The factored version of the equation would be (b + 9) (b - 7) = 0.
How to find the factored version ?We are given the equation:
b ^ 2 + 2b - 72 + 9 = 0
b ^ 2 + 2b - 63 = 0
We can rewrite this equation, based on two numbers that multiply to - 63 and add up to 2. These numbers would be 9 and 7 so the equation becomes :
(b + 9) (b - 7) = 0
The answers after the simplification would be:
b + 9 = 0
b = -9
b - 7 = 0
b = 7
Find out more on factoring at https://brainly.com/question/28151656
#SPJ1
82% of companies ship their products by truck. 47% of companies ship their product by rail. 40% of companies ship by truck and rail. What is the probability that a company ships by truck or rail
The probability that a company ships by truck or rail is 89%.
To calculate the probability that a company ships by truck or rail, we need to add the probability of shipping by truck to the probability of shipping by rail, and then subtract the probability of shipping by both truck and rail (to avoid double counting):
P(shipping by truck or rail) = P(shipping by truck) + P(shipping by rail) - P(shipping by both truck and rail)
We are given that:
P(shipping by truck) = 82%
P(shipping by rail) = 47%
P(shipping by both truck and rail) = 40%
Plugging in these values, we get:
P(shipping by truck or rail) = 82% + 47% - 40%
= 89%
Therefore, the probability that a company ships by truck or rail is 89%.
for such more question on probability
https://brainly.com/question/13604758
#SPJ11
PLEASE HELP AND ANSWER CORRECTLY
The line plot displays the cost of used books in dollars.
A horizontal line starting at 1 with tick marks every one unit up to 9. The line is labeled Cost in Dollars, and the graph is titled Cost of Used Books. There is one dot above 2, 4, 8, and 9.There are two dots above 6 and 7. There are three dots above 3.
Which measure of center is most appropriate to represent the data in the graph, and why?
The mean is the best measure of center because there are no outliers present.
The mean is the best measure of center because there are outliers present.
The median is the best measure of center because there are no outliers present.
The median is the best measure of center because there are outliers present.
The line plot displays the cost of used books in dollars.
A horizontal line starting at 1 with tick marks every one unit up to 9. The line is labeled Cost in Dollars, and the graph is titled Cost of Used Books. There is one dot above 2, 4, 8, and 9.There are two dots above 6 and 7. There are three dots above 3.
Which measure of center is most appropriate to represent the data in the graph, and why?
The mean is the best measure of center because there are no outliers present.
The mean is the best measure of center because there are outliers present.
The median is the best measure of center because there are no outliers present.
The median is the best measure of center because there are outliers present.
Answer:
The median is the best measure of center because there are outliers present.
1,000 mL of D subscript 5 begin inline style 1 half end style N S. How many grams of sugar does the solution contain?
The 1,000 mL of D5 1/2 NS solution contains 50 grams of sugar.
To calculate the grams of sugar in the solution, we need to know the concentration of sugar in the solution, usually measured in grams per milliliter (g/mL) or grams per liter (g/L).
The information provided in the problem tells us that we have a solution of "D5 1/2 NS," which stands for "Dextrose 5% in 0.45% Normal Saline." This is an intravenous (IV) solution commonly used in medicine. It contains 5 grams of dextrose (a type of sugar) per 100 mL of solution and 0.45 grams of sodium chloride (salt) per 100 mL of solution.
To calculate the concentration of sugar in the solution, we can use the following conversion factor:
1% = 1 gram per 100 mL
Therefore, the concentration of sugar in the D5 1/2 NS solution is:
5% = 5 grams per 100 mL
To calculate the total amount of sugar in the 1,000 mL of solution, we can use the following formula:
(total sugar in grams) = (volume of solution in mL) x (concentration of sugar in g/100mL)
Substituting the given values, we get:
(total sugar in grams) = (1,000 mL) x (5 g/100mL)
(total sugar in grams) = 50 grams
To learn more about solution here:
https://brainly.com/question/24090866
#SPJ1
Triangle DEF has angles with the following measurements: Angle D is 40 degrees, angle E is 70 degrees and angle F is 70 degrees. Will the side opposite angle E be longer, shorter or the same size as the side opposite angle F?
The side opposite angle E will be the same size as the side opposite
angle F.
We have,
Since angles E and F have the same measure, we know that the sides opposite these angles will have the same length.
This is because of the following theorem:
If two angles in a triangle have the same measure, then the sides opposite those angles are congruent (i.e., have the same length).
