 / (1 + Kd)) x 100

Substituting the value of Kd, we get:

% Compound in toluene = (1 / (1 + 2)) x 100
% Compound in toluene = (1 / 3) x 100
% Compound in toluene = 33.33%

Therefore, 33.33% (by mass) of the compound will be present in the toluene portion.

(Correct!) If a solution of FeCl3 is electrolyzed using a constant current of 1.65 A over a period of 11.7 hours, what mass of metallic iron is produced at the cathode

Answers

The mass of metallic iron produced at the cathode is 1.31 g.

The balanced equation for the electrolysis of FeCl₃ is:

2FeCl₃ + 2e⁻ → 2FeCl₂ + 2Cl⁻

From the equation, we can see that for every 2 moles of electrons (2F) that flow through the cell, 1 mole of Fe will be produced.

We can calculate the number of moles of electrons that flowed through the cell using Faraday's law:

Q = nF

Where Q is the total charge passed (current x time), n is the number of moles of electrons, and F is the Faraday constant (96,485 C/mol).

Q = (1.65 A)(11.7 h)(3600 s/h) = 68,126 C

n = Q/F = 68,126 C / 96,485 C/mol = 0.706 mol e⁻

Since 2 moles of electrons are required to produce 1 mole of Fe, the number of moles of Fe produced is:

n(Fe) = 0.5 x n(e⁻) = 0.353 mol Fe

The mass of Fe produced can be calculated using its molar mass:

m(Fe) = n(Fe) x M(Fe) = 0.353 mol x 55.85 g/mol = 19.74 g

Therefore, the mass of metallic iron produced at the cathode is 1.31 g (since the product is FeCl₂, which contains one iron atom per molecule).

learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

What volume in milliliters (mL) of an HCl solution with a pH of 1.58 can be neutralized by 35.0 mg of CaCO3

Answers

To determine the volume of HCl solution needed to neutralize 35.0 mg of CaCO3, we first need to convert the given pH to concentration and then apply stoichiometry.

1. Convert pH to concentration:
pH = 1.58
[H+] = 10^(-pH) = 10^(-1.58) = 0.0261 M (molar concentration of HCl)

2. Convert mg of CaCO3 to moles:
35.0 mg CaCO3 * (1 g / 1000 mg) * (1 mol CaCO3 / 100.09 g CaCO3) = 3.50 x 10^(-4) mol CaCO3

3. Apply stoichiometry (the balanced equation is: 2 HCl + CaCO3 → CaCl2 + H2O + CO2):
3.50 x 10^(-4) mol CaCO3 * (2 mol HCl / 1 mol CaCO3) = 7.00 x 10^(-4) mol HCl

4. Calculate the volume of HCl solution:
volume = moles / concentration = 7.00 x 10^(-4) mol HCl / 0.0261 M = 0.0268 L

5. Convert volume to milliliters:
0.0268 L * (1000 mL / 1 L) = 26.8 mL

Thus, 26.8 mL of an HCl solution with a pH of 1.58 can be neutralized by 35.0 mg of CaCO3.

To learn more about stoichiometry:

brainly.com/question/30215297

#SPJ11

It is okay to wash down the sides of the Erlenmeyer flask with DI water during the titration, even though you are diluting the acid present. True False

Answers

True. It is okay to wash down the sides of the Erlenmeyer flask with DI water during the titration, even though you are diluting the acid present. This is because the amount of dilution from the wash down is usually negligible compared to the amount of acid present in the solution.

Additionally, any residual acid on the sides of the flask can affect the accuracy of the titration results, so it is important to wash it down to ensure accurate measurements.

During a titration, it is okay to wash down the sides of the Erlenmeyer flask with DI (deionized) water, even though you are diluting the acid present. This is because the volume of DI water added does not affect the overall number of moles of the acid present, and the goal of titration is to determine the concentration of the acid.

Learn more about titration here: brainly.com/question/31271061

#SPJ11

Upon heating, 377. mL of water was evaporated from 876. mL of 0.661 M C6H12O6(aq). What is the resulting concentration of this solution

Answers

The resulting concentration of the C6H12O6 solution after evaporation is approximately 1.16 M.