Therefore,
The side opposite angle E will be the same size as the side opposite
angle F.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ1
MaryAnn and Nana conduct surveys to determine which potential new menu item would be most popular among customers. Surveys will provide MaryAnn and Nana with what type of data?
MaryAnn and Nana's surveys will provide them with quantitative data, which is numerical data that can be measured and analyzed using mathematical or statistical methods.
Quantitative data refers to numerical information that can be measured and expressed in terms of numbers or quantities. It is often obtained through structured research methods such as surveys, experiments, and statistical analyses. This type of data is objective, reliable, and precise, and can be easily analyzed using statistical techniques.
Quantitative data can be divided into two main categories: discrete data and continuous data. Discrete data can only take specific values, such as the number of people in a room or the number of cars in a parking lot. Continuous data, on the other hand, can take any value within a certain range, such as height, weight, or temperature. Quantitative data can provide valuable insights into patterns, trends, and relationships between variables, making it an essential tool for decision-making in various fields, including business, science, and social research.
To learn more about Quantitative data visit here:
brainly.com/question/14810759
#SPJ4
Alice and Bill, who happen to have the same mass, both want to climb to the top of a mountain. Bill wants to take the steep path straight up, but Alice wants to take the path that gently winds around the mountain, even though it is 8 times longer than the steep path. They both eventually reach the top of the mountain, but Alice reaches the top in 1/3 the time that Bill takes using the steep route. How does the work that Alice did in climbing the mountain compare with the amount that Bill did
Alice has done 8 times more work than Bill in climbing the mountain, even though she reaches the top in 1/3 the time it takes Bill.
The work that Alice did in climbing the mountain is equal to the work that Bill did, even though Alice took the longer path. This is because work is defined as the product of force and displacement, and both Alice and Bill exerted the same amount of force against gravity to lift their bodies to the same height. The longer path taken by Alice resulted in a smaller force exerted over a longer distance, while the steep path taken by Bill resulted in a larger force exerted over a shorter distance. However, Alice completed the climb in 1/3 the time it took Bill, which means that her power output was 3 times greater than Bill's. Power is defined as the rate of doing work, so even though Alice did the same amount of work as Bill, she did it in a shorter amount of time, which means that her power output was greater.
Alice and Bill both have the same mass and are climbing to the top of a mountain. Bill takes the steep path straight up, while Alice takes a longer, winding path that is 8 times the length of the steep path. Despite this, Alice reaches the top in 1/3 of the time it takes Bill.
To compare the work done by Alice and Bill, we need to understand that work is equal to the force applied multiplied by the distance traveled, or W = F × d. The force in this case is equal to their mass multiplied by the acceleration due to gravity (F = m × g).
Since both Alice and Bill have the same mass and are climbing the same height, the vertical distance they travel is the same. Therefore, the force applied by both Alice and Bill is also the same.
However, the total distance traveled is different. Alice takes a path that is 8 times longer than Bill's path. In terms of work done, this means that Alice has done 8 times more work than Bill, as W = F × d, and the distance she traveled is 8 times longer.
In summary, Alice has done 8 times more work than Bill in climbing the mountain, even though she reaches the top in 1/3 the time it takes Bill.
Learn more about force at: brainly.com/question/13191643
#SPJ11
As Tia solved the system of equations below, she transformed matrices at different steps during the process.
-a-b+2c-7
2a+b+c=2
-3a+2b+3c-7
She noted the following matrices.
1
1 00 0
0 10-1
00 1
73
||
-1 -1
2 7
1
1
-3 2 3 7
123
27
2
III
1 1 -2 -7
0 1
-16
-5
0 0 22 66
IV
1 1 0 -1
0 1 0-1
0 0 1 3
In which order should the matrices be arranged when solving the system from start to finish?
OI, IV, III, II
The order in which the matrices should be arranged is: I, IV, III, II.
To solve the system of equations, Tia used row operations to transform the augmented matrix, which consists of the coefficients of the variables and the constants, into an equivalent matrix in row echelon form. The matrices she noted correspond to the augmented matrix at different steps during the row operations.
To determine the order in which the matrices should be arranged when solving the system from start to finish, we need to follow the sequence of row operations performed by Tia. We can determine this sequence by examining the changes in the matrices.
Starting matrix:
-1 -1 2 -7
2 1 1 2
-3 2 3 -7
I: Add Row 1 to Row 2:
1 0 2 -5
2 1 1 2
-3 2 3 -7
II: Add -2 times Row 1 to Row 3:
1 0 2 -5
2 1 1 2
0 2 -1 3
III: Add -2 times Row 2 to Row 3:
1 0 2 -5
2 1 1 2
0 0 -3 -4
IV: Multiply Row 3 by -1/3:
1 0 2 -5
2 1 1 2
0 0 1 4/3
V: Add -2 times Row 3 to Row 2:
1 0 2 -5
2 1 0 -2/3
0 0 1 4/3
VI: Add -2 times Row 2 to Row 1:
1 0 0 -1/3
0 1 0 -2/3
0 0 1 4/3
The final matrix corresponds to the row echelon form of the augmented matrix. The solution of the system can be obtained by back-substitution, starting from the last equation and working upwards.
To learn more about matrices here:
https://brainly.com/question/11367104
#SPJ1
Brandon is competing in a long jump competition. He jumped 19.8 feet on his first jump. In his next two jumps, he jumped 19.98 feet and 18.77 feet. What is the total distance for all three jumps
Brandon's performance in the long jump competition was solid. While his third jump wasn't quite as long as his first two jumps, he still managed to jump almost 60 feet in total, which is no small feat.
To find the total distance for all three jumps, we need to add up the distance for each of Brandon's jumps. On his first jump, Brandon jumped 19.8 feet. On his second jump, he jumped 19.98 feet. And on his third jump, he jumped 18.77 feet.
To get the total distance, we simply add these three distances together:
19.8 + 19.98 + 18.77 = 58.55 feet
So the total distance for all three of Brandon's jumps is 58.55 feet.
It's important to note that in long jump competitions, the distance is measured from the takeoff line to the point where the athlete's body first breaks the plane of the landing area. This means that the actual distance that Brandon jumped may have been slightly longer or shorter than the distances recorded for each jump.
Overall, Brandon's performance in the long jump competition was solid. While his third jump wasn't quite as long as his first two jumps, he still managed to jump almost 60 feet in total, which is no small feat. Depending on the level of competition he was participating in, this distance could have been enough to earn him a medal or place him high in the rankings.
To learn more about area click here
brainly.com/question/27683633
#SPJ11
Should my Mom get an Escalade or a Wagoneer
Answer:
Whatever she wants.
I'd say you probably want a Wagoneer, as your username is jeepwagoneer
A lot of 30 watches is 20% defective. What is the probability that a sample of 3 will contain 2 defectives
To calculate the probability of obtaining 2 defective watches in a sample of 3 from a lot of 30 watches with a 20% defective rate, we can use the binomial probability formula.
The binomial probability formula is given by:
P(X = k) = (n C k) * p^k * (1 - p)^(n - k)
Where:
P(X = k) is the probability of getting exactly k successes (in this case, 2 defectives),
n is the sample size (3),
k is the number of successes (2),
p is the probability of success (defective rate, 20% or 0.2), and
(1 - p) is the probability of failure (1 - 0.2 = 0.8).
Using these values, we can calculate the probability as follows:
P(X = 2) = (3 C 2) * (0.2)^2 * (0.8)^(3 - 2)
(3 C 2) represents the number of ways to choose 2 out of 3 watches, which is calculated as 3! / (2! * (3 - 2)!), which simplifies to 3.
P(X = 2) = 3 * (0.2)^2 * (0.8)^(3 - 2)
= 3 * 0.04 * 0.8
= 0.096
Therefore, the probability that a sample of 3 watches from the lot of 30 watches contains 2 defectives is 0.096 or 9.6%.
To know more about probability refer here
https://brainly.com/question/31828911#
#SPJ11
Marcos has 2003 pairs of shoes. In how many different ways can he select a left then a right shoe?
Answer:
4006
Step-by-step explanation:
Suppose the number of words per sentence in a book is normally distributed. If the population standard deviation is 4 words, what minimum sample size is needed to be 95% confident that the sample mean is within 2 words of the true population mean
A minimum sample size of 62 is needed to be 95% confident that the sample mean is within 2 words of the true population mean, assuming a normal distribution of the number of words per sentence in the book and a population standard deviation of 4 words.
To determine the minimum sample size needed to be 95% confident that the sample mean is within 2 words of the true population mean, we can use the formula for the margin of error:
Margin of error = z * (standard deviation / sqrt(n))
Where z is the z-score for the desired confidence level, standard deviation is the population standard deviation (given as 4 words), and n is the sample size.
We want the margin of error to be no more than 2 words, so we can set up the inequality:
z * (4 / √n) ≤ 2
To find the value of z for 95% confidence level, we can use a z-table or calculator and find that z = 1.96.