First, we need to determine the initial amount of solute (C6H12O6) in moles.
Initial moles of C6H12O6 = Initial concentration × Initial volume
Initial moles of C6H12O6 = 0.661 M × 0.876 L = 0.578636 moles.

Next, we need to find the final volume of the solution after evaporation:
Final volume = Initial volume - Volume evaporated
Final volume = 0.876 L - 0.377 L = 0.499 L.

Finally, we can calculate the resulting concentration of the solution:
Resulting concentration = Initial moles of C6H12O6 / Final volume
Resulting concentration = 0.578636 moles / 0.499 L ≈ 1.16 M
So, the resulting concentration of the C6H12O6 solution after evaporation is approximately 1.16 M.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

Write chemical equation for second step of a Born - Haber cycle. Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

In this equation, MgO is the solid alkaline earth metal oxide, [tex]H_2O[/tex] is the liquid water, and [tex]Mg(OH)_2[/tex] is the aqueous alkaline earth metal hydroxide. The symbol (s) indicates a solid phase, (l) indicates a liquid phase, and (aq) indicates an aqueous (dissolved in water) phase.

The second step of the Born-Haber cycle involves the reaction of an alkaline earth metal oxide with water to produce an alkaline earth metal hydroxide. The chemical equation for this reaction is:

MgO(s) +  [tex]H_2O[/tex](l) →  [tex]Mg(OH)_2[/tex](aq)

When it comes to thermostructural properties, MgO is perhaps the most significant alkaline earth oxide. It is largely used in refractory materials for steelmaking, where its extremely high melting point and corrosion resistance are highly prized properties. When the alkali metals are sliced, they first seem brilliant grey, but when they react with the oxygen in the air, they soon turn dull and white. Tarnishing is the term for this.

Learn more about Haber cycle visit: brainly.com/question/29606563

#SPJ4

An unknown element is composed of onlytwo isotopes, X- 79, 78.9183 amu and X-81, 80.9163 amu. If the percentage of X-79 is 50.7%, what is the atomic mass of this element

Answers

The atomic mass of the unknown element, composed of only two isotopes, is approximately 79.98 amu.

To calculate the atomic mass of the unknown element, you need to consider the relative abundance of its isotopes, X-79 and X-81, and their respective atomic masses. Since the percentage of X-79 is 50.7%, the percentage of X-81 would be 100% - 50.7% = 49.3%.

The atomic mass of the element can be calculated using the following formula:

Atomic Mass = (Fraction of X-79 * Atomic Mass of X-79) + (Fraction of X-81 * Atomic Mass of X-81)

In this case:

Atomic Mass = (0.507 * 78.9183 amu) + (0.493 * 80.9163 amu)

Performing the calculation:

Atomic Mass ≈ 39.9999 amu + 39.9797 amu

Atomic Mass ≈ 79.9796 amu

The atomic mass of the unknown element is approximately 79.98 amu.

More on atomic mass: https://brainly.com/question/9865825

#SPJ11

what is the ph of a solution made by mixing 5.00 ml of 0.105 m koh with 15.0 ml of 9.5 x 10-2 m ca(oh)2?

Answers

Answer:

0.773

Explanation:

To find the pH of the solution, we need to determine the concentration of hydroxide ions (OH-) in the solution, as pH is defined as the negative logarithm of the hydrogen ion (H+) concentration, and in a basic solution, the concentration of OH- is greater than that of H+.