Substituting this value into the inequality and solving for n, we get:
1.96 * (4 / √n) ≤ 2
Simplifying and solving for n, we get:
n >= 61.05
Since we can't have a fractional sample size, we can round up to the nearest whole number and conclude that a minimum sample size of 62 is needed to be 95% confident that the sample mean is within 2 words of the true population mean.
Learn more about standard deviation
https://brainly.com/question/23907081
#SPJ4
Assuming Albert doesn't pay it off in full, how much interest is Albert charged for this billing
period?
Assuming Albert doesn't pay it off in full, he would be charged $1.48 in interest for this billing period.
To find the interest which too is charged for every day, we need to find the daily periodic rate.
The daily periodic rate can be found by dividing the APR by the number of days in a year which is:
[tex]20.7\% /365 =0.00056849315[/tex]
So with the help of the daily periodic rate we can calculate the interest charged for each day:
[tex]Days 1-3: \$50 * 0.00056849315 * 3 = $0.0852749725\\Days 4-10: \$100 * 0.00056849315 * 7 = $0.0398214543\\Days 11-25: \$175 * 0.00056849315 * 15 = $1.2925681162\\Days 26-30: \$225 * 0.00056849315 * 5 = $0.0646242018\\[/tex]
The total interest charged during the entire billing period is:
Total interest charged = $0.0852749725 + $0.0398214543 + $1.2925681162 + $0.0646242018
= $1.4822887448
So assuming Albert doesn't pay it off in full, he would be charged $1.48 in interest for this billing period.
Learn more about the billing period at:
https://brainly.com/question/30413485
Please find the attached image for the data used to calculate the required answer.
#SPJ1
Lydia tosses two six-sided number cubes. List the sample space. What is the probability of Lydia rolling pairs of the same number
So the probability of rolling pairs of the same number is 6/36, which simplifies to 1/6 or approximately 0.1667.
When Lydia tosses two six-sided number cubes, the sample space consists of all possible outcomes for each roll. There are 6 sides on each cube, resulting in 6 x 6 = 36 possible outcomes.
For pairs of the same number, there are 6 possible outcomes: (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6).
To find the probability of Lydia rolling pairs of the same number, divide the number of favorable outcomes (pairs of the same number) by the total number of outcomes in the sample space:
Probability = (number of favorable outcomes) / (total number of outcomes) = 6 / 36 = 1/6 or approximately 16.67% or 0.1667.
More on probability: https://brainly.com/question/30034780
#SPJ11
If begin alpha is changed from 0.01 to 0.05, which of the following is true? I. The probability of a Type I error goes up II. The p-value goes up.
The correct answer is I. The probability of a Type I error goes up
If the significance level, or begin alpha, is changed from 0.01 to 0.05, the probability of a Type I error increases. This is because the researcher is now more willing to reject the null hypothesis and declare a significant effect even when there isn't one.
However, changing the significance level does not necessarily affect the p-value. The p-value is a measure of the strength of evidence against the null hypothesis, and is calculated based on the data and the chosen significance level. It is possible for the p-value to go up or down depending on the data, even if the significance level remains constant.
Therefore, the correct option is I. The probability of a Type I error goes up.
To learn more about Type I error, refer here:
https://brainly.com/question/24320889#
#SPJ11
Find a power series for f(x)= 5/2x-3 centered at c=-3 and determine the interval and radius of convergence.
The interval of convergence is (-∞,∞) and the radius of convergence is ∞.The power series for f(x) can be found using the formula:
f(x) = Σ(n=0 to ∞) [fⁿ(c)/n!]*(x-c)ⁿ
where fⁿ(c) represents the nth derivative of f evaluated at x=c.
In this case, we have:
f(x) = 5/2x-3
f'(x) = -5/2(x-3)⁻²
f''(x) = 5(x-3)⁻³
f'''(x) = -15(x-3)⁻⁴
and so on.
Evaluating these derivatives at c=-3, we get:
f(-3) = 5/2(-3)-3 = -15/2
f'(c) = -5/2(-3-3)⁻² = -5/36
f''(c) = 5(-3-3)⁻³ = 5/216
f'''(c) = -15(-3-3)⁻⁴ = -5/1296
and so on.
Substituting these values into the power series formula, we get:
f(x) = Σ(n=0 to ∞) [(-1)ⁿ*5/(2*3ⁿ)*(x+3)ⁿ]
This can be simplified to:
f(x) = Σ(n=0 to ∞) [(-1)ⁿ*5/(2*3ⁿ)*xⁿ] + Σ(n=0 to ∞) [(-1)ⁿ*5/(2*3ⁿ)*(-3)ⁿ]
The first sum represents the power series centered at 0, while the second sum is a constant term (-15/2) that is added to shift the series to be centered at -3.
To determine the interval and radius of convergence, we can use the ratio test:
|a(n+1)/a(n)| = |(-1)^(n+1)*5/(2*3^(n+1))/( (-1)^n*5/(2*3^n))|
= 3/2
Since this ratio is constant and less than 1, the power series converges for all values of x.
Therefore, the interval of convergence is (-∞,∞) and the radius of convergence is ∞.
learn more about the interval of convergence here: brainly.com/question/30395657
#SPJ11
A rectangular container with a square base, an open top, and a volume of 256 cm3 is to be made. What is the minimum surface area for the container
The minimum surface area of the container is: 96.00 cm² in the given case.
Let's call the length and width of the square base "x", and the height of the container "h". Since the container has a volume of 256 cm^3, we can write:
V = [tex]x^2 * h = 256[/tex]
We want to minimize the surface area of the container, which consists of the area of the base plus the area of the four sides. The area of the base , and the area of each side is xh. Therefore, the total surface area of the container is:
A = [tex]x^2 + 4xh[/tex]
We can solve for h in terms of x using the volume equation:
h = [tex]256 / (x^2)[/tex]
Substituting this expression for h into the surface area equation, we get:
A(x) =
To find the minimum surface area, we need to find the critical points of the function A(x).
We can do this by taking the derivative of A(x) with respect to x, setting it equal to zero, and solving for x:
[tex]dA/dx = 2x - 1024 / x^2 = 0\\2x = 1024 / x^2\\x^3 = 512\\x = ∛512\\x ≈ 8.00 cm[/tex]
To confirm that this is a minimum, we can check the second derivative:
[tex]d^2A/dx^2 = 2 + 2048 / x^3[/tex]
This is positive, so A(x) has a minimum at x =[tex]∛512[/tex]. Therefore, the minimum surface area of the container is: 96.00 cm²
To learn more about surface area here
https://brainly.com/question/16519513
#SPJ4
The quality control manager at a computer manufacturing company believes that the mean life of a computer is 80 months, with a variance of 6464. If he is correct, what is the probability that the mean of a sample of 7777 computers would be less than 82.5982.59 months
The probability that the mean of a sample of 7777 computers would be less than 82.59 months is 100%, or close to 1.
The probability that the mean of a sample of 7777 computers would be less than 82.5982.59 months, assuming a mean life of 80 months and a variance of 6464, can be calculated using the central limit theorem and the standard normal distribution.
First, we calculate the standard error of the mean using the formula:
standard error of the mean = σ/√n
where σ is the population standard deviation, n is the sample size.
Here, σ² = 6464, so σ = √6464 = 80.3
n = 7777
standard error of the mean = 80.3/√7777 ≈ 0.907
Next, we calculate the z-score using the formula:
z = ([tex]\bar{x}[/tex] - μ) / (σ/√n)
where [tex]\bar{x}[/tex] is the sample mean, μ is the population mean, σ is the population standard deviation, n is the sample size.
Here, [tex]\bar{x}[/tex] = 82.59, μ = 80, σ = 80.3, n = 7777
z = (82.59 - 80) / (80.3/√7777) ≈ 8.6
We find that the probability of z being less than 8.6 is very close to 1, or 100%.
To know more about probability, refer here:
https://brainly.com/question/30034780#
#SPJ11
You want to know the percentage of utility companies that earned revenue less than 3939 million or more than 6161 million dollars. If the mean revenue was 5050 million dollars and the data has a standard deviation of 77 million, find the percentage. Assume that the distribution is normal. Round your answer to the nearest hundredth.
The percentage of utility companies that earned revenue less than 3939 million or more than 6161 million dollars is 0.1484 or 14.84% (rounded to the nearest hundredth).
We can use the standard normal distribution to find the percentage of utility companies that earned revenue less than 3939 million or more than 6161 million dollars.
First, we need to standardize the values using the formula:
z = (x - μ) / σ
where x is the revenue value, μ is the mean revenue, and σ is the standard deviation.
For x = 3939 million:
z = (3939 - 5050) / 77 = -1.45
For x = 6161 million:
z = (6161 - 5050) / 77 = 1.44
Using a standard normal distribution table or calculator, we can find the probability of a value being less than -1.45 or greater than 1.44.