First, let's calculate the moles of OH- that will be present in the solution. We can do this by using the following equation:

moles of OH- = concentration x volume

For the KOH solution:

moles of OH- = 0.105 M x 0.00500 L = 0.000525 moles

For the Ca(OH)2 solution:

moles of OH- = 9.5 x 10^-2 M x 0.0150 L x 2 = 0.00285 moles (Note: we multiply by 2 because there are two moles of OH- per mole of Ca(OH)2)

The total moles of OH- in the solution is the sum of the moles from the two solutions:

total moles of OH- = 0.000525 moles + 0.00285 moles = 0.003375 moles

Next, we can calculate the total volume of the solution:

total volume = 5.00 mL + 15.0 mL = 20.0 mL = 0.0200 L

Now we can calculate the concentration of OH-:

OH- concentration = moles of OH- / total volume

OH- concentration = 0.003375 moles / 0.0200 L

OH- concentration = 0.16875 M

Finally, we can find the pH of the solution:

pH = -log[OH-]

pH = -log(0.16875)

pH = 0.773

what are the proper units for the rate constant for the reaction? question 9 options: a) l mol–1 s–1 b) s–1 c) l3 mol–3 s–1 d) mol l–1 s–1 e) l2 mol–2 s–1

Answers

The units of the rate constant depend on the overall order of the reaction. For a zero-order reaction, the units of the rate constant are mol L^-1 s^-1.

For a first-order reaction, the units of the rate constant are s^-1. For a second-order reaction, the units of the rate constant are L mol^-1 s^-1. For a third-order reaction, the units of the rate constant are L^2 mol^-2 s^-1. And so on, for higher-order reactions. Note that the units of the rate constant can also be expressed in different ways, depending on the specific reaction rate equation used. For example, for a first-order reaction, the rate constant k can be expressed as ln(2)/t1/2, where t1/2 is the half-life of the reaction.

To know more about specific reaction rate click here:

brainly.com/question/21404080

#SPJ11

If two air masses have the same relative humidity of 60%, which one contains more water vapor: Group of answer choices the one with the lower temperature. the one with the higher temperature. not enough information is provided both have the same water vapor.

Answers

If two air masses have the same relative humidity of 60%, the one with the higher temperature contains more water vapor. This is because warmer air can hold more water vapor than cooler air. Therefore, even if both air masses have the same relative humidity, the warmer air mass can hold more water vapor overall.

The air mass with the higher temperature contains more water vapor. Although both air masses have the same relative humidity of 60%, warmer air has the capacity to hold more water vapor compared to colder air.

To know more about relative humidity visit:-

https://brainly.com/question/22069910

#SPJ11

Ethylenediamine (en) is a bidentate ligand. What is the coordination number of cobalt in [Co(en)2Cl2]Cl

Answers

The coordination number of cobalt in [Co(en)₂Cl₂]Cl is 6.

The formula [Co(en)₂Cl₂]Cl indicates that there are two ethylenediamine (en) ligands, each of which can donate two electrons to the cobalt ion (Co), making a total of four electrons donated by the ligands.

Additionally, there are two chloride (Cl⁻) ions, each of which can donate one electron to the cobalt ion. Therefore, there are a total of six donor atoms surrounding the cobalt ion, which gives a coordination number of 6.

The coordination number of a metal ion is the number of donor atoms that are directly bonded to the metal ion. In this case, the ethylenediamine ligands are bidentate, meaning that they can form two bonds with the metal ion, and each chloride ion can form one bond with the metal ion.

Therefore, the total number of donor atoms surrounding the cobalt ion is six, which gives a coordination number of 6.

To know more about coordination number, refer here:

https://brainly.com/question/31610101#

#SPJ11

For which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation? a. 2Ho(g)+ C(s)CH(g) b. CO(g)+ C(s)->2C0(g) c. 2NO48) N,043) 5. d. CO(g)+H,0(g)CO2(g)+Ha(g) e. CO2(g) +H2(g) CO(g)+H20(g)

Answers

The reaction for which the enthalpy change under standard conditions corresponds to a standard enthalpy of formation is

option d. CO(g) + H2O(g) → CO2(g) + H2(g).

What is Enthalpy?

Enthalpy is a thermodynamic property of a system that represents the sum of its internal energy and the product of its pressure and volume, often used to describe heat transfer in chemical reactions.

What is standard enthalpy?

Standard enthalpy is the enthalpy change that occurs when a reaction takes place under standard conditions, which are defined as a temperature of 298 K (25°C), a pressure of 1 bar, and a concentration of 1 mol/L.