P(z < -1.45) = 0.0735
P(z > 1.44) = 0.0749
The percentage of utility companies that earned revenue less than 3939 million or more than 6161 million dollars is:
0.0735 + 0.0749 = 0.1484 or 14.84% (rounded to the nearest hundredth).
for such more question on percentage
https://brainly.com/question/27855621
#SPJ11
Find the sum of the convergent series 2(-1)-1 12n2 + 1 by using a well- known function. Round your answer to four decimal places. a. 0.0713 b. 0.0907 c. 0.8288 d. 0.0768 e. 0.0831
Upon calculating the sum up to the appropriate term, we find that the sum is approximately 0.0713. So, the correct answer is a. 0.0713
It seems like there is a typo in the series notation. I assume the series you are referring to is ∑(2(-1)^n-1)/(12n^2 + 1) from n=1 to infinity. In this case, we can determine the sum using a well-known function and round the answer to four decimal places. Since the given series is an alternating series, we can use the Alternating Series Estimation Theorem to determine an approximation for the sum. The theorem states that if the absolute difference between consecutive terms is decreasing and the limit of the terms as n approaches infinity is zero, the approximation for the sum is accurate up to the first term that is less than or equal to the desired error bound (in this case, 0.0001). For this series, we can see that the absolute difference between consecutive terms decreases as n increases and the limit as n approaches infinity is zero. So, we can find the smallest value of n for which the term is less than or equal to 0.0001 and calculate the sum up to that term.
Learn more about sum here
https://brainly.com/question/29275646
#SPJ11
A carpenter has been asked to build an open box with a square base. The sides of the box will cost $3 per square meter, and the base will cost $4 per square meter. What are the dimensions of the box of greatest volume that can be constructed for $48
The box will be more shallow than in the previous case, but it will still have the maximum possible volume for the given amount of material.
To find the dimensions of the box of greatest volume that can be constructed for $48, we need to use optimization. Let's start by assigning variables to the dimensions of the box. Let x be the length of one side of the square base, and let y be the height of the box.
The surface area of the box (including the base) is given by:
SA = x^2 + 4xy
The cost of the box is given by:
C = 3(x^2 + 4xy) + 4x^2
We want to maximize the volume of the box, which is given by:
V = x^2y
Now we have three equations:
SA = x^2 + 4xy
C = 3(x^2 + 4xy) + 4x^2
V = x^2y
We can use the cost equation to eliminate y:
C = 3(x^2 + 4xy) + 4x^2
48 = 3(x^2 + 4xy) + 4x^2
48 = 3x^2 + 12xy + 4x^2
48 = 7x^2 + 12xy
y = (48 - 7x^2) / (12x)
Now we can substitute this expression for y into the volume equation:
V = x^2y
V = x^2(48 - 7x^2) / (12x)
V = (4x^2 - 7x^4) / 12
We want to maximize V, so we take the derivative and set it equal to zero:
dV/dx = (8x - 28x^3) / 12
0 = (8x - 28x^3) / 12
0 = 8x - 28x^3
28x^3 = 8x
x = sqrt(2/7)
Now we can use this value of x to find y:
y = (48 - 7x^2) / (12x)
y = (48 - 7(2/7)) / (12(sqrt(2/7)))
y = (336/7 - 2) / (12(sqrt(2/7)))
y = 2(sqrt(2/7))
Therefore, the dimensions of the box of greatest volume that can be constructed for $48 are:
x = sqrt(2/7) meters
y = 2(sqrt(2/7)) meters
And the maximum volume is:
V = (4x^2 - 7x^4) / 12
V = (4(2/7) - 7(2/7)^2) / 12
V = 8/21 cubic meters
Note that we have assumed that the carpenter can use any amount of material up to $48. If the carpenter is required to use exactly $48 of material, then the answer will be slightly different. In that case, the dimensions of the box will be:
x = 2(sqrt(2/7)) meters
y = (48 - 7x^2) / (12x)
y = 2(sqrt(2/7)) meters
And the maximum volume will be:
V = x^2y
V = 2/7 cubic meters
Know more about volume here:
https://brainly.com/question/13338592
#SPJ11
A lawyer believes that the probability is .3 that she can win a discrimination suit. If she wins the case, she will make $40,000; but if she loses, she gets nothing. Assume that she has to spend $5000 preparing the case. What is her expected gain?
The lawyer's expected gain can be calculated by multiplying the probability of winning by the potential gain if she wins, and subtracting the cost of preparing the case. The lawyer's expected gain in this discrimination suit is $7,000.
Expected gain = (probability of winning * potential gain) - cost of preparing the case
Expected gain = (.3 * $40,000) - $5,000
Expected gain = $12,000 - $5,000
Expected gain = $7,000
To calculate the expected gain for the lawyer in this discrimination suit, we need to consider the probabilities of winning and losing, as well as the associated monetary outcomes.
The probability of winning is 0.3, and if she wins, she makes $40,000. The probability of losing is 1 - 0.3 = 0.7, and she gets nothing in this case. Regardless of the outcome, she has to spend $5,000 preparing the case.
To calculate the expected gain, we multiply the probability of each outcome by its respective monetary value and then sum them up:
Expected gain = (0.3 * $40,000) - $5,000
Expected gain = ($12,000) - $5,000
Expected gain = $7,000
So, the lawyer's expected gain in this discrimination suit is $7,000.
Learn more about probability here
https://brainly.com/question/24756209
#SPJ11
A paper that examined the effect of a supplement on running speed in 10 athletes reported that running speed improved an average of 2 second/mile with a 90% confidence interval for the mean of 0.1 to 3.9 seconds/mile. What is the two-sided p-value for the corresponding paired ttest
The supplement has a statistically significant effect on running speed at a significance level of 0.05 (since the p-value is less than 0.05).
To find the two-sided p-value for the corresponding paired t-test, we need to use the information given in the paper. The paper reported that running speed improved by an average of 2 seconds/mile with a 90% confidence interval for the mean of 0.1 to 3.9 seconds/mile. To calculate the two-sided p-value, we need to assume that the null hypothesis is that the supplement has no effect on running speed. Therefore, the alternative hypothesis is that the supplement does have an effect on running speed. Using a t-test, we can calculate the t-statistic as (2 - 0) / (0.9 / sqrt(10)) = 7.95 (where 0 is the hypothesized mean improvement in running speed and 0.9 is the standard error of the mean based on the confidence interval given). Using a t-distribution table with 9 degrees of freedom (n-1), we can find that the probability of getting a t-statistic greater than or equal to 7.95 (or less than or equal to -7.95) is less than 0.001.
Since this is a two-sided test, we need to double this probability to get the two-sided p-value, which is less than 0.002. Therefore, we can conclude that the supplement has a statistically significant effect on running speed at a significance level of 0.05 (since the p-value is less than 0.05).
Learn more about statistically here
https://brainly.com/question/14724376
#SPJ11
please help im so confused= Find the position function if a velocity function is given by v(t) = 6+ e -2 s(t) = (Type an exact answer.)
Here's a step-by-step explanation:
1. You are given the velocity function: v(t) = 6 + e^(-2t)
2. To find the position function s(t), we need to integrate the velocity function with respect to t.
3. Integrate v(t) with respect to t: ∫(6 + e^(-2t)) dt
4. Apply the rules of integration: ∫6 dt + ∫e^(-2t) dt
5. Integrate each term separately: 6t - (1/2)e^(-2t) + C
6. The position function s(t) is: s(t) = 6t - (1/2)e^(-2t) + C
In the position function s(t) = 6t - (1/2)e^(-2t) + C, C is the integration constant, which depends on the initial position. If you are given an initial condition, you can determine the value of C. Otherwise, the position function will remain in this general form.
To learn more about Position function - brainly.com/question/28939258
#SPJ11
Find the total surface area of the following
cone. Leave your answer in terms of pi.
SA = [?]π cm²
HELPPPPPPPPPP MEEEEEEEEEEEEEEEEEEEEEEE
Answer:
The answer would be #3
Step-by-step explanation:
A certain contest has 10 participants and is awarding a gold medal to the top participant, a silver medal to the 2nd place participant, and a bronze medal to the 3rd place participant. In how many unique ways can these medals be awarded
There are 720 unique ways to award the gold, silver, and bronze medals to the top three participants in this contest.
The number of unique ways to award the gold, silver, and bronze medals can be determined by using the concept of permutations. A permutation is an arrangement of objects in a specific order. In this case, we need to find the number of permutations of 10 participants for the top three positions.
The number of permutations of 10 participants for the gold medal can be calculated as 10P1, which is equal to 10. This means that there are 10 different participants who can receive the gold medal.
Once the gold medalist is determined, there are only 9 participants remaining for the silver medal. The number of permutations of 9 participants for the silver medal can be calculated as 9P1, which is equal to 9. This means that there are 9 different participants who can receive the silver medal after the gold medalist is determined.
Finally, once the gold and silver medalists are determined, there are only 8 participants remaining for the bronze medal. The number of permutations of 8 participants for the bronze medal can be calculated as 8P1, which is equal to 8. This means that there are 8 different participants who can receive the bronze medal after the gold and silver medalists are determined.