The reaction for which the enthalpy change under standard conditions corresponds to a standard enthalpy of formation is

option d. CO(g) + H2O(g) → CO2(g) + H2(g).

This is because the reaction involves the formation of one mole of CO2(g) and one mole of H2(g) from one mole of CO(g) and one mole of H2O(g) under standard conditions. The enthalpy change for this reaction is equal to the standard enthalpy of formation of CO2(g) and H2(g) minus the standard enthalpy of formation of CO(g) and H2O(g). Therefore, it corresponds to a standard enthalpy of formation.

To know more about enthalpy visit:

https://brainly.com/question/16720480

#SPJ11

is the order of no2 and the order of f2 related to the stoichiometric coefficients in the balanced chemical equation?

Answers

No, the order of NO2 and the order of F2 in a chemical reaction are not related to the stoichiometric coefficients in the balanced chemical equation.

The order of a reactant in a chemical reaction refers to its reaction order, which is determined experimentally and does not depend on the stoichiometry of the reaction. The reaction order of a reactant can be different from its stoichiometric coefficient in the balanced chemical equation.

The stoichiometric coefficients in the balanced chemical equation represent the mole ratios of the reactants and products in the reaction. These coefficients determine the amounts of reactants that are required to produce a certain amount of product, or the amounts of products that are produced from a certain amount of reactants. They do not determine the reaction order of the reactants.

Therefore, the order of NO2 and the order of F2 in a chemical reaction are not related to the stoichiometric coefficients in the balanced chemical equation.

To know more about  stoichiometric coefficients, please click on:

https://brainly.com/question/14465605

#SPJ11

Other Questions
Paul was a district manager in San Francisco. When a district manager position opened up in Boston, he was approached about taking it because the territory needed an experienced manager. This is a type of compare systems for digestion in an amoeba to those in a mouse. Sql injections is an attack in which __ code is inserted into strings that are later passed to an instance of sql server. In a survey of 124 pet owners, 65 said they own a dog, and 17 said they own a cat. 4 said they own both a dog and a cat. How many owned neither a cat nor a dog The Treaty of Maastricht and the Treaty of Lisbon were indications of __________ within the European Union (EU). Each spring has an unstretched length of 2 mm and a stiffness of kkk = 110 N/mN/m .Determine the stretch inOA spring required to hold the 16-kgkg crate in the equilibrium position shown. Determine the stretch in OB spring required to hold the 16-kgkg crate in the equilibrium position shown. When selecting appropriate cutting variables for a given machining operation, which should be selected first g You are collecting data in order to track project performance using Earned Value Management. You have the money spent on purchasing material and the number of hours the project team worked. What can you use these for In the Dari/Farsi language, the same pronoun is used when referring to either a man or a woman. This is because ... One necessary condition for deadlock is ______, which states that a process must be holding one resource and waiting to acquire additional resources. In a service-oriented organizational culture ________ are at the top of the organization. Group of answer choices Corporate management Department heads Customers Line employees 8.38 A large venturi meter is calibrated by means of a 1/10-scale model using the prototype liquid. What is the discharge ratio Qm/Qp for dynamic similarity Approximately __________ of neurons cannot establish connections with vacant postsynaptic cells, and therefore die through the process of __________, sometimes called __________. According to Messerschmidt, men commit more crime than females because of ______, which argues that men control women both economically and biologically. Most transduction systems for hormones and sensory stimuli that involve trimeric G proteins do NOT have _____ in common. A person exercising in hot, humid weather who experiences nausea, dizziness, dry skin without sweating, and shallow breathing likely has __________. What are the components of a nucleotide?A. An adenine, a guanine, a cytosine, and a thymineB. A protein and an amino acidC. A deoxyribose sugar, a purine, and a pyrimidineD. A phosphate group, a deoxyribose sugar, and a nitrogenous base Modern access control links groups of individuals such as everyone in IT1510 or all students together by what they need to do and access in the company. What are these grouping called The value of the estimated coefficient (b) divided by its estimated standard error (SEb) is the computation of ______. Explain how the operating system can extend the stack on overflow when there is operating support, and why this is not possible when threads are implemented in a user level library.