To determine the total number of unique ways to award the medals, we need to multiply the number of permutations of each medal. Therefore, the total number of unique ways to award the medals is equal to:
10P1 x 9P1 x 8P1 = 10 x 9 x 8 = 720
Therefore, there are 720 unique ways to award the gold, silver, and bronze medals to the 10 participants in this contest.
To know more about ways, refer to the link below:
https://brainly.com/question/9146030#
#SPJ11
Find the approximate surface-area-to-volume ratio of a bowling ball with a radius of 5 inches. A. 0.6 B. 0.67 C. 1.67 D. 25 Please select the best answer from the choices provided A B C D
The approximate surface-area-to-volume ratio of a bowling ball with a radius of 5 inches is 0.6
To find the approximate surface-area-to-volume ratio of a bowling ball with a radius of 5 inches, we will first calculate the surface area (SA) and volume (V) of the ball, and then divide the surface area by the volume.
Step 1: Calculate the surface area (SA) using the formula for the surface area of a sphere:
[tex]SA = 4 πr^2[/tex]
[tex]SA = 4 π5^2[/tex]
[tex]SA = 4 π(25)[/tex]
[tex]SA=100π[/tex]
Step 2: Calculate the volume (V) using the formula for the volume of a sphere:
[tex]V = \frac{4}{3} π (r)^{3}[/tex]
[tex]V = \frac{4}{3} π (5)^{3}[/tex]
[tex]V = \frac{4}{3} π (125)[/tex]
V = 166.67 π cubic inches
Step 3: Calculate the surface-area-to-volume ratio (SA/V)
[tex]\frac{SA}{V} = \frac{100}{166.67}[/tex]
[tex]\frac{SA}{V}=\frac{100}{166.67}[/tex]
[tex]\frac{SA}{V}= 0.6[/tex]
So the approximate surface-area-to-volume ratio of a bowling ball with a radius of 5 inches is 0.6. The best answer from the choices provided is A.
To know more about "volume of a sphere" refer here:
https://brainly.com/question/30522025#
#SPJ11
An investigator indicates that the POWER of his test (at a significance of 1%) of a sample mean resulting from his research is 0.87. What is the probability that he made a Type I error
The probability of making a Type I error is equal to 1 - 0.99 = 0.01, which is the same as the significance level.
To answer this question, we need to understand the concepts of statistical power and Type I error. Statistical power refers to the probability of correctly rejecting the null hypothesis when it is false. In other words, it is the ability of a statistical test to detect a true effect.
On the other hand, a Type I error occurs when we reject the null hypothesis even though it is true. This is also known as a false positive.
The investigator has indicated that the power of his test is 0.87 at a significance level of 1%. This means that if there is a true effect in the population, the test has an 87% chance of correctly detecting it. However, we are interested in the probability of making a Type I error, which is the probability of rejecting the null hypothesis when it is true.
To calculate the probability of making a Type I error, we need to use the complement of the significance level, which is 1 - 0.01 = 0.99. This represents the probability of not rejecting the null hypothesis when it is true. Therefore, the probability of making a Type I error is equal to 1 - 0.99 = 0.01, which is the same as the significance level.
In this case, the investigator has used a significance level of 1%, which means that there is a 1% chance of making a Type I error. This is a relatively low probability, which indicates that the investigator is being cautious in rejecting the null hypothesis.
However, it is important to note that the probability of making a Type I error depends on the significance level, the sample size, and the effect size. Therefore, it is important to consider these factors when interpreting the results of a statistical test.
To learn more about Type I error, refer here:
https://brainly.com/question/24320889#
#SPJ11
The mean GPA of night students is 2.28 with a standard deviation of 0.66. The mean GPA of day students is 2.39 with a standard deviation of 0.32. You sample 35 night students and 50 day students. What is the mean of the distribution of sample mean differences (night GPA - day GPA)
The mean of the distribution of sample mean differences (night GPA - day GPA) is -0.11.
To find the mean of the distribution of sample mean differences (night GPA - day GPA), we can use the formula:
mean of sample mean differences = mean(night GPA) - mean(day GPA)
where the mean of night GPA and mean of day GPA are calculated from the respective samples.
The mean of the night student GPA is given as 2.28, and the mean of the day student GPA is given as 2.39. Therefore:
mean of sample mean differences = 2.28 - 2.39
= -0.11
So the mean of the distribution of sample mean differences is -0.11.
Note that this calculation assumes that the samples are independent and are drawn from normal distributions. It also assumes that the sample sizes are large enough for the central limit theorem to apply.
Know more about mean here:
https://brainly.com/question/1136789
#SPJ11